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Abstract

In this paper we propose a deductive calculus aiming at improving the query/simple-
answer communication behaviour of many intelligent systems. In an uncertain reason-
ing context this behaviour consists of getting certainty values for propositions as an-
swers to queries. Instead, with our calculus, answers to queries will become sets of
formulas: a set of propositions and a set of specialised rules containing propositions
for which the truth value is unknown in their left part. This type of behaviour is much
more informative because it returns to users not only the answer to a query but all the
relevant information, related to the answer, necessary to, possibly, improve the solution.
To exemplify the general approach a family of propositional rule-based languages
founded on multiple-valued logics is presented and formalised. The deductive system de-
fined on top of these languages is based on a Specialisation Inference Rule (SIR):
(A NAs N - NAy,— P V), (4, V)Y-(42 A -+ N A, — P V"), where ¥,V and
V" are truth intervals. This inference rule provides a way of generating rules containing
less conditions in their premise by eliminating the conditions for which a definitive truth
value already exists. The soundness and atom completeness of the deductive system are
proved. The implementation of this deductive calculus is based on partial deduction
techniques. Finally, an example of the application of the specialisation calculus to a
multi-agent system is provided. © 1998 Elsevier Science Inc.
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1. Introduction
1.1. Motivation

The main concern of this paper is to introduce a many-valued logical calcu-
lus based on rule specialisation to model a type of cooperative communication
between autonomous agents in the presence of imperfect or imprecise know-
ledge. Other important communicational issues such as protocols or agent
communication languages are not dealt within this paper. Rather, we focus
on the informational content of the communication between agents.

For the sake of simplicity and readability, we restrict ourselves to architec-
tures of multi-agent systems composed of a set of autonomous rule-based
agents communicating each other by means of message passing. Moreover,
we only consider two types of asynchronous communication actions: queries
and answers. Finally, external users of the multi-agent system are supposed
to interact with the autonomous agents through an interface that allows them
to pose queries and give answers.

In a very simplified way, the standard behaviour of traditional knowledge-
based agents when communicating could be described as follows: when an
agent is inquired whether a given proposition holds, the agent starts its deduc-
tive machinery in order to find out a proof for that proposition. If it succeeds, it
gives back either the truth value frue in the case of classical reasoning or a par-
tial degree of truth or certainty in the case of approximate or uncertainty rea-
soning. If it fails, under the open world assumption, the answer is unknown.

In the case of rule-based agents, we propose to improve this simple commu-
nication process by using in a more effective way the information stored in the
rule base of an agent. For instance:

1. When the user of an agent makes a query, he might be interested in knowing
not only about the query itself but also about other related facts that can be
useful for the problem being solved. It can be also the case that the user
might be interested in knowing which conclusions can be drawn from the
proposition being queried.

2. When an agent is not able to answer a query because it has not been provid-
ed with enough information, he will probably answer with the value un-
known, as already commented. However, even in this case, the answer
may be much more informative if the agent let the user or another agent
know which is the lacking information causing the failure of the answer.
All this *hidden’ information is somehow actually used by humans when co-

operating in solving problems. Indeed, looking carefully at, for instance, how

physicians cooperate and communicate in a diagnosis problem, it can be no-
ticed that they may:

* condition their decisions. Suppose it is not known whether a patient is allergic
to penicillin. Then a physician asked for the possibility of giving penicillin as
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treatment would answer: ‘Penicillin is a good treatment from a clinical point

of view provided that the patient has no allergy to penicillin’.

e provide suggestions to be considered together with the answer of a query. In-
stead of strictly answering whether there is an infection or not, a physician
may answer: ‘Prneumococcus has been isolated in the culture of sputum. In this
case it is strongly suggested to make an antibiogram to the patient’,

o provide conditioned suggestions to be considered together with decisions. This
would correspond to a combination of the above two communication pat-
terns. For instance, ‘Ciprofloxacine is a good treatment, but if the patient is
a woman breast-feeding she must stop breast-feeding’.

To model such communication patterns, we need to extend the agent an-
swering procedure, by allowing it to answer queries with sets of formulas (rules
and propositions). We propose to do it by means of a calculus based on rule
specialisation. Specialisation as understood in this paper is related to the no-
tion of partial evaluation expressed in the well known Kleene’s Theorem
[10]. Specialisation Calculus is based on logic, then we use the term partial de-
duction instead of partial evaluation [12]. Partial deduction algorithms have
been used intensively in logic programming [5,11,13,18,20], mainly for efficien-
Cy purposes.

1.2. Partial deduction of rules

In classical (boolean) rule bases, deduction is mainly based on the modus
ponens inference rule

A,A — BFB.

In the case that 4 denotes a conjunction of conditions 4, A A4, the above in-
ference rule is only applicable when every condition of the premise, i.e. 4, and
A,, is satisfied, otherwise nothing can be inferred. However, if we only know
that condition A4, is satisfied, due to the well-known logical equivalence
(A A 4)) > B=A4, — (4, — B) = 4; — (4) — B), we can use partial deduc-
tion to extract the maximum information from incomplete knowledge in the
sense of the following specialisation inference rule (SIR):

A],A] /\Ag — BF“AQ - B,

The rule 4>, — B is called the specialisation of A, A A; — B with respect to the
proposition 4,. Notice that in the particular case that the rule has only one
condition in the premise, we may resort to the usual modus ponens rule.

The following are the corresponding functional specification of what a rule
specialisation process is.

Definition 1.1 (Rule specialisation). Let R be a set of rules and P a set of literals.
We note rules as pairs, r = (m,, ¢,), where m, is the premise (a set of literals)
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and ¢, is the conclusion (a literal). The rule specialisation is defined as a
function:

F2: RxP — RxP,

(r,0) if pgm,,
Fa(r,p) =4 (B,c) if m, = {p},
((m, — {p},c,),0) otherwise.
The extension to specialisation of agent’s rule bases is straightforward.

Definition 1.2 (Agent specialisation). Let A be a set of agents. We note Agents as
pairs a = (R, P), where R is a set of rules and P is a set of literals. Agent
specialisation is defined as a function:

F:A4— A,

(o) - {f«R— P )

otherwise.
(x)ifP# 0 and 3p € P and 3r € R such that F4(r,p) = (¥,p') and ¥ # r.

In other words, the specialisation of an agent’s rule base consists on the ex-
haustive specialisation of its rules. Rules that only have one condition appear-
ing in the set of literals will be eliminated and a new literal will be added. This
new literal will be used again to specialise the agent. The process will finish
when the agent has no rule containing on its conditions a known literal. This
approach is different for instance from the logic programming one used in
[13]. There, partial deduction is goal driven, whereas here partial deduction
is data driven.

In this paper we propose the use of this technique to improve the commu-
nication behaviour between agents by allowing agents to answer a query with
a part of the result of the specialisation of its rule base. In an approximate rea-
soning context we propose to extend the above boolean specialisation inference
rule to encompass partial truth, for instance in the following way:

(41, ), (A1 A 42— B, )+ (42 — B.f)

meaning that if 4, is known to be true at least to the degree o and the rule
Ay A A; — B is true at least to the degree f, then the specialised rule 4, — B
is true at least to a degree ' = f(a, ), being f a suitable combination function.
More concretely, in Section 2 we formally describe both the semantics and
syntax of a many-valued logical calculus for partial deduction of rule bases.
Section 3 is devoted to the functional description of an agent specialisation
mechanism. In Section 4 an example on multi-agent medical diagnosis is pre-
sented, showing the usefulness of the communication mechanism based on spe-
cialisation. Finally, a discussion on the results is presented in Section 5.
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2. Formalisation of a many-valued specialisation calculus for rule bases

In this section we present a parametric family of many-valued calculi for rule
specialisation. Each calculus is determined by a particular algebra of truth-val-
ues belonging to a parametric family of algebras that is described next.

Throughout this paper, an Algebra of truth-values A,r = (A,, <,N,, T,Ir)
will be a finite linearly ordered residuated lattice with a negation operation,
that is
1. (4,, <) is a chain of n elements: 0 =g < a; < --- <a, =1 where 0 and 1

are the booleans False and True respectively.

2. The negation operation A, is a unary operation defined as N,(a;) = a,_;.(,
the only definable order-preserving involutive mapping in {4,, <), i.e. it
holds
o NIl:if a < b then N,(a) > N,(b) Ya,b € A,.

o N2 (N,) =1d.

3. The conjunction operator T is a binary operation such that the following
properties hold Va,b,c € 4,.

o TIl: T(a,b) = T(b,a).

o T2: T(a, T(b c) = T(T(a,b),c).

o T3: 7(0,

o T4: T(l, a) =a.

o T5:if a<b then T(a,c) < T(b,c) for all c.

4. The implication operator I is defined by residuation with respect to T, i.e.

Ir(a,b) = Max{c € 4, | T(a,c) < b}.

Such an implication operator satisfies the following properties Va,b,c € A,.

o 1l: Ir(a,b) = 1if, and only if, a < b.

o I2: 17“(1,61) =a.

o I3: Ir(a Ir(b C)) = Ir(b ]r(a L))

o I4:if a<b then Ir(a,c) = Ir(b,c) and Ir(c,a) <Ir(c,b).

15: IT( (a b) ) —Ir(a Ir(b C))

As it 1s easy to notice from the above definition, any of such truth-values al-
gebras is completely determined as soon as the set of truth-values 4, and the
conjunction operator 7 are chosen. So, varying these two characteristics we
generate a family of different multiple-valued logics. For instance, taking
T(a;,a;) = aminijy O T(a,,a;) = Gminnn-i+;) We get the well-known Godel's
and Lukasiewicz’s semantics (truth-tables) for finitely-valued logics [6-9].

In the following we describe the language, the semantics and the deduction
system (specialisation calculus) of a particular logic corresponding to a given
algebra 4,, 7.

The propositional language ¥ = (4,, 2, %, Mv-%) is defined by:

e a set of truth-values 4,,
¢ a signature X consisting on a set of propositional variables plus zrue,

o
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o a set of Connectives ¢ = {—, A,—}, and
e a set of Sentences Mv-% = Mv-Literals(Z,4,) U Mv-Rules(Z, 4,), where
Mv-Atoms (Z,4,): {(p,¥) | p € Z,V interval of truth-values in 4, }.
Mv-Literals (£, 4,): {(p,V),(=p, V) | (p,V) € Mv-Atoms}.
Mv-Rules (Z,4,): {(py A p» A -+ A p. —q,V) | p;and q are literals, V' is
an interval of truth values in 4,, and Vi, j(p; # p;,pi # P 4 # P-4 # ~Pj)}-
That is, sentences of .#, which will be generically called muv-formulas, are in-
deed signed formulas under the form of pairs of usual propositional formulas
(restricted to be literals or rules) and intervals of truth-values.
Notation conventions. We shall commonly use:

p,q to denote literals from X

@,y to denote arbitrary propositional sentences
A,B  to denote arbitrary mv-formulas, and

I',4 to denote sets of mv-formulas

)

Further, a, b, . .. will denote truth-values from 4, while ¥, W, ... will denote in-
tervals of truth-values. For simplicity we shall also write (¢,a) to denote the
mv-formula (¢, [a,a]).

The semantics is obviously determined by the connective operators of the
truth-value algebra A4, 7. Interpretations are defined by valuations p mapping
the (propositional) sentences to truth-values of 4, fulfilling the following con-
ditions ':

pltrue) =1,
p(=p) = Nu(p(p)).

P(Pl AN AN py— Q) ZIT(T(P(Pl)a 'p(pn))7p(q))

Having truth-values explicit in the sentences enables us to define a classical sat-
isfaction relation in spite of the models being multiple-valued assignments. The
satisfaction relation between interpretations and mv-formulas is defined as

pE (9. V) iff pl) eV
and it is extended to a semantical entailment between sets of mv-formulas and
mv-formulas as usual

I'Ee (e, V) iff pkE(p,V) for all p such that p 4 for alld €T

Taking into account the motivations introduced in Section 1.1, the deduc-
tion system we consider for rule specialisation in our many-valued logical
framework is the following one.

' The expression T(ry, 72,73, ...) is the recurrent application of T as T(ri, T(r2. T(r3...))).
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Definition 2.1. The many-valued specialisation calculus (Mv-SC for short) is
defined by the following axioms

Al: (0,[0,1]).

A2 (true,1).
and by the following inference rules
Weakening: from (¢, ¥)) infer (¢, V»), where V; C V.
Not-introduction:  from (p, V) infer (—p, N*(V)), where p is an atom.
Not-elimination: from (—p, V) infer (p,N*(V)), where p is an atom.
Composition: from (¢, V1) and (¢, ¥5) infer (o, V; N 1),
Specialization: from (p,, V) and (py A --- A p, — g, W) infer

(v A APt A par A A pe— g, MPL(V, W),

where N:([a,b]) = [N,(b), N,(a)] and MP;(¥V, W) is the minimal interval con-
taining all solutions for z in the family of functional equations

Ir(a,z) =b
varyinga € V and b€ W.

Remark 2.1. In the above description of the specialisation inference rule we are
assuming » > 2. It is understood that if » = 1 then the specialization rule of
inference turns out into the following modus ponens inference rule: from (p, V)
and (p — ¢, W) infer (g, MPL.(V,W)).

The notion of proof inside Mv-SC is defined as usual.

Definition 2.2. There exists a proof of 4 from I', written I Fgc A, if there is a
finite sequence

Bl,...,Bm :A

such that each B; is either axiom Al or A2, an mv-formula from I', or has been
deduced from previous B, by application of some of the above five inference
rules.

It is easy to check that the above specialisation calculus is sound.
Theorem 2.1 (Soundness). If I' Fsc A then I' = A.

Proof. Axioms Al and A2 are trivially satisfied by any interpretation.
Weakening, not-introduction, not-elimination and composition inference rules
also trivially preserve truth. Let us check the truth preservation of Specialization
rule for the simplest modus ponens case, i.e. when n = 1. We shall prove that

{(p.U),(p—=q.V)} (g, W) if MPL{(U.V)CW.
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By definition, MP}.(U, V) is the minimal interval containing all the solutions of
the following family of functional equations:

IT(Q,Z) =h

forany @ € U, and b € V. Suppose then that MP%.(U, V) C W and let p a mod-
elof (p,U)and of (p — ¢q,V). Leta = p(p) and b = p(p — q) = Ir(p(p), p(q)).
Then a € U and b € V. By hypothesis, any solution for p(p) satisfying the
equation Ir(a, p(g)) = b must be in W, so p is also a model of (g, W). [J

On the other hand, it is obvious that the logic Mv-SC is not complete. For
instance, if we consider the two-valued case, ie. 4, = {0,1}, we have
{(p—»q,l),(q-—»r,l)} ':(P_”’yl) but {(p-—»q,l),(q——»r,l)}h‘sc(par,l).
It is also the case that the language is not complete for literal deduction in gen-
eral. For instance, we have {(p — ¢,1),(-p — ¢, 1)} E (g, 1) but {(p — ¢, 1),
(-p — q,1)} ¥sc (g, 1). However, it can be shown that the system is complete
for mv-atom deduction provided we further restrict the language basically by
not allowing negated literals in the language. This restricted mv-atom com-
pleteness can be seen as a many-valued counterpart of the completeness of clas-
sical modus ponens for atom deduction with propositional Horn clauses. This
will be shown in Section 2.1.

2.1. Mv-atom completeness

The sub-language we consider is the negation free fragment of .#. Namely
we define an Mv-Horn-Rule as an mv-rule (p; A p» A -+ A p, — ¢, V) such
that p; and g are atomic symbols and ¥ = [a, ]] is an upper interval of truth-
values of 4, with a > 0, and Vi, j(p; # p;, ¢ # p;). Then, we define the restricted
many-valued propositional sub-language Z.% as the following 4-tuple:

RL = (4,. 2,6, Mv-RYF)

being Mv-Z9 = Mv-Atoms(Z, 4,) UMv-Horn-Rules(Z,4,), where Mv-
Horn-Rules(Z, 4,) denotes the set of Mv-Horn-Rules that can be built from
2 and 4,. Within this sub-language, the not-introduction and not-elimination
inference rules of Mv-SC have no sense. Accordingly, we define the sub-calcu-
tus Mv-RSC by axioms 41,42 and the Weakening, Composition and Special-
isation inference rules. Deduction in Mv-RSC will be denoted by Fgsc. It is
interesting to remark that, in the restricted language 2.2, the specialisation in-
ference rule takes this form.

Specialisation: from (p;,[a),a2]) and (py A -+ A p, —q.[b,1]) infer
(pr A A pt A pua Ao A p, = q,[T(ay, b), 1)) since it is easy to show
from the definition of MP;. that MP}([ay, 2], [b, 1]) = [T(ay,b), 1].
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The soundness of Fgsc is naturally inherited from Fsc. Moreover, we shall
show the following completeness result for mv-atom deduction.

Theorem 2.2 (mv-atom completeness). Let I be a set of my-formulas from Mv-
RS. Then, if T = (p, [a, 1]), we also have I Frcs (p, [a, 1)), for any propositional
variable p € Z.

As usual, we will prove that if I' ¥ ges(p, [a, 1]) then ' (p,[a,1]). To do
that we shall make use of standard logical machinery adapted to our particular
case.

Definition 2.3. A set I of mv-formulas is RSC-inconsistent if there exists a
propositional variable such that I Frsc (p, 0).

Therefore, a set of mv-formulas I" will be RSC-consistent if I' is not RSC-in-
consistent.

Definition 2.4. A maximally atomic-consistent set I is a set of mv-formulas
such that:

1. for all g € X, there exists a € 4, such that (g,a) € T,

2. I' is RSC-consistent.

In the following we assume that I denotes a set of mv-formulas from
M — RS. Next step is to prove that if I" is RSC-consistent then I is satisfi-
able.

Lemma 2.1. For any RSC-consistent I, if I'U{(p,[a,1])} Frsc (p,0), then
I brsc (p,[0,a)), where [0,a) = {b € A|b < a}.

Proof. If I' is RSC-consistent and I'U{(p,|a,1})} Frsc (p,?), the only
possibility is to have I'kgrsc (p, W) such that [a,1]NW =@, that is
W C [0,a), and thus we also have I" Frsc (p,[0,a)). O

Lemma 2.2, Let aj,a;1) € A. If T U{(p,ai)} and I’ U {(p, a;;1)} are inconsistent
then I U {(p, [a;,ai+1])} is also inconsistent.

Proof. Suppose I' is consistent, otherwise the result is trivial, and suppose that
I'U{(p,ai)} and I U {(p, a;;,)} are inconsistent. Then, it must be the case that
IFrsc (p, V) with a; ¢V and V # 0. Analogously, I Frsc (p, W) with
a1 €W and W #0. Therefore, I'bFgsc (p,VNW),VNW#0 and
lai,aia]N (VN W) =0. Thus, we have that I'U{(p,la;,a;+1])} Frsc (p.9),
and so, I' U {(p, [a;,ai+1])} is inconsistent. [
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Lemma 2.3. If T is RSC-consistent then, for any propositional variable p, there
exists a € A, such that T U {(p,a)} is RSC-consistent.

Proof. Suppose I' U {(p,a)} is inconsistent for any a € 4,. Then, by repeated
application of previous lemma, I'U{(p,[0,1])} is also inconsistent, but
(p,[0,1]) is an axiom, thus I itself should be inconsistent: contradiction. [J

Lemma 2.4. If T is RSC-consistent, it can be extended to a maximally atomic-
consistent set I'*,

Proof. Let py,p2,...,pa, ... be the set of propositional variables X. Define

I'o=1T, and for i > 0 define I'; = I';_; U {(p;,a)}, a being a truth-value such

that I';_; U{(p;,a)} is consistent. By the previous lemma such an a always

exists. Finally, let I'* = U; > oI';. Then it is easy to check that I'* is maximally
atomic-consistent.

e I is RSC-consistent. Suppose not. Then there exists a finite subset I C I
such that I'’ Fgsc (p,®), for some p. By construction, there is j such that
I’ C I;. Then I'; would be inconsistent, contradiction.

e [ is maximally atomic-consistent. By construction. [

Lemma 2.5. If I is RSC-consistent then I is satisfiable.

Proof. Let I be consistent and let I'* be a maximally atomic extension of I.
Define a valuation pp: ~ — 4, as follows: pp(p) = a if (p,a) € I'".

Then it is easy to show that p, is a model of I'. Namely, we have to show
that, for any (¢, V) € I', we have that p,(¢) C V. We consider only the case
(p—q.V)eTI. Let (p,a),(q,b)jelI'". We shall show then that
Ir(pr(p), pr(q)) = Ir(a,b) € V. If a< b, then Ir(a,b) =1, and obviously, by
definition, 1 € V. Suppose otherwise that « > b. Since I'" is consistent, so
{(p—4q.V),(p,a).(g,b)} is. But, using modus ponens, {(p — ¢.V),(p,a)}
Frsc (¢, MPr({a}, 7)) and  thus  {(p—q,V).(p,a),(q,b)} Frsc (q. {b}
MP;({a}, V). Since {(p — q.7), (p.a). (¢,b)} is consistent, {5} N MP}({a},
V) # 0, that is, b € MP;({a}, V). In other words, since ¥ is an upper interval
there must exist ¢ € ¥ such that b > T(a,c¢). Let d = max{c|T(a,c) < b}. Since
V is an upper interval, d € V, therefore we have Ir(a,b) = max{c|T(a,c)
< b} =d, and the lemma is proved. [

Finally, from this lemma, Theorem 2.2. is direct corollary.

Corollary 2.1. If I = (p.[a.1]) then I bgrsc (p,la,1]), for any propositional
variable p.
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Proof. If I l/gsc (p, [a, 1]) then, by Lemma 2.1, I'U{(p, [0,a))}gsc(p,0), ie.
I'u{(p,[0,a))} is RSC-consistent, thus, by Lemma 2.5, I'U{(p,[0,a))} is
satisfiable, thus there exists p model of I' such that p(p) <a, ie.

¥ (p.la.1]). O

3. Inference algorithm

In this section we present an inference algorithm based on the specialisation
calculus. We are interested in obtaining the intervals of truth values for the
facts deducted minimising the number of deductive steps.

In order to preserve the correctness of the inference algorithm with respect
to the semantics of the specialisation calculus, the algorithm does not introduce
any extra-logical component. Deduction is implemented by using just the axi-
oms and inference rules presented in the previous section.

We consider that a proposition has a definitive value when there are no rules
that can contribute to its provisional value (initially [0,1]), producing a more
precise one by means of applications of the composition inference rule. We will
use a proposition to specialise rules only when that proposition has a definitive
value. This restriction permits that a rule be substituted by its specialised ver-
sions when no more specialisation is possible for the condition being eliminated
from its premise. When there are no conditions left in the premise of a rule the
conclusion of the rule is generated. The weakening inference rule will not be
used in the deductive process, it will only be used when necessary at query an-
swering time.

3.1. Internal representation

We propose a slight change of representation for mv-rules that allows us to
simplify the functional descriptions of the algorithm.

Definition 3.1 (Muv-rule). A mv-rule is a tuple » = (m,, ¢, p,), where m, is the
premise (a set of literals), ¢, is the conclusion (a literal) and p, is the truth-value
of the rule (an interval of truth-values such that p, = [, 1] and « € 4,,).

For instance the rule (¢ A d — e, [ps, 1]) — written using the notation of Sec-
tion 2 — will be represented from now on as the tuple: ({¢,d}. e, [p;, 1]).

Next we define a representation for sets of rules and sets of propositions that
we will refer to as the mental state [17] of the agent. The representation consists
of mapping each atom in X to its current interval of truth-values and the (pos-
sibly empty) set of mv-rules that conclude it, or its negation.
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Definition 3.2 (Agent) Let R be a set of mv-rules in language .¥. We define an
agent mental state AG as a mapping

AG: X — Int(4,) x 2%,

where, for each f € X, AG(f) = (p,,Ry), being Ry = {r € R |r = (m,,c,,p,)
and ¢, = f or ¢, = ~f}.

The representation of an agent’s mental state will evolve as deduction pro-
ceeds. We represent the initial mental state of an agent as a mapping from any
atom into [0,1] and the set of rules deducing it. It means that the atoms initially
have their most imprecise value — that is [0,1]. Axiom Al, Definition 2.1. in Sec-
tion 2. Notice that an agent with all atoms with truth-values [0,1] is always con-
sistent in our calculus.

Example 3.1. Now we can see an example of an initial mental state. Suppose
that we have the following set of mv-rules:

R= {({a,b},c, [plq 1]), ({a,f}, -, [va 1])? ({c, d}’ev [937 1]>}
It is easy to see that the set X is

X ={(a,b,c,d,e,f)}.
And that the state is:

AG(a) = ([0,1],0),

AG(b) = ([0.1],0),

AG(c) = ([0.1], {({a, b}, ¢, [p1, 1]), ({a. /1, —e, [o2, 1),
AG(d) = ([0,1],0),

AG(e) = ([0.1],{({c.d}, e, [p3, 1D }),

AG(f) = ([0, 1],9).

3.2. Specialisation

To describe the algorithm we define first of all the specialisation of a mv-
rule. Giving a mv-rule and a mv-atom, the mapping %4 specialises the mv-rule
with respect to that mv-atom generating a specialised mv-rule, or a new mv-at-
om if the rule had a single condition.

Definition 3.3. We define the specialisation of a mv-rule with respect to a fact,
S # as a mapping:

F 4 Mv-rules x Mv-Atoms — Mv-Rules x Mv-Atoms,



J. Puyol-Gruart et al. | Internat. J. Approx. Reason. 18 (1998) 107-130 119

(r,(true,[0,1])) if p&m, and ~p & m,,
(¥, (true,[0,1])) if pem, or pem,,

L a(r, (p, = .
2PN =N 0. g0) it m={p) orm, = (-}
and ¢, = qorc, = g,
where
o m = iph e MPr(p,, p,)) if pem,
(mr - {ﬂp}ach MP;’(N:(pp)>pr)) if —p € m,
and
MP(p,, p,) if m,={p}andc, =g¢q,
o= MP;’(N;(pp)’pr)) lf m, = {—lp} and ¢ =4q,
N;(MP3(p,,p,)) if m, = {p} and ¢, = ~q,

Ny (MP3(N;(p,),p,)) if m,={-p}andc, =—q.

Example 3.2. We can specialise the second mv-rule of the last example with
respect to (f, [py, pjy]), obtaining

*y.ﬁ(({aef}v e, [:027 l})e (f* [P4, p:tD
= (({a}v B [MPT(Pm pZ)’ ID’ (true, [0, 1]))

If we specialise again the rule so obtained with respect to (a, [ps, p}]) we get a
mv-atom

L 2(({a}, —c, [MPT(PM p2): 1)), (a, [Ps; P/i])
= (0 (chrT(MP*T([MPT(p4p2)~ 1] [P5, pls]))))

We extend now the definition of specialisation of a mv-rule to that of the
specialisation of a set of rules concluding the same atom p. In doing so, we se-
lect in turn a rule r to specialise. If its specialisation, with respect to a fact £,
returns a new rule, that is, ¥ ,(r, f) = (¥, (true, [0,1])), then we substitute
the rule by the specialised one in the agent’s mental state representation, and
the truth-value of p is not changed. If the specialisation returns a new interval
for p, thatis & 4(r, /) = (0, (p,v')), the rule is eliminated and a new truth-value
for p is calculated by means of the composition inference rule.

Definition 3.4. Let R be a set of mv-rules concluding the same atom p and F a
set of mv-atoms, the specialisation of R with respect to F is defined to be
F«(10,1],R, F), where

(9&6 . Int(A,,) % 2Mv~Rules x 2Mv-Atoms _ Int(A,,) x 2Mv—Rules,
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Fel,R={r} +{r},F) (%),
Fe(l,RF)=< S(INv,R~{r}F) (%),
(I,R) otherwise.

(x) if 3r € R, f € F such that L4(r, ) = (¥, (true, [0, 1])) with # # r.
(xx) if 3r € R, f € F such that & »(r.f) = (0, (p,v)).

Example 3.3. Consider the rules in our running example deducing ¢

AG(C) = ([O’ 1]* {({avb}'cv [ph 1]) ({asf}i e, [p27 1])})
Their specialisation with respect to F = {(a, [ps, p5])} is
5&6([0, 1]* {({avb}vca [pI: 1]) ({asf}1 e, [Pz, 1])}* {(as [pSaplS])})
= ([Ov l]v {({b}vc’ [p(): 1]): ({f}~ e, [P7, 1])})

because the rules’ specialisation is:

I #(({a.b},¢,[py, 1)), (@ [ps, p5]))
= (({b}.c, [péﬂ ])s true, [0»1]
Fa(({a. [} e [p2 1)), (a [ps, £5]))
= (({}. e, [ps. 1)), (true, [0,1])).

Consider another step of specialisation, now with respect to (f, [ps, p3])

5&6([0* 1]~ {({b}~c’ [pfn l])~ ({f}v e, [P7, 1])}~ {(/" [114./);])})
= ([0, 111 [0, ps], {({b}. ¢, [P, 1D D)

because the specialisation of the second rule is

.V%(({f},—‘c, [pS’ ]])’ (fv [p4p:t])) = (Qv (C7 [0108]))

Hence, after these two specialisation steps we get a new mental state for the

agent with respect to ¢

AG(C) = ([O»Px]s {({b}sca [péﬁ 1])})

[0, pg] is a provisional value for ¢ because there is still a mv-rule that might con-

clude that atom, making its truth interval more precise.

The next definition accounts for the specialisation of an agent’s mental state

with respect to a set of atoms.

Definition 3.5. Let AG be an agent mental state and F a set of mv-atoms. The

specialisation of AG with respect to F is defined as:

G AG x QMvaems . AG
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V(AG,F):{y(AGV_’([:R)],F) Ol

AG otherwise

() if 37 € X such that Sc (first(AG(f)), second (AG(f),F) = (I, R) with
(1,R) # AG(/)

Note 3.1. The notation AG[f — (I, R)] represents a modification of the func-
tion AG in such a way that from now on AG(f) = (I,R).

Example 3.4. We can now see the specialisation of the running example with
respect to the atom b.

S (AG. {(b.[p. 1)}) = AG',

where
G'(a) = ([ps, P4, 9),
G'(b) = ([pyo: 1], 0),
G'(c) = L4([0. pg], {({B}, ¢, [p6: 1)}, (B, 16, 1])) = ([P0, 071): 9),
G'(d) = ([0,1].0),
AG/(e) = ([0, 1], {({c. d}, e, [p3, 1])}),
AG'(f) = ([p4, ). 0).

Now we have obtained a definitive value for fact ¢ and we can now specialise
with respect to ¢

Y(AG {(c,[pu. P1i])}) = AG",

where
AG"(a) = ([ps, 03], 0
AG"(b) = ([p1o, l]e(o)s
AG(c) = (I P11, 0).
AG"(d) = ([0,1],0)
AG”(e) = ‘y‘(([o l]v {({C‘d} e, [p3’ 1])}’ (C~ [pll’plll])):

= ([0.1], {({d}. e. [p12. 1) }),
AG"(f) = ([ps; P4], 0).

To specialise a complete agent’s mental state we will use each atom with de-
finitive value in the mental state in turn to make specialisation steps that pos-
sibly will generate definitive values for other atoms to be later on used to
specialise more the state. Clearly this process finishes because the number of
atoms in any set of rules of the type considered is always finite. Hence the fol-
lowing algorithm.
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Algorithm 1. Specialisation algorithm
SC(AG) = Definite := {(f,1;) | AG(f) = (I, 0)};

while Definite # ¢} do
(g,1) := ChooseOne(Definite);
NewAG = S(AG, {(g,1,)});
Definite := Definite — (g,1,) + {(f,Iy) | NewAG(f) = (I1,0) # AG(/)};
AG := NewAG:;

endwhile;

return AG

The complexity of this algorithm is O(n?) where n = |Z|.

4. Example

Milord 11 is a modular language for knowledge engineering based on reflec-
tion mechanisms and that implements the specialisation calculus described in
this paper. More general descriptions of Milord II may be found elsewhere
[14,15]. The purpose of this section is only to show how the specialisation
mechanism is actually used in a medical cooperative setting. In real medical en-
vironments, problems are usually solved by means of the cooperation of several
human agents. The example presented in this section intends to assist physi-
cians to diagnose pneumonia diseases, and consists of two cooperating agents.

In Milord II agents are implemented as autonomous processes in a network.
Agents communicate each other by means of message passing in a mail-like
system. This example is composed of two agents: the Clinician agent and the
Micro-biologist agent (see Fig. 1) that assist their correspondent human physi-
cians. The Clinician agent assists the physician (user of that agent), that has a
close contact with the patient, to make a diagnosis of pneumonia. The Clinician
agent uses its own knowledge to get an initial diagnosis of the patient from clin-
ical signs. It also uses the services of the Micro-biologist agent to refine this ini-
tial diagnosis into a definitive one. The Micro-biologist agent provides its own
opinion of the diagnosis based on the analysis of a sample (of sputum) of the
patient and on the initial diagnosis made by the Clinician agent.

Clinician [z %

R

4

% < |Micro-biologist [«

Sample " -~ — 7 Patient

Fig. 1. General schema of the agents.
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Let us explain the Milord II code of this example that can be found in Fig. 2
(Clinician agent) and Fig. 3 (Micro-biologist agent), respectively.

The Clinician agent declaration contains: the set of agents this agent can
communicate with (acquaintances), in this case just Micro-biologist, the import

Agent Clinician =
Begin
Acquaintances Microbiologist
Import Expectoration, Fever, Cough, Rx Lung. Infiltrate
Export Pneumonia
Deductive knowledge
Dictionary: not included here
Rules:
RO01 If Cough and Expectoration and Fever
then conclude Respiratory_Infection is definite
R002 If Respiratory Infection and Rx.Lung. Infiltrate
then conclude Initial_Diagnosis_Pneumonia is definite
ROO03 If Initial_Diagnosis_Pneumonia
then conclude Pneumonia is possible
R004 If Microbiologist?Pneumonia
then conclude Pneumonia is definite
end deductive
end

Fig. 2. Clinician Agent code.

Agent Microbiologist =
Begin
Acquaintances Clinician
Import Sputum_Gram_Positive_Cocci,
Sputum_Culture_Streptococcus_Pneumonia
Export Pneumonia
Deductive knowledge

Dictionary: not included here

Rules:

RO001 If Sputum_Gram Positive_Cocci and
Sputum_Culture_Streptococcus_Pneumonia
then conclude Pneumococcus is definite

R002 If Pneumococcus and
Clinician?Initial_Diagnosis_Pneumonia
then conclude Pneumonia is definite

end deductive

end

Fig. 3. Micro-biologist agent code.
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interface, that is, the set of propositions that can be asked to the user of that
agent, for instance Expectoration; the export interface, that is, the set of prop-
ositions that can participate in output communication utterances, in this case
pneumonia; and the deductive knowledge containing the dictionary with the dec-
laration of the facts of the agent (that is, X) and a set of weighted propositional
rules (that is, Mv-Rules).

The set of truth-values used in this example is A5 = (impossible,
slightly-possible, possible, very-possible, definite) where impossible =0 and
definite = 1 (see Section 2). We follow in this section a convention used in Mi-
lord II: intervals of type [a. 1] are written just as a.

The Clinician agent exports the proposition preumonia. This agent tries to
deduce this proposition interacting with the known agents (Micro-biologist)
and its user, and using its own rules. The rules may contain queries to other
agents about values for particular propositions belonging to the other agent’s
language in the form Agent?Proposition. For instance, the proposition Preuno-
nia can be deduced by rule R004 from a proposition valued by agent Micro-bi-
ologist, that is Micro-biologist? Pneumonia. Propositions belonging to the
import interface (for instance Expectoration) are asked to the user of this agent.
Given an initial diagnosis of pneumonia (Initial_Diagnosis_Pneumonia, defi-
nite), the rule ROO3 can be specialised to deduce the proposition (Preumonia,
possible). In the case of a definite diagnosis of pneumonia given by the Mic-
ro-biologist agent, the rule R0O0O4 can be specialised deducing (Pneumonia, def-
inite). In other words, the agent gives more importance to the micro-biological
evidence of pneumonia.

Fig. 3 contains the declaration of the agent Micro-biologist. It knows the
Clinician agent and needs data about the sample of sputum of the patient.
To deduce the proposition Preumonia, it previously needs to deduce the pres-
ence of prneumococcus in the sputum sample of the patient and the presence of
streptococcus pneumonia in a culture of the sputum (rule R007), and it needs to
know the initial diagnosis of pneumonia obtained by the Clinician agent (rule
R002). Notice that the Micro-biologist agent cannot deduce pneumonia with-
out an initial diagnosis (by the Clinician agent).

Making abstraction of the real operational semantics, let us explain the spe-
cialisation inference mechanism on this example. Consider that the physician
asks for the value of the diagnosis of Pneumonia to the Clinician agent. To
solve this query this agent will then specialise its own rules and will make ques-
tions to the other agents and to its user. Consider the following Clinician agent
initial mental state:

2

% Actually the set of truth-values 4, and the connective T can be defined locally to each agent. In
this case we would need to define a mapping between the different logics of the agents that can
communicate (see {1] for further details on this topic).
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AGC[inician
AGinician(Cough) = ([0,1].0)
AG¢inician(Expectoration) = ([0, 1], 0)
AG¢limician(Fever) = ([0.1],0)
AG¢inician(RX_Lung_Infiltrate) = ([0, 1], 0)
AG ¢imician (Microbiologist?Pneumonia) = ([0, 1], 0)
AG, 1,,,,(,0,,(R€Spll‘d10rv Infection) =
0,1]. {{{Cough, Expectoration, Fever},
Respiratory Infection,[definite,1])})
AGejimician(Initial_Diagnosis Pneumonia) =
([0, 1], {({Respiratory_Infection. Rx_Lung.Infiltrate},
Initial Diagnosis_Pneumonia,[definite,1]}})
AGlinician(Pneumonia) =
([0, 1], {({Initial .Diagnosis_Pneumonia}, Pneumonia,[possible,1]).
({Microbiologist?Pneumonia}, Pneumonia,[definite,1]) })

To conclude the fact Pneumonia the agent needs to conclude an initial diag-
nosis for pneumonia (the proposition Initial_Diagnosis_Pneumonia) and to ask
the agent Micro-biologist for the value of its particular diagnosis of Preumonia.
Recursively, to deduce an initial diagnosis for pneumonia, the agent needs to
gather all the data relative to the patient (Cough, Expectoration, Fever and
Rx_Lung_Infiltrate). This gathering has to be made bay the user of the Clini-
cian agent.

Consider the case of a patient who has cough, expectoration, fever and in-
filtration in the lung; the sample of sputum contains gram positive cocci, and
the culture of sputum contains streptococcus pneumonia. It can be expressed
with the following sentences.

/1 (Cough, [definite,1])

/> (Expectoration, [definite,1])

/3 (Fever, [definite,1])

Jf+ (Rx_Lung_Infiltrate, [definite, 1])

/s (Sputum_Gram . Positive - Cocci, [definite, 1])

J& (Sputum_Culture. Streptococcus_Pneumonia, [definite. 1])
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Consider now that the user of the agent Clinician gives the propositions f,
f2, and f3 (cough, expectoration and fever). Then, a first specialisation step will
produce the following new AG'.

% Gl(,'lmn ian 9&(6(/1 GClim‘cian )
AGyi0ian(Cough) = ([definition, 1],0)

AG,,, ... (Expectoration) = ({definition, 1], ?)

AGy;ian(Fever) = ([definition, 1], 0)

AG,,...(Rx_Lung_Infiltrate) = ([0, 1],0)

AG, (Microbiologist?Pneumonia) = ({0, 1],0)

AG,,....(Respiratory_Infection) = [definite,1], %

AGY,0Initial_Diagnosis_Pneumonia) =
([0, 1], {({Rx_Lung_Infiltrate},

Initial_Diagnosis_Pneumonia,[definite,1]}})

Clinician

AG,

Clinician

([0, 1], {({Initial - Diagnosis_Pneumonia}, Pneumonia,[possible,1]),
({Microbiologist?Pneumonia}, Pneumonia,[definite,1])})

(Pneumonia) =

Notice that the first rule has been totally specialised to get (Respiratory_In-
fection, [definite, 1]). The truth-value of that proposition corresponds to the
successive application of the SIR rule. For instance, we can show a specialisa-
tion step of that rule with respect to the proposition Fever.

(Fever, [definite,1]), (Cough A Fever — Respiratory_Infection, [definite,1])
F (Cough — Respiratory_Infection, MPj([definite,1], [definite,1]))

The question about pneumonia made by the Clinician agent to the Micro-bi-
ologist agent will activate a deductive process in that agent. As showed in
AGyicro-biotogist» t0 deduce the fact pneumococcus the agent needs to know the
initial diagnosis of pneumonia made by the Clinician agent and the proposi-
tions related with the analysis of sputum.

AG gicro-biotogist

AGicro-biotogie(Sputum_Gram_ Positive_Cocci) = ([0, 1], 0)

AG picro-hiotogis (Sputum_ Culture_Streptococcus_Pneumonia) = [0 1],0)
AGficro-bioiogin(Clinician?Initial_ Diagnosis_Pneumonia) = ([0, 1], 0
AGsicro-piotogis(Pneumococcus) =
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([0, 1], {({Sputum_Gram_Positive_Cocci,
Sputum_Culture_Streptococcus_Pneumonia},
Pneumococcus, [definite,1])})
AGicro-biotogiss(PREUmMONIa) =
([0, 1], { ({ Pneumococcus, Clinician?Initial_Diagnosis_Pneumonia}.
Pneumonia, [definite. 1])})

Notice that (see Fig. 2) the fact Initial _Diagnosis_Pneumonia is not exported
by the Clinician agent. Then it can not be asked to that agent. As we will see
this will force the Clinician agent to answer with a conditioned answer, that
is, a rule.

Suppose the answers to the questions Sputum_Gram_Positive_Cocci and
Sputum_Culture_Streptococcus_Pneumonia are given to the Micro-biologist
agent by its user. Then, specialising AG icro-piorogis: With respect to the sentences
corresponding to those propositions we get:

AG,
A G;Vficm-biologzsl (
A G;Wirm-biologis!

([definite, 1],0)

=9 %’(AGM[('ro-biolagist)

icro-biologist

Sputum_Gram_Positive_Cocci) = ([definite, 1], ()

(Sputum_Culture _Streptococcus_Pneumonia) =

AG ) iero-biotogis(Clinician?Initial - Diagnosis_Pneumonia) = ([0, 1].0)
AG 1o ioingin (PDEUMOCOCCUS) = (definite, 1], )
A G;Wicrmbiologix( (Pneumonia) =

([0, 1], {({Clinician?Initial_Diagnosis_Pneumonia},
Pneumonia, [definite, 1])})

No more specialisation is possible. Then, in this case, the answer to the ques-
tion Pneumonia given by the Micro-biologist agent is a specialised rule, for that
agent cannot ask the Clinician agent a non exportable fact:

f7(Clinician?Initial . Diagnosis_Pneumonia
— Pneumonia, definite)
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This rule is then sent back to the Clinician agent from the Micro-biologist
agent, and translated °. In this particular case the translation is:

(Initial_Diagnosis_Pneumonia — Microbiologist?Pneumonia, definite)

Now we can see another specialisation step over AG(,,,....- The specialisa-
tion is done to the translation of f7 and on f;. The result is the following:

A Gl(/"liniclan =9% (A G{C/inician )

AGl(l'linivian(Cough) = ([deﬁﬂite, 1}* @)

AGY,. ... (Expectoration) = ([definite, 1],0)

AGY,, . (Fever) = ([definite, 1],0)

AGY,. ... (Rx_Lung_Infiltrate) = ([definite, 1],9)

AGY,, .. (Microbiologist?Pneumonia) = ([definite, 1],0)

AGY,,...(Respiratory _Infection) = ([definite, 1], )

AGYy, .o, (Initial_Diagnosis_Pneumonia) = ([possible, 1], ?)

AG”.,  (Pneumonia) = ([possible, 1] N [definite, 1], ®) = [(definite, 1
Clinician p

AG" already contains a definite truth-value for the proposition preumonia to
give back to the user of the Clinician agent who started all the deductive pro-
cess with the initial query. The answer is then: (Pneumonia, definite). Notice
that there would be no final diagnosis for pneumonia without an initial one,
and that without a micro-biological diagnosis the final diagnosis would have
had as maximum truth-value possible.

5. Discussion

In this paper an inference calculus containing a SIR in the paradigm of mul-
tiple-valued logics is presented. The calculus is implemented using techniques
of partial deduction, and is shown to be sound and complete for atom deduc-
tion.

The communication between autonomous agents based on this calculus is
much more cooperative than the classical one: The answer to a query is now
a set of specialised rules and propositions. Our system is thought for the coop-

¥ Titent is a function that given a set of sentences in the language of agent, translates each
sentence to the language of agent,. It usually obliges to change the agent names preceeding
propositions (for instance 7r2({(B?b.p)}) = {(b, $}}). It also changes the truth-values of the
sentences to adapt to the logic of agent,. The detailed explanation of this function is out of the

scope of this paper.



J. Puyol-Gruart et al. | Internat. J. Approx. Reason. 18 (1998 ) 107-130 129

eration among agents via the communication of knowledge, not just data, in a
similar way to other systems [2], where the communication is about lambda-
formulas; or the communication of inductive inferences as in [3], a work on
multi-agent learning systems.

The specialisation calculus is also related to other work on conditioned an-
swers [4,16,19] and on the treatment of unknown information [21]. It allows
us to obtain conditioned answers after the specialisation of a rule base with
the known information. Our system is able to give back useful answers even
in the case of partially known information.

The main difference of specialisation calculus with respect to other uses of
partial deduction, is that it is based on a multi-valued propositional language
and it is oriented to the improvement of the communication among agents, not
just efficiency.

This specialisation calculus can also be used to make validation of rule bas-
es. Consider that a physician has a general rule base for pneumonia treatment,
and that he wants to check it in a restricted context such as: ‘women with gram-
negative rods’. The specialisation mechanism allows him to obtain a new rule
base specialised for pneumonia treatment in the particular case of women with
gramnegative rods. The expert should agree with the behaviour of the new rule
base so obtained, in that restricted context, because it is a specialisation of its
original one, otherwise he must revise it. To check the behaviour of this re-
duced rule base he can apply any classical method (v.g. by case analysis),
but to a much more reduced one, and this is the advantage of the use of the
specialisation calculus. This specialisation mechanism can also be understood
as a way of modularisation, by contexts, of flat and non-structured rule bases.
This methodology gives then a more comprehensive and systematic way of val-
idating rule bases than the standard methods.
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