
A Specialisation Calculus to improve Expert

Systems Communication ∗

Josep Puyol-Gruart, Llúıs Godo, Carles Sierra

Institut d’Investigació en Intel ·ligència Artificial(IIIA)
Centre d’Estudis Avançats de Blanes (CSIC)

Camı́ de Santa Bàrbara, 17300 Blanes (Girona), Spain

May 1992

∗This research has been supported by the CICYT TIC91–0430 project TESEU and the
Esprit Basic Research Action number 3085 (DRUMS).

1

Abstract

The motivation of this work is the improvement of the classical in-

put/output expert systems behaviour. In an uncertain reasoning context
this behaviour consists of just getting certainty values for propositions. In-

stead, the answer of an expert system will be a set of formulas: a set of
propositions and a set of specialised rules containing unknown propositions
in their left part. This type of behaviour is much more informative than

the classical one because gives to users not only the answer to a query but
all the relevant information to improve the solution. A family of proposi-

tional rule-based languages founded on multiple-valued logics is presented
and formalised. The deductive system defined on top of it is based on a
Specialisation Inference Rule (SIR): (A1 ∧ A2 · · · ∧ An → P, V), (A1, V

′) `
(A2 ∧ . . . ∧ An → P, V ′′), where V , V ′ and V ′′ are uncertainty intervals.
This inference rule provides a way of obtaining rules containing unknown

conditions in their premise as the result of the deductive process. The
soundness and literal completeness of the deductive system are proved.
The implementation of this deductive calculus is based on techniques of

partial evaluation. Moreover, the specialisation mechanism provides an
interesting way of validating knowledge bases. Keywords: Partial Evalua-

tion, Expert Systems, Multiple-valued Logic.

2

1 Introduction and Motivation

Looking at an Expert System (ES) as a blackbox , the standard behaviour we can
observe is as follows. The user queries to the system whether a given proposition
can be deduced. If the system is able to deduce the proposition, its certainty
value is given back. Otherwise the answer is unknown (open world assumption).

This behaviour is rather poor because the system usually has much more
information that could be useful to the user, for instance:

1. When the system is able to answer the user’s query, the user might also
be interested in knowing other deductive paths that would be useful to
improve the solution, or to know other conclusions that are deducible from
the proposition answered.

2. When the system is not able to answer a query, it gives back the value
unknown maybe because the user did not provided enough information to
the system. Thus, the communication will be much more informative if the
system is able to answer, not unknown, but with the information the user
should know to come up with a value for the query.

All this hidden information can be used to better modelise communication
among human experts. Looking carefully at how experts communicate their
knowledge and at their problem solving procedures, we can find complex com-
munication patterns. Sometimes experts cannot reduce their interaction only to
the communication of certainty values for propositions. For instance, in medical
diagnosis, when experts communicate, they also need:

1. To condition their decisions. Suppose that it is not known whether
a patient is allergic to penicillin. An expert considering the possibility of
giving penicillin as treatment would say: Penicillin is a good treatment from
a clinical point of view provided that the patient has no allergy to penicillin.

2. To give suggestions that must be considered with solutions. Ex-
perts usually give other suggestions (antibiogram) that are related to the
solution (pneumococcus). For instance the expert might say: Pneumococ-
cus has been isolated in the culture of sputum. In this case it is strongly
suggested to make an antibiogram to the patient .

3. To give conditioned suggestions to be considered together with
decisions. Another example of complex communication is the combina-
tion of the above two communication patterns: Ciprofloxacine is a good
treatment, but if the patient is a woman on breast-feeding period she must
stop breast-feeding .

3

To model such communication protocols, we need to extend the ES answer-
ing procedure, by allowing to answer queries with sets of formulas (rules and
propositions). We propose to do it by means of an Specialization Calculus of
KBs.

Specialisation is based on the notion of partial evaluation expressed in the well
known Kleene’s Theorem. Partial evaluation algorithms have been intensively in
logic programming [9] [2] [3] [8] [4] mainly for efficiency purposes. In this paper
we propose the use of this technique to improve the communication behavior of
ESs. With this purpose in section 2 we propose a partial evaluation mechanism
for rule bases. In section 3 we formalise an Specialisation Calculus. Finally a
little example and conclusions are presented in sections 4 and 5 respectively.

2 Proposal: Partial Evaluation in Rule Bases

with Uncertainty

In rule bases, deduction is mainly based on the modus ponens inference rule:

A,A → B ` B

This inference rule is only applicable when every condition of the premise is
satisfied, otherwise nothing can be inferred. We will use partial evaluation to
extract the maximum information from incomplete knowledge.

We base the partial evaluation in a rule base context on the well known logical
equivalence (A ∧ B) → C ≡ A → (B → C) which leads to the following boolean
specialisation inference rule:

A,A ∧ B → C ` B → C

The rule B → C is called the specialisation of A ∧ B → C with respect to the
proposition A. Notice that in the particular case of B = ∅, we recover the usual
modus ponens rule.

In a more formal way we give the following definitions.

Definition 1 (Rule Specialisation) Let R be a set of rules and P a set of
literals. We note rules as pairs, r = (mr, cr) where mr is the premise (a set of
literals) and cr is the conclusion (a literal). The rule specialisation is defined as
a function:

SR : R × P → R × P

SR(r, p) =











(r, ∅) if p 6∈ mr

(∅, cr) if mr = {p}
((mr − {p}, cr), ∅) otherwise

4

Definition 2 (KB Specialisation) Let KB be a set of knowledge bases. We
note KBs as pairs kb = (Rkb, Pkb) where Rkb is a set of rules and Pkb is a set of
propositions. KB specialisation is defined as a function:

SKB : KB → KB

SKB(kb) =

{

SKB((Rkb − {r}+ {r′}, Pkb + {p′})),(*)
kb , otherwise

(*) if Pkb 6= ∅ and ∃p ∈ Pkb and ∃r ∈ Rkb such that SR(r, p) = (r′, p′) and r′ 6= r

In other words, the specialisation of a kb consists on the exhaustive specialisa-
tion of its rules. Rules whose conditions contain propositions with known values
are replaced by their specialisations. Rules that only have one condition will be
eliminated and a new proposition will be added. This new proposition will be
used again to specialise the kb. The process will finish when the kb has no rule
containing on its conditions a known proposition. This approach is different for
instance from the logic programming one used in [4]. There, partial evaluation is
goal driven, whereas here partial evaluation is data driven.

In an uncertain reasoning context we propose to extend the above boolean
specialisation inference rule as follows:

Definition 3 (SIR) Given a proposition A with certainty value α, and a rule
with certainty value ρ, then

(A,α), (A ∧ B → C, ρ) ` (B → C, ρ′)

where ρ′ = MP 1(α, ρ) is the new value of the rule.

Therefore we need to extend the previous definition of the function SR to
allow the handling of certainty values.

Definition 4 (Specialisation of Uncertain Rules) Let R∗ be a set of weighted
rules and P ∗ a set of weighted literals. We note weighted rules as pairs, r∗ =
(r, ur) where r is a classical rule and ur is the certainty value of r. And we note
weighted literals as pairs, p∗ = (p, up) where p is a classical literal and up is the
certainty value of p.

SR : R∗ × P ∗ → R∗ × P ∗

SR(r∗, p∗) =











(r∗, ∅) if p 6∈ mr

(∅, p∗
′

) if mr = {p}
(r∗

′

, ∅) otherwise

where r∗
′

= (mr − {p}, cr,MP (up, ur)) and , p∗′

= (cr,MP (up, ur)).

1SIR is parametric on the uncertainty propagation function MP (modus ponens), particular
for each uncertainty calculus.

5

It is easy to extend (not included here) the classical KB specialisation to an
uncertain KB specialisation.

Now, the answer to a query can be considered as a specialised kb: The spe-
cialised kb obtained from kb = (R∗, P ∗) where R∗ is the set of rules in deductive
paths to and from the query. And P ∗ is the set of propositions defining a case.

3 Formalisation of a Specialisation Calculus for

Rule Bases

In this section we present the definition of a family of multiple-valued logics with
a deductive system based on a specialisation inference rule. Some aspects of these
logics have been already described in [1]. Each logic is determined by a particular
algebra of truth-values from a parametric family that is described next.

An algebra of truth-values is a finite algebra An
T =< An, Nn, T, IT > such

that:

• The set of truth-values An is a chain:

0 = a1 < a2 < · · · < an = 1

where 0 and 1 are the booleans False and True respectively.

• The negation operator Nn is an unary operation defined as

Nn(ai) = an−i+1

the only one that fulfills the following properties:

N1: if a < b then Nn(a) > Nn(b), ∀a, b ∈ An

N2: N2
n = Id.

• The conjunction operation T is a binary operation satisfying ∀a, b, c ∈ An:

T1: T (a, b) = T (b, a)

T2: T (a, T (b, c)) = T (T (a, b), c)

T3: T (0, a) = 0

T4: T (1, a) = a

T5: if a ≤ b then T (a, c) ≤ T (b, c) for all c

• The implication operator IT is defined by residuation with respect to T, i.e.

IT (a, b) = Max{c ∈ An|T (a, c) ≤ b}

and satisfies the following properties:

6

I1: IT (a, b) = 1 if, and only if, a ≤ b.

I2: IT (1, a) = a

I3: IT (a, IT (b, c)) = IT (b, IT (a, c))

I4: If a ≤ b, then IT (a, c) ≥ IT (b, c) and IT (c, a) ≤ IT (c, b)

I5: IT (T (a, b), c) = IT (a, IT (b, c))

As it is easy to notice from the above definition, any of such truth-values
algebras is completely determined as soon as the set of truth-values An and the
conjunction operator T are determined. So, varying this two parameters we
obtain a family of multiple-valued logics, including, among others, Kleene’s and
Lukasiewicz’s logics.

In the following description of the language, the semantics and the deduction
system (specialisation calculus) of a particular logic, we suposse fixed an algebra
An

T . This calculus is proved to be sound and also complete if constrained to the
case of literals.

3.1 Syntax

A propositional language Ln = (An,Σ, C,Sn) is defined by:

• A signature Σ consisting on a set of atomic symbols plus true and false.

• A set of Connectives: C = {¬,∧,→}

• A set of Sentences: Sn = Mv-Literals ∪ Mv-Rules

Sentences are pairs of classical-like propositional sentences and intervals of
truth-values. The classical-like propositional sentences are restricted to be
literals or rules. Thus, the sentences of the language are of the following
types:

Mv-Atoms: {(p, V) | p ∈ Σ and V is an interval of truth-values of An}

Mv-Literals: {(p, V) | (p, V) ∈ Mv-Atoms or p = ¬q and (q, V) ∈ Mv-
Atoms}

Mv-Rules: {(p1 ∧ p2 ∧ · · · ∧ pn → q, V) | pi and q are literals, V = [a, 1]
is an upper interval of truth-values of An where a > 0, and ∀i, j(pi 6=
pj , pi 6= ¬pj , q 6= pj , q 6= ¬pj)}

7

3.2 Semantics

• Models Mρ are defined by valuations ρ, i.e. mappings from the first com-
ponents of sentences to An such that:

ρ(¬p) = Nn(ρ(p))

ρ(p1 ∧ p2) = T (ρ(p1), ρ(p2))

ρ(p → q) = IT (ρ(p), ρ(q))

ρ(true) = 1

ρ(false) = 0

• The Satisfaction Relation between models and sentences is defined by:

Mρ |= (p, V) iff ρ(p) ∈ V

• Semantical entailment between sets of sentences and sentences is defined as
usual:

Γ |= A iff for any model Mρ |= Γ implies Mρ |= A,

for any set of sentences Γ and sentence A.

Definition 5 We define on the set of intervals of An the functions N∗
n and T ∗ as

those functions that give the minimal interval containing the point-wise extensions
of Nn and T respectively. That is:

• N ∗
n([a, b]) = [Nn(b), Nn(a)]

• T ∗([a, b], [c, d]) = [T (a, c), T (b, d)]

In order to get a functional expression of the multiple-valued version of the
Modus Ponens rule, we also define on the set of intervals of An the function MP ∗

T

as follows:

Definition 6 For any truth-intervals V and W , we define MP ∗
T (V,W) as the

minimal interval containing all solutions for z in the familly of functional equa-
tions

IT (a, z) = b

varying a ∈ V and b ∈ W .

This definition can be made more explicit when taking into account that
truth-intervals W accompanying Mv-Rules are always upper intervals, i.e. W is
of the form W = [c, 1].

Proposition 1 MP ∗
T ([a, b], [c, 1]) = [T (a, c), 1]

8

Proof. It reduces to find all solutions of the functional inequations

IT (x, z) ≥ c

being a ≤ x ≤ b. However, given a residuated pair (T, IT) it is well known [5]
that the following relation holds:

T (x, y) ≤ z iff IT (x, z) ≥ y

Then, the solution for the first equation is z ≥ T (x, c), and taking into account
that x ≥ a, and that z = 1 is always a solution, the minimal interval that will
contain all the solutions for z is [T (a, c), 1].2

A set of interesting properties of the semantic entailment that will play a
major role in later proofs is presented next.

Proposition 2 If p, q, p1, . . . , pn denote literal symbols then the following prop-
erties are fulfilled:

SR1: (p, v) |= (p,W) ⇔ V ⊆ W

SR2: (p, V) |= (¬p,W) ⇔ N ∗
n(V) ⊆ W

SR3: (p, V), (p,W) |= (p, U) ⇔ V ∩ W ⊆ U

SR4: (pi, Vi), (p1 ∧ · · · ∧ pn → q, V) |= (p1∧· · ·∧pi−1∧pi+1∧· · ·∧pn → q,W) ⇔
MP ∗

T (Vi, V) ⊆ W

SR5: MP ∗
T (T ∗(V1, . . . , Vn),W) = MP ∗

T (V1,MP ∗
T (V2, . . . ,MP ∗

T (Vn,W) . . .)), if W =
[w, 1]

Proof.

SR1: Straightforward from the satisfaction relation definition.

SR2: Follows from SR1 and the fact that a valuation ρ satisfies ρ(p) ∈ V if, and
only if, ρ(¬p) ∈ N ∗(V).

SR3: Straightforward from the satisfaction relation definition.

SR4: First we prove the property for the simplest Modus Ponens case, i.e.,

{(p, U), (p → q, V)} |= (q,W) iff MP ∗

T (U, V) ⊆ W

By definition of the function MP ∗
T , MP ∗

T (U, V) is the minimal interval
containing all the solutions for ρ(q) in the following family of functional
equation system:

9

{

ρ(p) = a

ρ(p → q) = IT (ρ(p), ρ(q)) = b

for any a ∈ U , and b ∈ V . Thus, for any model ρ satisfying ρ(p) ∈
U , and ρ(p → q) ∈ V and ρ(q) ∈ W , it must be only the case that
ρ(p) ∈ MP ∗

T (U, V), and thus MP ∗
T (U, V) ⊆ W . Moreover, if U = [x, y] and

V = [z, 1], then MP ∗
T (U, V) = [T (x, z), 1].

Now property SR4 follows straightforward from the associativity of the t-
norm T , used to interpret conjunctions, and from the fact that a residuated
pair (T, IT) satisfies the following equality:

IT (T (x, y), z) = IT (x, IT (y, z))

SR5: From proposition 1, it follows that, if U = [x, y] and V = [z, 1], then
MP ∗

T (U, V) = [T (x, z), 1]. Then, it is easy to see that, due to the associa-
tivity of the t-norm T , if Vi = [ai, bi], for i = 1, . . . , n, then

T ∗(V1, . . . , Vn) = [T (a1, . . . , an)2, T (b1, . . . , bn)]

and thus, on the one hand

MP ∗

T (V1,MP ∗

T (V2, . . . ,MP ∗

T (Vn,W) · · ·)) = [T (a1, . . . , T (an, w) · · ·), 1]

= [T (a1, . . . , an, w), 1]

and on the other hand

MP ∗

T (T ∗(V1, . . . , Vn),W) = MP ([T (a1, . . . , an), T (b1, . . . , bn)], [w, 1])

= [T (a1, . . . , an, w), 1]

3.3 Specialisation Calculus

The specialisation calculus is based on:

1. The following axioms:

AS1: (¬¬p → p, [1, 1])

AS2: (p, [0, 1])

A1: (true, [1, 1])

A2: (false, [0, 0])

2The expression T (r1, r2, r3, . . .) is the recurrent application of T as T (r1, T (r2, T (r3 . . .) . . .)

10

2. The following inference rules:

Weakening: (p, V1) ` (p, V2) where V1 ⊆ V2

Not-introduction: (p, V) ` (¬p,N∗
n(V))

Composition: (p, V1), (p, V2) ` (p, V1 ∩ V2)

SIR: (pi, Vi), (p1∧· · ·∧pi∧· · ·∧pn → q, Vr) ` (p1∧· · ·∧pi−1∧pi+1∧· · ·∧pn →
q,MP ∗

T (Vi, Vr))

3.4 Soundness Theorem

From properties SR1, SR2, SR3 and SR4 of the semantical entailment, it is easy
to check that the above specialisation calculus is sound.

Theorem 1 (Soundness) Let A be a sentence and Γ a set of sentences. Then
Γ ` A implies Γ |= A

Proof. The properties S1-S4 show that the inference rules are locally sound
and complete. So, we need only to show that the axioms are sound to have the
proof of the theorem.

1. If A is the axiom AS1, i.e. A = (¬¬p → p, [1, 1]) then for every model
Mρ, ρ(p) = N(N(ρ(p))) = N(ρ(¬p)) = ρ(¬(¬(p))) ⇒ I(¬¬p → p) =
I(ρ(¬¬p), ρ(p)) = 1. Then, for all Mρ, Mρ |= (¬¬p → p, [1, 1]).

2. If A is the axiom AS2, i.e. A = (p, [0, 1]), it is the case that every model Mρ

satisfies ρ(p) ∈ [0, 1]. Then for all Mρ, we have trivially that Mρ |= (p, [0, 1]).

3. If A is the axiom A1, i.e., A = (true, [1, 1]) then, by definition, for every
model Mρ, ρ(true) = 1 ⇒ Mρ |= (true, [1, 1]).

4. If A is the axiom A2, the proof is analogous to the previous case.

3.5 Literal Completeness

It is straightforward to see that our deductive system is not complete. For in-
stance, we have {(p → q, 1), (q → r, 1)} |= (p → r, 1) but {(p → q, 1), (q →
r, 1)} 6` (p → r, 1). It is also the case that the language is not complete for literal
deduction in general. For instance, we have {(p → q, 1), (¬p → q, 1)} |= (q, 1)
but {(p → q, 1), (¬p → q, 1)} 6` (q, 1). However, it can be proved that the system
is complete for literal deduction in the context of a restricted language setting,
as it will be shown in this section.

11

3.5.1 Previous definitions

Definition 7 (Mv-Horn-Rules) We define the set Mv-Horn-Rules as the set
{(p1∧p2∧· · ·∧pn → q, V) | pi and q are atomic symbols, V = [a, 1] is an interval
of truth-values of An with a > 0, and ∀i, j(pi 6= pj, q 6= pj) }

Definition 8 (Restricted Language) Given the propositional language

Ln = (An,Σ, C,Sn)

we define a restricted propositional language as:

RLn = (An,Σ, C,RSn)

where RSn = Mv-Atoms ∪ Mv-Horn-Rules

For any Γ ⊂ RSn the next notation will be used:

• Γ = ΓL ∪ ΓR

• ΓL = {γ ∈ Γ|γ are mv-Atoms}

• ΓR = {γ ∈ Γ|γ are mv-Horn-Rules}

• Prem: Is a function that given a rule returns its conditions.

• Cond: Is a function that given a rule returns its conclusion.

• ΓA
L = {p ∈ Σ|∃V interval of An : (p, V) ∈ ΓL}

• ΓA
R = {p ∈ Σ|∃r ∈ ΓR : p ∈ Prem(r) or p = Concl(r)}

• ΓA = ΓA
L ∪ ΓA

R

3.5.2 Previous Lemmas

Proposition 3 The inference rules (Weakening, Composition, Negation and Spe-
cialisation) are locally complete, i.e., they verify the following equivalences:

1. (p, V) ` (p,W) iff (p, V) |= (p,W)

2. (p, V) ` (¬p,W) iff (p, V) |= (¬p,W)

3. {(p, V), (p,W)} ` (p, U) iff {(p, V), (p,W)} |= (p, U)

4. {(p1, V1), . . . , (pn, Vn), (p1 ∧ · · · ∧ pn → q,W)} ` (q, U) iff {(p1, V1), . . . ,
(pn, Vn), (p1 ∧ · · · ∧ pn → q,W)} |= (q, U)

12

Proof. Straightforward from properties SR1-SR5 and from the definition of
the four inference rules in Section 3.3.

Lemma 1 Let ΓL be a set of Mv-Atoms, and let R1, R2 be two sets of mv-Horn-
Rules. R1 and R2 rules have as premisses conjunctions of atoms belonging to ΓA

L ,
and share the same conclusion, an atom p not belonging to ΓA

L .
If V1 =

⋂

{V ′′|{ΓL, R1} |= (p, V ′′)}, V2 =
⋂

{V ′′|{ΓL, R2} |= (p, V ′′)} and
W =

⋂

{V ′′|{ΓL, R1, R2} |= (p, V ′′)}, then W ⊇ V1 ∩ V2.

Proof. By reductio ad absurdum. Suppose that W 6⊇ V1 ∩ V2. Then ∃α ∈
V1 ∩ V2 and α 6∈ W . Because of V1 and V2 are minimals, we have that:

• α ∈ V1 ⇒ ∃Mρ such that ρ(p) = α, Mρ |= ΓL and Mρ |= R1

• α ∈ V2 ⇒ ∃Mρ′ such that ρ′(p) = α, Mρ′ |= ΓL and Mρ′ |= R2

We will prove that there always exists a model Mρ′′ such that ρ′′(p) = α,
Mρ′′ |= ΓL, Mρ′′ |= R1 and Mρ′′ |= R2. Define ρ′′(p) = α, and ρ′′(a) =
min(ρ(a), ρ′(a)), ∀a ∈ ΓA

L . Mρ′′ easily extends to the Mv-Horn-Rules by the
implication function IT . Then, for this model Mρ′′ we have:

1. ρ′′(p) = α.

2. Mρ′′ |= ΓL: due to the fact that ρ′′ = min(ρ, ρ′) over ΓA
L .

3. Mρ′′ |= R1: ∀r ∈ R1, where r = (q1 ∧ · · · ∧ qm → p, [vr, 1]), we have that
Mρ |= R1 implies ρ(r) ≥ vr. Given that we work with Mv-Horn rules, i.e.
qi are not negated literals, and the monotonicity property of function T , it
always holds that:

ρ′′(q1∧· · ·∧qn) = T (ρ′′(q1), . . . , ρ
′′(qn)) ≤ T (ρ(q1), . . . , ρ(qn)) = ρ(q1∧· · ·∧qn)

and, given that IT is not increasing in the first argument, it always holds
that:

ρ′′(r) = IT (ρ′′(q1 ∧ · · · ∧ qn), α) ≥ IT (ρ(q1 ∧ · · · ∧ qn), α) = ρ(r) ≥ vr

that is, M ′′
ρ |= R1.

4. Mρ′′ |= R2: Analogously to the previous case.

Summarizing, we have found Mρ′′ such that ρ′′(p) = α, Mρ′′ |= ΓL, Mρ′′ |= R1

and Mρ′′ |= R2, i.e. {ΓL, R1, R2} 6|= (p,W) which is in contradiction with the
enunciate of the lemma.2

Next Lemma shows that previous deductions over a Mv-Atom p do not restrict
the models of Mv-Atoms belonging to premisses of other rules concluding the

13

same Mv-Atom p. In practical terms, having previous deductions over an atom r

means that we know r with an interval of truth values of type [v, 1]. Otherwise, if
we knew r with a general interval of type [b, c] it could be the case that premises
of rules concluding r would be semantically deduced with intervals different of
[0, 1]. On the contrary, it would not be possible to syntactically deduce them.
So, next Lemma allows us, when considering atom deducibility, to only consider
those rules that deduce it and not the rules that use it as a premise.

Lemma 2

⋂

{V ′′|{(p ∧ q1 ∧ · · · ∧ qn → r, [a, 1]), (r, [b, 1])} |= (p, V ′′)} = [0, 1]

Proof. It is sufficient to prove that ∀α ∈ [0, 1], we can find a model Mρ

such that ρ(p) = α and that Mρ |= (p ∧ q1 ∧ · · · ∧ qn → r, [a, 1]) and Mρ |=
(r, [b, 1]). Actually, every model Mρ such that ρ(p) = α and ρ(r) = 1, satisfies
that ρ(p∧ q1 ∧ · · · ∧ qn → r) = 1, and thus Mρ |= (p∧ q1 ∧ · · · ∧ qn → r, [a, 1]) and
Mρ |= (r, [b, 1]). 2

3.5.3 Restricted Literal Completeness Theorem

Theorem 2 (Restricted Literal Completeness) If Γ |= (p, V), then Γ `
(p, V), provided that p ∈ ΓA, where Γ is such that the following conditions hold:

1. Γ ⊂ RSn

2. ∀r ∈ ΓR : concl(r) 6∈ ΓA
L

3. The deductive and/or graph associated to Γ is acyclic.

Proof. Given that the and/or deductive graph associated to Γ is acyclic, we
can decompose the set ΓA of atomic symbols appearing in Γ in a set of disjoint
layers. The definition of the layers is the following:

• S0 = {q ∈ ΓA| 6 ∃r ∈ ΓR : Concl(r) = q}

• S1 = {q ∈ ΓA|∀r ∈ ΓR : Concl(r) = q ⇒ ∀x ∈ Prem(r), x ∈ S0}

• ...

• Si = {q ∈ ΓA|∀r ∈ ΓR : Concl(r) = q ⇒ ∀x ∈ Prem(r), x ∈ Sj, being j <

i and ∃r : ∃x ∈ Prem(r), x ∈ Si−1}

• ...

14

The proof of the theorem is by induction over the layer number n to which p

belongs. Suppose that V 6= [0, 1], otherwise the proof of the theorem is trivial.
The set ΓA is decomposed in layers ΓA =

⋃

i=1,n Si. Because of Lemma 2, in
order to deduce p we only need to consider that part of Γ containing rules using
atoms belonging to layers lower than the layer of p. That is, we consider only
those rules of Γ belonging to the deductive subgraph of p.

Case n = 0: In this case Γ contains a set of mv-atoms as

{(p, Vi)|i ∈ I} ⊆ ΓL

Then, it is easy to see that every model Mρ that satisfies Γ must hold
ρ(p) ∈ (

⋂

i∈I Vi), and then (
⋂

i∈I Vi) ⊆ V . Therefore, we can assure that
if we apply repeatedly the composition and weakening rules, we also can
deduce syntactically (p, V). Then the theorem is true for n = 0.

Induction hypothesis: The theorem is true for n − 1.

Case n: Suppose that p ∈ Sn. Given Rp, the set of rules of Γ with conclusion
p, then ∀r ∈ Rp, the premisses of r belong to lower layers. Let be Vq =
⋂

{V |Γ |= (q, V)}, ∀q ∈ Prem(r), ∀r ∈ Rp. By the induction hypothesis we
have that Γ |= (q, Vq) ⇒ Γ ` (q, Vq), ∀q ∈ Prem(r), ∀r ∈ Rp.

By induction over nrp, the number of rules of Rp, and together with the
conditions of the theorem, we will prove that Γ |= (p, V) implies Γ ` (p, V).

1. nrp = 1. In this case we have Rp = {(q1 ∧ · · · ∧ qm → p,W)},
Γ |= (qi, Vqi

) for i = 1, . . . ,m, where Vqi
are minimals. From Lemma 2

we have that Γ |= (p, V) if and only if

{(q1 ∧ · · · ∧ qm → p,W)(q1, Vq1), . . . , (qm, Vqm
)} |= (p, V)

but from properties SR-4 and SR-5 of proposition 2, this holds if and
only if

V ⊇ MP ∗

T (T ∗(Vq1 , Vq2 , . . . , Vqm
),W)

Given that

MP ∗

T (T ∗(Vq1 , Vq2 , . . . , Vqm
,W) = MP ∗

T (Vq1 ,MP ∗

T (Vq2 , . . . ,MP ∗

T (Vqm
,W) · · ·))

it is easy to see that by succesive applications of SIR inference rule we
can obtain Γ ` (p, V), and thus for nrp = 1 the theorem is true.

2. Suppose that the theorem is true for nrp = k − 1.

15

3. nrp = k. In this case we have that Rp = {r1, r2, . . . , rk} and Γ |=
(qij ,Wqij

) for all qij ∈ Prem(ri), i = 1, . . . , k, being Wqij
minimal.

Let be ri = (∧qij → p, Vi) and Ap =
⋃

i,j(qij ,Wqij
). Again Lemma

2 allows us to state that Γ |= (p, V) if and only if V ⊇ U , where
{r1, . . . , rk} ∪ Ap |= (p, U) and U minimal,. Consider Rp = R∗

p ∪
rk, where R∗

p = {r1, . . . , rk−1} and let be V ∗ =
⋂

{V ′′|{R∗
p, Ap} |=

(p, V ′′)}. By induction hypothesis we have also R∗
p ` (p, V ∗). Fur-

thermore we have {rk, Ap} ` (p,MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)), and

because of Lemma 1 we know that MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk) =

⋂

{V ′′|{rk, Ap} |= (p, V ′′)}. Then from Lemma 1, we have:

{Rp, Ap} |= (p, V) iff V ⊇ V ∗ ∩ MP ∗

T (T ∗(Wqk1
, . . . ,Wqkjk

, Vk)

Finally it is easy to notice that V ∗∩MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk) can

be obtained by succesive applications of SIR and composition inference
rules, that is, we can finally conclude that Γ ` (p, V).2

4 Example

Milord II is a modular language for knowledge engineering that manages un-
certainty and reflection. It includes an inference engine that implements the
specialisation calculus described in this paper [7] [6]. In this section an example
will be presented. This example is part of a real application for pneumonia treat-
ment written in Milord II, named Terap-IA. When writting the example we will
use some extensions of the language described in section 3.

The set of truth-values used is An =(impossible, slightly-possible, possible,
very-possible, definite) where impossible = 0 and definite = 1.

Consider the following rules for pneumonia treatment 3:

R0 (H-Influenzae → Quinolones, possible)
R1 (female ∧ young ∧ pregnant ∧ Legionella-sp →

Co-trimoxazole, slightly-possible)
R2 (female ∧ young ∧ breast-feeding ∧

≥(Quinolones, possible)4

→ stop-breast-feeding, definite)
R3 (breast-feeding ∧ Co-trimoxazole →

stop-breast-feeding, definite)

3In this rules H-Influenzae and Legionella-sp are possible diagnosis, and Quinolones and
Co-trimoxazole are antibiotics. Also, we have simplified the intervals syntax, as it is done in
Milord II. Intervals of the type [a, 1] appearing as values of rules and propositions are written
just as a.

4”≥” is a boolean metapredicate of Milord II such that ”≥ (p, a)” is true if and only if
(p, [b, c]) has been deduced with b ≥ a.

16

Consider the case of a young female patient with a diagnosis of H-Influenzae.
The propositions representing this case are:

(H-Influenzae, very-possible)

(female, definite)
(young, definite)

If we specialise the kb composed by the rules and the propositions above
presented, it is easy to see that the final set of rules obtained is:

R1’ (pregnant ∧ Legionella-sp →
Co-trimoxazole, slightly-possible)

R2’ (breast-feeding → stop-breast-feeding, definite)
R3 (breast-feeding ∧ Co-trimoxazole →

stop-breast-feeding, definite)

and the the final set of propositions is.

(H-Influenzae, definite)
(female, definite)

(young, definite)
(Quinolones, possible)

Then, we can interpret this result as a new kb specialised for a particular
patient. On the other hand, for the same example of specialisation we can see
an example of communication. Suppose that the user queries the system for a
certainty value for Quinolones.

Then, the system shows the propositions and rules related to the query
Quinolones. That is,

(Quinolones, possible)

R1” (breast-feeding → stop-breast-feeding,
definite)

In natural language the answer would be: For the case of a H. Influenzae
diagnosis for a young female, quinolones is possible, and if she is on breast-feeding
period, she has to stop breast-feeding .

5 Discussion

In this paper a new communication protocol for ES’s is presented. It is based on
an inference calculus containing an Specialisation Inference Rule in the paradigm
of multiple-valued logics. This specialisation calculus is implemented using tech-
niques of partial evaluation, and it is shown to be sound and complete for literals.

17

The communication so obtained is much more cooperative with users than the
classical one: The answer to a query is a set of specialised rules and propositions.

This specialisation calculus can also be used to make validation of kbs. Con-
sider that the expert has a general kb for pneumonia treatment, and that he wants
to check the kb in a restricted context such as: women with gramnegative rods.
The specialisation mechanism allows to obtain a new kb that is a kb for pneumo-
nia treatment in the case of a woman with gramnegative rods. The expert should
agree with the behaviour of the new kb so obtained because it is a specialisation
of its original kb, otherwise he must revise it. To check the behaviour of this
reduced kb he can apply any classical method, but to a much more reduced kb.
This method can also be understood as a way of modularisation, by contexts, of
flat and non-structured kbs. This methodology gives then a more comprehensive
and systematic way of validating kbs than the standard methods.

6 Acknowledgements

The authors would like to thanks Gonzalo Escalada for many discussions on the
literal completeness theorem proof. Thanks to Pere Garcia for helpful discussions
on specialisation rule.

18

References

[1] J. Agusti, J. Esteva, P. Garcia, L. Godo, and C. Sierra. Combining multiple-
valued logics in modular expert systems. In Proceedings 7th Conference on
Uncertainty in AI, 1991.

[2] J. Gallagher. Transforming logic programming by specialising interpreters.
In Proceedings ECAI’86, pages 109–122, 1986.

[3] H. J. Komorowski. A specification of an abstract Prolog machine and its
application to partial evaluation. PhD thesis, Linkoping University, 1981.

[4] J. W. Lloyd and J. C. Shepherson. Partial evaluation in logic programming.
Logic Programming, 11(3/4):217–242, October/November 1991.

[5] J. Pavelka. On fuzzy logic i. Zeitschr. f. math. Logik und Grundingen d.
Math., pages 45–52, 1979.

[6] J. Puyol, C. Sierra, and J. Agusti. Partial evaluation in MILORD II: A
language for knowledge engineering. In Proceedings Europ-IA’91, pages 193–
207, 1991.

[7] C. Sierra and J. Agusti. Colapses: Towards a methodology and a language for
knowledge engineering. In Proceedings AVIGNON’91, pages 407–423, 1991.

[8] A. Takeuchi and K. Furukawa. Partial evaluation of prolog programs and its
application to meta programming. In Information Processing 86, 1986.

[9] R. Venken. A prolog meta-interpreter for partial evaluation and its application
to source transformation and query-optimisation. In Proceedings ECAI’84,
pages 91–100, 1984.

19

