
 - 1 - Partial Evaluation in MILORD II 

Partial Evaluation in Milord II:  
A Language for Knowledge Engineering 

J.Puyol-Gruart, J.Agustí-Cullell, C.Sierra 

CEAB 
Camí de Santa Bàrbara  
17300 Blanes, Girona, Spain. 
Ph: 34 72 336101 
Telex 56372 CEABL-E 
Fax: 34 72 337806 
e-mail: Puyol@ceab.es, Sierra@ceab.es, Agusti@ceab.es 

 
SUMMARY: In this paper a new language for Knowledge Engineering is presented. Its main 

characteristics are: modularity, incremental programming of KB's, partial evaluation and modular 

uncertainty treatment. The partial evaluation is presented as a good mechanism to provide richer 

communication patterns of the system and the final users. It allows to give more explanatory answers that 

the classical inference mechanisms employed in expert systems. A rough description of the language 

MILORD II is presented stressing its modularity structures that allow to define generic modules and 

incremental programming operations between the modules. Some examples obtained from the applications 

developed using this language are presented. KEYWORDS: Knowledge Engineering, Partial Evaluation 

1. Introduction 

Looking  at an Expert System (ES) as a blackbox, the standard behaviour we can 
see is the following: The system tries to reach a goal witch usually consists in 
deducing the certainty value of a fact asked by a user. If the system can deduce the 
value of this fact it gives the answer to the user, if not the answer is unknown. 

In this paper we explain why this behaviour is rather poor and we propose a 
more informative input/output ES behaviour. Even if the system can not give a value 
to a fact, it has a lot of information related to the fact that can be useful to the user. 
In fact the standard behaviour of ES modelises only one aspect of the way human 
experts communicate. Two cases are usually not taken into account: 

a) In the case the system is able to answer the user question, we could be 
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interested in knowing other explored but not successful deductive paths to obtain a 
higher certainty value for the user question. It also could be useful to know 
conclusions which are deducible from the reached goal and communicate them to 
the user. 

b) A more evident case of this poor communicative behaviour of ES is when they 
answer unknown to a question. Usually the system deduces unknown because the user 
has not given enough information to the system, i.e. he has not answered to all the 
questions the system has asked. Maybe the user has not answered these questions 
because he did not know the relevance of the question. It will be then much more 
informative if the system was able to deduce, not unknown, but the set of facts you 
should know in order to prove a value for the question. 

That is why for the reasons explained above we will introduce an enriched 
communication scenario and the possibility of information to be reconsidered in 
order to avoid the unknown answer. 

On the other hand, the expert who develops the ES can not look at the ES under 
development as a blackbox. In order to validate the system he needs to see an opened 
perspective of the running ES. The standard behaviour offered to the experts consists 
of a trace of the execution, that is, which is the rule the system tries to fire, which is 
the value of a deduced fact, and so on. This trace give to the expert an idea of the 
execution flow, but he needs to validate the KB for each case it proves. We propose a 
richer tool for the expert, consisting in a KB specialised for the current context 
under test. 

1.1. Enriched Communication Scenario 

As explained above, the behaviour of a classical ES is the following: 
1st) The user asks a question to the ES for example P? 
2nd) The ES uses its deductive and control knowledge to find a certainty degree 

for P. 
3rd) The ES gives this certainty value back to the user. 
Looking carefully at how experts communicate their knowledge and at their 

problem solving procedures we can find much more complex communication 
mechanisms. Sometimes experts can not reduce their interaction only to the 
communication of certainty values of predicates. For instance, when communicating, 
experts in medical diagnosis also need: 

1) To condition their answers. 
Suppose that it is not known if a patient is allergic to penicillin. A module 

deducing the possibility of giving penicillin can answer: Penicillin is a good 
treatment from a clinical point of view if there is no allergy to it. From a logical 
point of view, the answer could be: 

{if no(allergy_penicillin) then Penicillin is very_possible}  
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2) To give conclusions that have to be considered with the answer. 
If in a culture of sputum pneumococcus have been isolated then it is strongly 

suggested to make an antibiogram to the patient. 
{Pneumococcus_isolation is sure, Make_Antibiogram is definite} 

3) To give conditioned conclusions to be considered with the answer. 
A treatment with ciprofloxacine is not recommended for breast-feeding women. 

However if a woman is on breast-feeding period then the treatment can be carried if 
the woman stops breast-feeding. 

{Cipro is very_possible, if breast-feeding then stop_breast-feeding  is definite} 
4) To give a more general answer. 
Imagine that Gram positive coccus are detected. An answer to the predicate 

pneumococcus is at that moment too precise and cannot be given, but at least the 
morphological classification can be answered, i. e. : {coccus is definite} 

These types of communication can be modelled by the next schematic sets of 
formulas: 

The possible sets of answers to a question p? can be: 
1) {(c1 � c2 � ... � cn) ∅ p} 
2) {p, c1, c2, ..., cn} ∅ p} 
3) {p, ((c11 � c12 � ... � c1n) ∅ r1), ..., ((cm1 � cm2 � ... � cmn) ∅ rm)} 
4) {c1, c2, ..., cn} 
To model such communication protocols, we need to extend the ES answering 

procedure. What we need is to answer to a given question with a set of formulas 
(rules and facts). To answer the question, the rules considered are those in deductive 
paths to and from the question. The facts in the answer are those that have been 
obtained in the application of such rules. The rules in the answer are those which 
could not be applied because they used unknown knowledge. We only consider the 
rules in the deduction tree of the question because we assume that when an user 
makes a question it expects an answer, and eventually all the relevant information 
associated with it to that question only.  

Example 1: Consider a module M with the following set of rules: 
Rules = {if Gram_negative_rods then Treatment_with_ciprofloxacine is 

possible, if Treatment_with_ciprofloxacine and breast-feeding then Stop_breast-
feeding is definite, if Bacterian_infection and Gram_negative_rods then 
Treatment_with_ceftriaxone is very_possible} 

and the following set of facts:   
Facts = {Gram_negative_rods is definite, breast-feeding is definite, 

Bacterian_infection is definite }  
Given the question Treatment_with_ciprofloxacine? made by an user we can see 

the different answers obtained by a classical procedure and by the one we propose: 
Classical answer = {Treatment_with_ciprofloxacine is possible} 
Proposed answer = {Treatment_with_ciprofloxacine is possible, Stop_breast-

feeding is definite} 
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The mechanism of computing classical answers is to look for a proof of the 
question. This proof will trivially be obtained by a modus ponens application: 

if Gram_negative_rods then Treatment_with_ciprofloxacine is possible 
Gram_negative_rods is definitive  
--------------------------------------------------------------------------------------------------

- 
Treatment_with_ciprofloxacine is possible 
In our proposal, the set of rules related to Treatment_with_ciprofloxacine is 

obtained first: 
{if Treatment_with_ciprofloxacine and breast-feeding then Stop_breast-feeding 

is definitive, if Gram_negative_rods then Treatment_with_ciprofloxacine is 
possible} 

then, using the set of known facts, rules will be partially evaluated in order to 
obtain the reduced final set of formulas: 

{Treatment_with_ciprofloxacine is possible, Stop_breast-feeding is definite} 
Example 2: Consider the same set of rules of the previous example and the 

following set of facts: 
Facts = {Gram_negative_rods is definite, breast-feeding is unknown, 

Bacterian_infection is definite}  
then the answers will be: 
Classical answer ={Treatment_with_ciprofloxacine is very_possible} 
Proposed answer ={Treatment_with_ciprofloxacine is possible, if breast-feeding 

then Stop_breast-feeding is definite} 
In this second case the classical evaluation provides the same result as in the 

previous example but in our proposal a different final set of formulas will be 
provided. This set is different because the fact breast-feeding is unknown and then 
the third rule cannot be applied: 

{Treatment_with_ciprofloxacine is possible, if breast-feeding then Stop_breast-
feeding is definite} 

It is very important to consider that in a real case the answer can be very large 
and very difficult to understand. Then the most important point is to notice witch are 
the most relevant facts we should know in order to obtain a proof conditioned to the 
unknown information. A complexity criteria is used for the answers. When there is 
too much unknown information, the system gives to the user a summary witch 
allows him to reconsider the unknown information, and leads him to the solution. 

The language MILORD II is an extension of a previous knowledge based 
language called MILORD (GOD 88), (SIE 89), used to develop several medical 
expert systems (VER 89) (BEL 91). We have to remark that MILORD II is a 
modular language, where each module is a partial knowledge base (KB). The 
communication scenario (presented above) is the same between the user and the ES 
that the communication among modules. 

All these points will be developed along this paper. In section 2 a description of 
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MILORD II modular language is presented. The desired communication behaviour 
is obtained by an execution model based on partial evaluation. The overall 
description of this mechanism will be presented in section 3. 

2. Milord II Modular Language 

2.1. Introduction. 

The experience in KB design, specially using knowledge acquisition techniques 
(PLA 89), allows us to detect a number of necessities that can be tackled with the 
methodology we propose here. Amongst them we can emphasise: Modularity, 
reusability, incrementality, local control, validation and multilanguage 
representation. Let us briefly discuss the meaning of this words. 

Modularity. The usual way of understanding  a complex problem is to 
decompose it into simple subproblems using simple operations. To make a useful 
decomposition of problems, subproblems must have a simple and well defined 
interaction.  

To determine the adequate nature of modules, or partial KB's, that represent the 
subproblems and to define the operations of combination of these KB's is a key point 
in the design of a language for KE. 

Reusability. In the building process of a  KB it is important to be able to reuse 
existing partial KB's of problems solved beforehand (CHA 86) (GOG 86). For 
instance, although the diagnosis of infectious chest illness and that of chest tumours 
are essentially different, they could share the analysis of a thorax radiography. So, as 
a requirement of our language, we need generic program units that could be 
instantiated, or reused, in different contexts. 

Incremental modification of KB's. The KB building methodology is an 
iterating two-step process. First a prototype is build (or modified), then it is 
validated. Thus, it is convenient to have some safe refinement operations that 
support this process of incremental KB building (modification). These operations 
have to preserve the adequacy of the KB behaviour with respect to the expert 
behaviour. 

Local Control. Control is a component of the problem solving task tied to the 
domain knowledge. Thus it must be a component of each partial KB. 

Validation. The problem of KB validation has been applied only to the KB 
considered as a whole, without taking into account its building process. It is then 
necessary to think about validation characteristics in the building process, i.e. in the 
different and successive partial KB's which, conveniently combined and 
progressively refined, will result in the total KB. The validation should not be just a 
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final quality control test, but it must be integrated into the building process of the 
system. 

Multilanguage representation. The basic operations of construction and 
modification are independent from the underlying language used to define the bodies 
of the modules. This independence allows the use of different languages of 
representation in the different modules (HAR 89). An easy example of this is the use 
of different multi-valued logics in each module (SIE 90). 

On the modules two types of operations are defined: the composition or 
combination of modules into a new module which contains them as submodules, and 
the refinement of a module. The process of development of a KB is represented with 
a DAG in which the arcs symbolise both the operations of composition and the 
operations of refinement and where the nodes stand for the modules (the content of 
the nodes is explained in the paragraph devoted to the description of the language). 
The roots of this graph stand for the more general and less defined partial KB 
specifications, i.e. the body is not completely defined. The terminal nodes are the 
more concrete and executable KB's. 

2.2. Proposed language: MILORD II 

In this section the major elements of the language MILORD II are presented by 
means of an example. Most part of the example is artificial; it has been designed 
exclusively in order to introduce the syntax and semantics of the language. The 
example will be introduced progressively. The modules whose contents are not 
defined in the paper will be marked in italics. 

2.2.1. Modules 

The basic KB units written in MILORD II are the modules. These are 
hierarchically organised, and are composed of a set of importation, exportation, rule, 
control, meta-rule and submodule declarations. The Import/Export interface 
establishes the input/output behaviour of the module and the declaration of the 
submodules settles the hierarchic structure of the KB. The declaration of submodules 
is identical in every aspect to the declaration of the modules (see the example in 
figure 1).  

The language provides three basic mechanisms of module manipulation: 
1) Composition of modules through the declaration of submodules, 
2) Refinement of modules, and 
3) Composition of modules through operators defined by the user via generic 

modules definition. 
The semantics of a module are, intuitively, a module identifier that can be 



 - 7 - Partial Evaluation in MILORD II 

referenced by the other modules and a piece of code whose main functionalities are 
shown below. 

2.2.2. Primitive declarations 

The most basic elements of MILORD II are the same as in MILORD (GOD 88), 
(SIE 89), the underlying current language of MILORD II. These are facts of order 
0+, production rules and meta-rules. Figure 1 exemplifies the primitive declarations 
outlined in this section. 

Import declarations 
Imported facts are those whose values are obtained at run time from the user. 

These facts are declared by:  
      Import fact1, fact2,..., factn 
and the values are obtained when needed in the evaluation of a rule. With this 

declaration we define the input interface of the module which contains it. The code 
of a module containing an import declaration will be allowed to ask for values of 
imported facts only. They will be obtained from the user. 

Export declarations 
Exported facts are those facts that can be used by other modules. All exported 

facts must be conclusions of rules in the module or else be imported by the module. 
They are declared by:  

 Export fact1, fact2, ..., factn 
Conclusions of rules and imported facts not mentioned in the export declaration 

are hidden to the rest of the modules, i.e. they cannot be used in the body of the rest 
of the modules. This  is the only mandatory declaration in the construction of a 
module. A module with no exported facts is meaningless. The code of a module 
containing an export declaration will provide means to answer questions about the 
values of the exported facts only. Also visible submodules will provide code with the 
same characteristics that will be added to the code of the module that contains them. 

Kernel declarations 
The kernel is made up of two components called deductive knowledge and 

control knowledge. Deductive knowledge includes the declarations of the object 
language which in our current implementation is a production rule language. 
Control knowledge is represented by means of a meta-language which acts by 
reflection over the deductive knowledge and the module hierarchy. The current 
implementation of the meta-language allows the definition of meta-rules and the 
definition of some control parameters (v.g. evaluation type). In the future the meta-
language will allow a structured and incremental programming of the control. A 
module with an empty kernel can be considered to be a pure interface. The kernel of 
a module can be incrementally filled up by using the incremental programming 
primitive operation ":" (not developed in this paper). 
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The kernel provides the code of a module without any restrictions on the 
interface. In our case the code is basically a set of rules and meta-rules to be 
interpreted by an inference engine. 

 
Module Ext_data = 

 Begin 
  Module T1 = type1_data         
  ...       
  Module Tn = typen_data 
  Import fever, inmunodepressed 
  Export ext_data1, ext_data2, ..., ext_datam 

  Deductive knowledge  
   Rules : 
   R1 if T1/X1 and inmunodepressed 
      then conclude ext_data1  is sure 

   ... 
   Rm if T1/X3 and T4/X5 
      then conclude ext_datam  is quite_possible 

  End deductive 
  Control knowledge 
   Evaluation is lazy 
  Deductive control is nil 
  Structural control is  
   MR1 if no(fever) and no(T4/X3) 
    then eliminate(T1) 

  End control 
 End 
 

Ext_data

Type1_data Typen_data

T1 Tn
...

 
T1 to Tn are labels in the archs standing for internal names of pointed modules inside 

ext_data 

Figure 1: Module definition and its graphical representation. 

 
In figure 1 the text of a module declaration can be found. Bellow it the graph 

representation of the module is presented. A graphic, and intuitive, representation of 
combinations between modules will be used along the paper. 
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2.2.3. Module and submodule declarations 

Modules (or submodules) have the form: 
 
   Module modidentifier [ : modexpr1][ = modexpr2] 
 
where modexpr1  and modexpr2 can be either 

a) An encapsulated set of primitive declarations and submodule 
declarations with a limited scope, 

b) A module name defined elsewhere or even not yet defined, or 
c) A generic module application. 

modexpr1  defines a module from which the module modidentifier is a 
refinement. 

The symbol ":" stands for the module refinement operation  and the symbol "=" 
for the module composition operation. If modexpr1 and modexpr2 are the empty 
string, the effect of the declaration is just to keep the modidentifier in the 
environment where the declaration is made. In the next sections we detail these 
forms of module declarations. 

Encapsulated declarations 
The module Ex_data (figure 1) is an example of an encapsulated set of 

declarations. It contains all the primitive declarations mentioned in the previous 
section and also the declaration of a set of submodules. Its semantics are those 
explained in the primitive declarations section. 

Declarations by reference: module composition. 
Module names are used to refer to other modules. The referred modules may not 

have been created in the moment when their names are used, expediting thus a top 
down design. 

Module Method_of_DA (figure 2) references module Ext_data renaming it B. 
This declaration makes all  facts exported by Ext_data be visible in the kernel of 
Method_of_DA. Thus, Method_of_DA rules can use these facts in their premises 
prefixing them with the identifier of the submodule which exports them. The symbol 
for prefixing is "/". The concatenation of prefixes allows to represent the path to a 
fact in the modular hierarchy. The prefix is useful to distinguish between different 
instances of the same facts in different submodules. 

If we do not want to change the name of the module referenced in a submodule 
declaration, we can use the declaration Inherit (see module DM_noexpert). In order 
to make the facts of a module directly accessible without prefixing them we declare 
it open. 

The formal semantics of hierarchical composition of modules is built up from 
two elementary operations: (1) The union of bodies of modules and (2) the renaming 
of name spaces that avoid the undesired interactions between module bodies. 

The semantics of a submodule is a variant of the semantics of a module. The 
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exported facts and submodules of a submodule will be visible outside the module 
declaration if the ':' operation allows it, i.e. if the submodule is not hidden by ':'. For 
instance in figure 2 the submodule C:sigext is not visible outside method_of_DA 
because Domain_model_of_DA does not contain any submodule called C. So, 
Method_of_DA/C/P  can not be used. Despite that, inside the module 
Method_of_DA the submodule C will keep all its semantic functionalities, i.e. C/P 
will be allowed. 

 
 Module Domain_model_of_DA = 

  Begin 
   Module B : Sigext 
   Export DA1; ...; DAn 

  End 
 
 Module Method_of_DA :  
  Domain_model_of_DA = 
  Begin 
   Module B = Ext_data 
   Module C  
   Deductive knowledge = 
    R1 if B/ext_dataj and ...  

     then DAi1
 

    ... 
    Rm if B/ext_datak and ...  

     then DAim
 

    ... 
   End deductive 
  End 

Sigext Domain_model_of_DA

B

?

Sigext Domain_model_of_DA

B

?

Ext_data

Method_ 
  of_DA

C

Verification

B

?  
Graphical representation of the modules and example of verification step over the graph 
structure of the modules. 
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Figure 2. Example of module refinement. 

2.2.4. Declaration of generic modules 

The instantiation of a generic module is considered as a module declaration. 
This topic will be developed in the section 4.5. 

The definition of generic modules opens to the user the possibility of defining 
specific operations of composition. This standard technique consists of isolating a 
piece of program, or module, from its context and then abstract it by specifying: 

1) Those modules upon which the abstracted module may depend (requirements 
or import interface). 

2) The contribution of the abstracted module to the rest of the program (results or 
export interface). The internal definition of this abstracted module is made in 
terms of the import interfaces. 

The obvious example of this technique is functional programming, where such 
abstractions form the basic program units. The functional body defines how to 
compute the output (results) in terms of the input (requirements). In modular 
programming such abstractions are in fact program-valued functions and are called 
parametric or generic modules (the parameter type being the import interfaces). 
When applied to particular modules that satisfy their import interfaces, they result in 
a new module which satisfies their export interface. The method for building large 
KB systems consists of applying generic modules to previously built particular 
modules. 

An example of definition of generic modules is showed in figure 3. That 
example is obtained from Bacter-IA, a medical application being developed in our 
laboratory using Colapses. There, the module Global_gram represents a general 
gram analysis over different samples, that have in common only  those aspects 
established in the module Sample: the output interface. In concrete, modules such as 
Sputum,providing  different views over the same exported facts can be defined. 
Keeping the common parts in a generic module we can save code and time and 
make the code much more understandable. Finally when a module is needed to make 
the gram analysis of an sputum sample, it is only necessary to put both modules 
together by a generic module application Global_Gram(Sputum). 

To further determine the semantics of generic modules we can say that: 
* The parameters of the definition are declared as refinements between names of 

formal variables and modular expressions. These modular expressions 
guarantee a minimal output interface to be used in the body of the generic 
module. 

* When instantiating a generic module upon some concrete modules, the 
refinement operation declared in the parameters is carried out. Then, and 
with the help of code-expanding techniques, the resultant module is obtained. 



 - 12 - Partial Evaluation in MILORD II 

* The instantiation of a generic module upon concrete modules can be restricted 
by a declaration of submodule sharing between the current parameters. That 
is, the submodules which have been declared as "shared" must be identical. 
(AGU 89). 

We want to support the process of incremental KB building by means of generic 
modules. So whenever the definition of a module changes, these changes must be 
reflected in the rest of the program. The way to do it is just to repeat the module 
applications that refer to the modified module. This re-linking process can be 
automatised by the compiler, so that the user gets rid of this task. 

 
Module Sample = 
 Begin 
  Export DCGP, CGPC, CGPP 
 End 
Module Global_Gram (X : Sample) = 
 Begin 
  Module D = Respiratory_diagnosis 
  Module T = Type_of_infection 
  Module P = Previous_treatment 
  Export Pneumococcus, Haemophillus, BGN 
  Deductive knowledge = 
  Rules: 
  R001 If X/DCGP and D/Bacterial then  
   conclude pneumococcus is very_possible 
  R002 If X/DCGP and D/Bacterian and T/Common_acquired then  
   conclude Pneumococcus is quite_possible 
  R003 If X/CBGN and D/BCRO then  
   conclude Haemophillus is very_possible 
  R004 If X/CBGN and D/BCRO and P/Previous then  
   conclude Haemophillus is quite_possible 
  R005 If X/BGN and D/BCRO then  
   conclude BGN is very_few_possible 
   ... 
  End deductive 
 End 
 
Module Sputum : Sample = 
 Begin 
  Import  Class_sputum 
  Export DCGP, CGPC, CGPP 
  Deductive knowledge 
  Rules: 
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  R001 If Class_Sputum = DCGP then  
   conclude DCGP is very_possible 
   ... 
  End deductive 
 End 
Module Sputum_Gram = Global_Gram(Sputum) 
    
Figure 3. Example of generic module definition and application. 

3. Execution Model of MILORD II 

Deduction in MILORD was provided by classical inference engines (backward 
and forward)  with uncertainty. This mechanism does not provide the possibility of 
complex communication as explained in section 1. We are implementing MILORD 
II with an inference engine based on partial evaluation. In this section we will 
explain the fundamentals of the partial evaluation in MILORD II and the general 
behaviour of the system. 

3.1. Partial Evaluation 

Partial evaluation takes as its input a program and a partial specification of the 
program input , and produces a new version of the program: a specialised program 
for the particular input values. Logic programming is specially suited for partial 
evaluation as shown in (VEN 84) and  (GAL 86). 

In the partial evaluation used in MILORD II a program is a partial KB or 
module, and the partial specification of the input of the program is a set of fact 
values. Each fact value of the input can specialise those rules of the KB which 
contain that fact in their premises. The specialisation of rules is performed by 
reducing the number of conditions of the rules, and obtaining new facts when 
conditions are exhausted. The new facts thus obtained can in their turn specialise 
other rules. The whole specialisation of the KB will finish when no rule of the KB 
has a known fact into its conditions, that is, when the KB is composed of a set of fact 
values and a set of rules without known facts in their premises. 

The algorithm is based on two basic operations: 
1) Reduction of the conditions: 
Given a rule: 
(A � B � … � Z∅ D) ρ = (A ∅ (B � … � Z ∅ D)) ρ 
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where ρ is its truth value and a fact A with truth value α, we can partial evaluate 
the rule to obtain 

(B � … � Z ∅ D) ρ' , where ρ' = MP1 ( α, ρ) is the new truth value of the rule. 
2) Modus Ponens: 
Given a rule,  
(A ∅ B) ρ 
if we know that the truth value of fact A is α, we can deduce B with a certainty 

value β = MP (α, ρ). 

3.2. Module Execution 

In this section we will explain the general execution algorithm of a module. This 
algorithm is based on three elemental operations: 

1) Questioning: This operation will obtain a question to make outside of the 
module (to the user or to another module). 

2) The partial evaluator: This operation reduces the state of a module, taking 
into account the answer to the question obtained by the above mentioned operation. 

3) Filter: This operation returns a set of formulas directly related to the goal of 
the module. 

The execution of a module is initiated when a goal to prove by this module is set. 
From then on a loop starts between the operations of questioning and partial 
evaluation until the state of the module can not be further reduced, this will happen 
when all the conditions of the rules belonging to that state have unknown values. It 
is then that the filter operation starts and gives as result a subset of the formulas in 
the state directly related to the goal, i.e. the formulas in the deductive path to and 
from the goal in their reduced form. 

4. Implementation 

MILORD II is being implemented in two parts, the interpreter in Common Lisp 
and the compiler in C. 

MILORD II is being implemented in Allegro Common Lisp for Macintosh 
machines. We use the window facilities of Allegro Common Lisp in order to present 
an easy tool for the users.  
 
 
                                                        
1 MP (modus ponens) is a function that takes the truthvalue of the condition A, and the truthvalue of the rule 

ρ, and returns the truth value of the conclusion B. 
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5. Conclusions 

Partial evaluation together with powerful modularisation techniques allow to 
define much structured and explanatory expert systems than with the classical 
approaches. The language MILORD II is the result of a research project who intends 
to adapt some techniques of wide use in software engineering to the languages of 
Artificial Intelligence. Concepts such Generic modules and refinement take a new 
meaning in the area of Artificial Intelligence that allow experts to express much 
more flexible their knowledge. Even more, it allows to verify the programming of 
KB's in an incremental way, this is a possible solution to one of the biggest bottle-
necks in knowledge engineering: the validation and verification of KB's. The 
language is been used in the development of several expert systems, four of which 
are in the area of medicine.  
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