
Milord II

Josep Puyol Gruart, Carles Sierra

Institut d’Investigació en Intel·ligència Artificial (IIIA)
Camı́ de Santa Bàrbara, 17300 Blanes (Girona)

e-mail: {puyol, sierra}@ceab.es

Abstract

Milord II is a programming language and a tool for the development

of expert systems. Milord II has been designed and developed at the

IIIA and it works as a testbed for the implementation of the theoretical

developments of our group. Several applications from medicine to biol-

ogy, pedagogy and pig farms are being developed. Milord II is a free

prototype available for research purposes. This is a brief summary of the

main concepts of Milord II in order to the understanding of a software

demonstration.

1 Introduction

The main goal of Milord II is the programming of real world expert systems,
that is, those dealing with real problems and programmed by real experts. Pro-
gramming in the large and imperfect information treatment are one of the most
important characteristics of Milord II.

2 A Modular Language

The decomposition of a whole problem into simpler parts is a good and natural
programming methodology. Milord II is then a homogeneous language based
on modules. A Milord II program is a hierarchy of modules.

Modules are the basic unit of programming in Milord II. All the other
components of expert systems as facts or rules belong to modules. Every module
can be considered as a specialist on a concrete domain, that is, every module is
a complete expert system containing both the domain and control knowledge.
In the following we will briefly describe the main components of modules using
the simple example of Figure 1.

1

2.1 Interface

The interface of a module has two components: the import and the export
interface. The export interface of a module is its output result. It represents
the facts the module is able to deduce. For instance the module Gram exports
a set of germs. The import interface of a module is the set of facts provided by
the user (Penicillin in the module Gram).

Modules can also import information from other modules via their declara-
tion as submodules. The module Gram has three submodules (Respiratory Di-
agnosis, Type of Infection and Gram of Sputum). It can import the fact DCGP
exported by the module Gram of Sputum by means of the path S/DCGP1.

Module Gram =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module S= Gram of Sputum
Import Penicillin
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
Deductive knowledge

Dictionary: ; not defined here.
Rules:

R001 If S/DCGP then conclude Pneumococcus is possible
R002 If S/DCGP and D/Bact Pneumonia

then conclude Pneumococcus is very possible
R003 If S/BGN and D/Aspiration Pn and T/Nosocomial

then conclude Enterobacteria is quite possible
R004 If S/CBGN and Penicillin

then conclude Haemophilus is sure
Inference system:

Truth values= (impossible, few possible, sligh possible, possible,
quite possible, very possible, sure)

Renaming

D/False ==> impossible
D/True ==> sure
T/False ==> impossible
T/True ==> sure
...

Connectives:

Conjunction =

((impossible impossible impossible impossible,
impossible impossible impossible)

...
(impossible few possible sligh possible possible

quite possible very possible sure))
end deductive

Control knowledge

Evaluation Type: Lazy
...
end control

end

Figure 1: Example of module declaration.

2.2 Deductive Knowledge

Milord II deals with imperfect knowledge, that is, uncertain, imprecise and
vague knowledge. The use of a symbolic multi–valued logics allows us to give
to the concepts a graduated truth–value. For instance, we can say that fever is
possible.

The deductive knowledge is composed by the declaration of the dictionary,
the rules and the inference system of the module.

1S is the local name of the submodule Gram of Sputum. Local names are defined by
Module local name = module.

2

Dictionary: It defines the fact identifiers and some of their attributes. The
most important attribute of facts is their type. There are different types of
facts: boolean, logic, enumerated and numeric facts2. The value of a logic fact
is an interval of truth–values. In Figure 2 there is an example of a numeric fact
declaration. Enumerated facts are fuzzy sets.

Dictionary:

Predicates:

...
Temperature =

Name: ”Patient’s Temperature (in centigrade)”
Question: ”Which is the patient’s Temperature?”
Type: Numeric
Relation: less-relevant-than AIDS

...
;; within the Temperature predicate definition the next
;; meta-predicate instance is present:
;; less-relevant-than(Temperature, AIDS)

Figure 2: Example of predicate declaration.

Rules: This component of modules represent the relational knowledge. For
instance:

If temperature > 39◦ then conclude fever is definite

Inference System: It is the declaration of the local logic of a module. It
consists of the declaration of a total ordered set of linguistic terms and the
connective operators used to combine and propagate the truth–values when
making inference. In the example of Figure 1 we can see a declaration of a logic
with seven terms and the conjunction operator.

The inference system declaration of a module also includes the mapping
(translation) of the terms of the different logics of its submodules to the own
logic3.

In the example of Figure 1 the renaming declaration D/False ==> impossible
means that the term False from the module D is translated to the local term
impossible.

2.3 Control Knowledge

The current implementation of the meta-language allows the definition of meta–
rules, and the type of module execution, which can be lazy or eager. Lazy means
that facts are evaluated, at the object-level, only when needed, i.e. imported
facts and exported facts of submodules are asked only if they may be useful to
compute the export interface of the module. On the contrary an eager mod-
ule execution obtains, first of all, values for the imported facts and for the

2For the sake of simplicity we avoid to explain temporal facts that allows to implement
temporal reasoning and facts of type array used to implement bayesian reasoning.

3These translations of linguistic terms should preserve the deduction among modules with
some criteria.

3

exported facts of the submodules and then the deductive knowledge is used.
The interaction between the object level (rules) and the meta level (metarules),
reification/reflection step, is made after every import information is obtained,
after every submodule execution and after every time object level is extended
by deduction.

An example of meta–rule:

M001 If K(X/$y,$v) then conclude K($y,$v)

Given any fact of the submodule X (X/y) with any value v, then we give to
the fact y of the current module the same value v.

3 The Tool

Milord II is composed by two programs, the compiler and the interpreter.
These programs have been implemented using C and Common Lisp respectively.
Now we have only a Macintosh version because of the dependency of the window
system to the machine.

The operation on Milord II interpreter can be summarized as follows:

1. The list of modules or a graphical representation is presented. The user
can choose the starting point by selecting a module. Notice that it is not
necessary to start on the root module of the application.

2. The list of the exported facts of the module is presented. The user can
ask a module for the value of a fact or of a set of facts.

3. The module will generate questions to the user and to its submodules.
The local control strategy of every module executed will determine which
is the information needed to reach the goals.

4. Finally the answer or conditioned answers4 to the initial questions are
presented to the user.

4 Applications

We are developing several expert system applications in different domains.

Terap–IA: It is a medical application for pneumonia treatment. It is the natural
extension of a previous expert system named Pneumon–IA for pneumonia
diagnosis.

Ens–AI: It is an intelligent tutorial system directed to the diagnosis and orien-
tation assistance in pedagogical processes.

4The inference engine of Milord II works by specialization. The conditioned answers are
obtained by the specialization (partial deduction) of the object level of modules.

4

Spong–IA: It is an expert system for marine sponge classification.

Porc–IA: It is an expert system for the supervision of a pig farm. It is an
example of the use of temporal reasoning in Milord II.

5 Future Work

We are working on an intelligent editor for Milord II. We are also working
in the connection of Milord II with databases and its distribution on a Mac
network.

5

