
Menu
Home
Research
Teaching
Journal Publications
Contact me
orcid.org/0000-0002-1736-3559
|

This page only displays information on my journal publications. A complete publication list can be obtained from here.
In press
[83] E.G. Morquecho, S.P. Torres, F. Astudillo-Salinas, H. Ergun, D. Van Hertem, C.A. Castro, C. Blum. Comparison of an Improved Metaheuristic and Mathematical Optimization Based Methods to Solve the Static AC TNEP Problem. IEEE Transactions on Power Systems, 2023, In press. (JCR, Q1, IF: 6.6)
2024
2023
[81] M. Djukanovic, A. Kartelj, C. Blum. Self-adaptive CMSA for solving the multidimensional multi-way number partitioning problem. Expert Systems with Applications, 232, article number 120762, 2023. (JCR, Q1, IF: 8.5)
[80] C. Chacon Sartori, C. Blum, G. Ochoa. STNWeb: A new visualization tool for analyzing optimization algorithms. Software Impacts, 17, article number 100558, 2023. (JCR, Q3, IF: 2.1)
[79] G. Rodriguez Corominas, M.J. Blesa, C. Blum. AntNetAlign -- A software package for Network Alignment. Software Impacts, 15, article number 100476, 2023. (JCR, Q3, IF: 2.1)
[78] G. Rodriguez Corominas, M.J. Blesa, C. Blum. AntNetAlign: Ant Colony Optimization for Network Alignment. Applied Soft Computing, 132, article number 109832, 2023. (JCR, Q1, IF: 6.725)
2022
[77] C. Blum, A. Eremeev, Y. Zakharova. Hybridizations of Evolutionary Algorithms with Large Neighborhood Search. Computer Science Review, 46, article number 100512, 2022. (JCR, Q1, IF: 8.757)
[76] T. Nurcahyadi, C. Blum, F. Manya. Negative Learning Ant Colony Optimization for MaxSAT. International Journal of Computational Intelligence Systems, 15, article number 71, 2022. (JCR, Q3, IF: 2.259)
[75] M.A. Akbay, A. Lopez Serrano, C. Blum. A Self-Adaptive Variant of CMSA: Application to the Minimum Positive Influence Dominating Set Problem. International Journal of Computational Intelligence Systems, 15, article number 44, 2022. (JCR, Q3, IF: 2.259)
[74] M. Djukanovic, A. Kartelj, D. Matic, M. Grbic, C. Blum, G.R. Raidl. Graph Search and Variable Neighborhood Search for Finding Longest Common Subsequences in Artificial and Real Gene Sequences. Applied Soft Computing, article number 108844, 2022. (JCR, Q1, IF: 6.725)
[73] J. Perez, J.L. Flores, C. Blum, J. Cerquides, A. Abuin. Optimization Techniques and Formal Verification for the Software Design of Boolean Algebra Based Safety-Critical Systems. IEEE Transactions on Industrial Informatics, 18(1), pages 620-630, 2022. (JCR, Q1, IF: 10.215)
[72] S. Bouamama, C. Blum, P. Pinacho-Davidson. A Population-Based Iterated Greedy Algorithm for Maximizing Sensor Network Lifetime
. Sensors, 22(5), article number 1804, 2022. (JCR, Q1, IF: 3.576)
[71] M.A. Akbay, C.B. Kalayci, C. Blum, O. Polat. Variable Neighborhood Search for the Two-Echelon Electric Vehicle Routing Problem with Time Windows. Applied Sciences, 12(3), article number 1014, 2022. (JCR, Q2, IF: 2.679)
2021
[70] G. Ochoa, K. Malan, C. Blum. Search trajectories illuminated. ACM SIGEVOlution, 14(2), pages 1-5, 2021.
[69] G. Ochoa, K. Malan, C. Blum. Search trajectory networks: A tool for analysing and visualising the behaviour of metaheuristics. Applied Soft Computing, 109, article number 107492, 2021. (JCR, Q1, IF: 6.725)
[68] B. Nikolic, A. Kartelj, M. Djukanovic, M. Grbic, C. Blum, G.R. Raidl. Solving the Longest Common Subsequence Problem Concerning Non-Uniform Distributions of Letters in Input Strings. Mathematics, 9(13), article number 1515, 2021. (JCR, Q1, IF: 2.258)
[67] T. Nurcahyadi, C. Blum. Adding Negative Learning to Ant Colony Optimization:A Comprehensive Study. Mathematics, 9(4), article number 361, 2021. (JCR, Q1, IF: 2.258)
[66] F. Bistaffa, C. Blum, J. Cerquides, A. Farinelli, J.A. Rodriguez Aguilar. A Computational Approach to Quantify the Benefits of Ridesharing for Policy Makers and Travellers. IEEE Transactions on Intelligent Transportation Systems, 22(1), 119--130, 2021. (JCR, Q1, IF: 6.492)
[65] M. Djukanovic, G.R. Raidl, C. Blum. An A* Search Algorithm for the Constrained Longest Common Subsequence Problem. Information Processing Letters, 166, article number 106041, 2021. (JCR, Q4, IF: 0.959)
[64] C. Blum, G. Ochoa. A comparative analysis of two matheuristics by means of merged local optima networks. European Journal of Operational Research, 290(1), 36--56, 2021. (JCR, Q1, IF: 5.334)
[63] C. Blum, M. Djukanovic, A. Santini, H. Jiang, C.-M. Li, F. Manyà, G.R. Raidl. Solving longest common subsequence problems via a transformation to the maximum clique problem. Computers and Operations Research, 125, article number 105089, 2021. (JCR, Q2, IF: 4.008)
[62] S. Balbal, S. Bouamama, C. Blum. A Greedy Heuristic for Maximizing the Lifetime of Wireless Sensor Networks Based on Disjoint Weighted Dominating Sets. Algorithms, 14(6), article number 170, 2021.
[61] S. Bouamama, C. Blum. An Improved Greedy Heuristic for the Minimum Influence Dominating Set Problem in Social Networks. Algorithms, 14(3), article number 79, 2021.
2020
[60] P. Pinacho Davidson, C. Blum. BARRAKUDA: A Hybrid Evolutionary Algorithm for Minimum Capacitated Dominating Set Problem. Mathematics, 8(11), article number 1858, 2020. (JCR, Q1, IF: 1.747)
[59] M. Djukanovic, G.R. Raidl, C. Blum. Finding Longest Common Subsequences: New anytime A* search results. Applied Soft Computing, 95, article number 106499, 2020. (JCR, Q1, IF: 5.472)
[58] C. Blum, M. Verdaguer, H. Montclús, M. Poch. A new optimization model for wastewater treatment planning with a temporal component. Process Safety and Environmental Protection, 136:157--168, 2020. (JCR, Q1, IF: 4.966)
[57] M. Djukanovic, G.R. Raidl, C. Blum.
Anytime Algorithms for the Longest Common Palindromic Subsequence Problem. Computers and Operations Research, 114, article number 104827, 2020. (JCR, Q2, IF: 3.424)
[56] C. Blum.
Minimum Common String Partition: On Solving Large-Scale Problem Instances. International Transactions in Operational Research, 27(1):91--111, 2020. (JCR, Q2, IF: 2.987)
[55] D. Thiruvady, C. Blum, A.T. Ernst. Solution Merging in Matheuristics for Resource Constrained Job Scheduling. Algorithms, 13(10), article number 256, 2020.
2019
[54] M. Horn, G.R. Raidl, C. Blum.
Job Sequencing with One Common and Multiple Secondary Resources: An A*/Beam Search Based Anytime Algorithm. Artificial Intelligence, 277, article number 103173, 2019. (JCR, Q1, IF: 6.628)
[53] E. Andrejczuk, F. Bistaffa, C. Blum, J.A. Rodriguez-Aguilar, C. Sierra.
Synergistic Team Composition: A Computational Approach to Foster Diversity in Teams. Knowledge-Based Systems, 182, article number 104799, 2019. (JCR, Q1, IF: 5.921)
[52] S. Bouamama, C. Blum, J.-G. Fages.
An Algorithm Based on Ant Colony Optimization for the Minimum Connected Dominating Set Problem. Applied Soft Computing, 80:672--686, 2019. (JCR, Q1, IF: 5.472)
2018
[51] C. Blum, M.J. Blesa.
A comprehensive comparison of metaheuristics for the repetition-free longest common subsequence problem. Journal of Heuristics, 24(3):551--579, 2018.
[50] C. Blum.
ILP-Based Reduced Variable Neighborhood Search for Large-Scale Minimum Common String Partition. Electronic Notes in Discrete Mathematics
, 66:15--22, 2018.
[49] P. Pinacho, C. Blum, J.A. Lozano. The Weighted Independent Domination Problem: Integer Linear Programming Models and Metaheuristic Approaches. European Journal of Operational Research, 265(3):860--871, 2018.
[48] C. Blum, M.J. Blesa. Hybrid Techniques Based on Solving Reduced Problem Instances for a Longest Common Subsequence Problem. Applied Soft Computing, 62:15--28, 2018.
2017
2016
[45] S. Bouamama, C. Blum. A Hybrid Algorithmic Model for the Minimum Weight Dominating Set Problem. Simulation Modelling Practice and Theory, 64:57--68, 2016.
[44] C. Blum, P. Pinacho, M. Lopez-Ibanez, J.A. Lozano. Construct, Merge, Solve & Adapt: A New General Algorithm For Combinatorial Optimization. Computers & Operations Research, 68:75--88, 2016.
[43] C. Blum, G.R. Raidl. Computational Performance Evaluation of Two Integer Linear Programming Models for the Minimum Common String Partition Problem. Optimization Letters, 10(1):189--205, 2016.
2015
[42] C. Blum, B. Calvo, M. J. Blesa. FrogCOL and FrogMIS: New Decentralized Algorithms for Finding Large Independent Sets in Graphs. Swarm Intelligence, 9(2):205--227, 2015.
[41] C. Blum, B. Calvo. A Matheuristic for the Minimmum Weight Rooted Arborescence Problem. Journal of Heuristics, 21(4):479--399, 2015.
[40] C. Blum, J.A. Lozano and P. Pinacho Davidson. An Artificial Bioindicator System for Network Intrusion Detection. Artificial Life, 21(2):93--118, 2015.
[39] C. Garcia, C. Blum, F. J. Rodriguez, and M. Lozano. The Firefighter Problem: Empirical Results on Random Graphs. Computers & Operations Research, 60, 55--66, 2015.
[38] C. Blum, J.A. Lozano and P. Pinacho Davidson. Mathematical Programming Strategies for Solving the Minimum Common String Partition Problem.
European Journal of Operational Research, 242(3):769--777, 2015.
2014
2013
[36] M. Lopez-Ibanez, C. Blum, J.W. Ohlmann and B.W. Thomas The Travelling Salesman Problem with Time Windows: Adapting Algorithms from Travel-time to Makespan Optimization.
Applied Soft Computing, 13(9):3806--3815, 2013.
[35] F. J. Rodriguez, M. Lozano, C. Blum and C. Garcia. An Iterated Greedy Algorithm for the Large-Scale Unrelated Parallel Machines Scheduling Problem. Computers & Operations Research, 40(7):1829--1841, 2013.
[34] P. J. Copado, G. Guillen and C. Blum. Large neighbourhood search applied to the efficient solution of spatially explicit strategic supply chain management problems. Computers & Chemical Engineering, 49(11):114--126, 2013.
2012
[33] H. Hernandez and C. Blum. Distributed Ant Colony Optimization for Minimum Energy Broadcasting in Sensor Networks with Realistic Antennas.
Computers & Mathematics with Applications, 64(12):3683--3700, 2012.
[32] F. J. Rodriguez, C. Blum, C. Garcia and M. Lozano. GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times. Annals of Operations Research, 201(1):383--401, 2012.
[31] H. Hernandez and C. Blum. Distributed Graph Coloring: An Approach Based on the Calling Behavior of Japanese Tree Frogs.
Swarm Intelligence, 6(2):117--150, 2012.
[30] S. Bouamama, C. Blum and A. Boukerram. A Population-Based Iterated Greedy Algorithm for the Minimum Weight Vertex Cover Problem.
Applied Soft Computing, 12(6):1632--1639, 2012.
[29] V. Hemmelmayr, V. Schmid and C. Blum. Variable Neigbhourhood Search for the Variable Sized Bin Packing Problem.
Computers & Operations Research, 39(5):1097--1108, 2012.
[28] A. Roli, S. Benedettini, T. Stuetzle and C. Blum. Large Neighbourhood Search Algorithms for the Founder Sequence Reconstruction Problem.
Computers & Operations Research, 39(2):213--224, 2012.
2011
-
[27] C. Blum. Iterative Beam Search for Simple Assembly Line Balancing with a Fixed Number of Work Stations.
Statistics and Operations Research Transactions, 35(2):145--164, 2011.
[26] H. Hernandez and C. Blum. Minimum Energy Broadcasting in Wireless Sensor Networks: An Ant Colony Optimization Approach For a Realistic Antenna Model.
Applied Soft Computing, 11(8):5684--5694, 2011.
[25] H. Hernandez and C. Blum. Foundations of ANTCYCLE: Self-Synchronized Duty-Cycling in Mobile Sensor Networks.
The Computer Journal, 54(9):1427--1448, 2011.
[24] E. Turetgen, G. Gonzalez, C. Blum and P. Fua. Automated Reconstruction of
Dendritic and Axonal Trees by Global Optimization with Geometric Priors.
Neuroinformatics, 9(2-3):279--302, 2011.
[23] C. Blum, J. Puchinger, G. Raidl and A. Roli. Hybrid Metaheuristics in Combinatorial Optimization: A Survey.
Applied Soft Computing, 11(6):4135--4151, 2011.
[22] C. Blum and C. Miralles. On solving the assembly line worker assignment and balancing problem via beam search.
Computers & Operations Research, 38(1):328--339, 2011.
2010
2009
2008
2007
2005
[11] D. Merkle and C. Blum.
Swarm Intelligence -- An optimization-based introduction.
Künstliche Intelligenz, 4:5-10, 2005.
[10] C. Blum.
Beam-ACO---Hybridizing ant colony optimization with beam search: An application to open shop
scheduling.
Computers & Operations Research, 32(6):1565-1591, 2005.
[09] C. Blum and M.J.
Blesa.
New metaheuristic
approaches for the edge-weighted k-cardinality tree problem.
Computers & Operations Research, 32(6):1355-1377, 2005.
[08] C. Blum and
M. Dorigo.
Search bias in ant colony optimization: On the role
of competition-balanced systems.
IEEE Transactions on Evolutionary Computation, 9(2):159-174,
2005.
[07] C. Blum.
Ant colony optimization: Introduction and recent trends.
Physics of Life Reviews, 2(4):353-373, 2005.
[06] M. Dorigo and
C. Blum.
Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2-3):243-278, 2005.
2004
2003
1998
|
|
|
|