
 - 1 - Partial Evaluation in MILORD II

Partial Evaluation in Milord II:
A Language for Knowledge Engineering

J.Puyol-Gruart, J.Agustí-Cullell, C.Sierra

CEAB
Camí de Santa Bàrbara
17300 Blanes, Girona, Spain.
Ph: 34 72 336101
Telex 56372 CEABL-E
Fax: 34 72 337806
e-mail: Puyol@ceab.es, Sierra@ceab.es, Agusti@ceab.es

SUMMARY: In this paper a new language for Knowledge Engineering is presented. Its main

characteristics are: modularity, incremental programming of KB's, partial evaluation and modular

uncertainty treatment. The partial evaluation is presented as a good mechanism to provide richer

communication patterns of the system and the final users. It allows to give more explanatory answers that

the classical inference mechanisms employed in expert systems. A rough description of the language

MILORD II is presented stressing its modularity structures that allow to define generic modules and

incremental programming operations between the modules. Some examples obtained from the applications

developed using this language are presented. KEYWORDS: Knowledge Engineering, Partial Evaluation

1. Introduction

Looking at an Expert System (ES) as a blackbox, the standard behaviour we can
see is the following: The system tries to reach a goal witch usually consists in
deducing the certainty value of a fact asked by a user. If the system can deduce the
value of this fact it gives the answer to the user, if not the answer is unknown.

In this paper we explain why this behaviour is rather poor and we propose a
more informative input/output ES behaviour. Even if the system can not give a value
to a fact, it has a lot of information related to the fact that can be useful to the user.
In fact the standard behaviour of ES modelises only one aspect of the way human
experts communicate. Two cases are usually not taken into account:

a) In the case the system is able to answer the user question, we could be

 - 2 - Partial Evaluation in MILORD II

interested in knowing other explored but not successful deductive paths to obtain a
higher certainty value for the user question. It also could be useful to know
conclusions which are deducible from the reached goal and communicate them to
the user.

b) A more evident case of this poor communicative behaviour of ES is when they
answer unknown to a question. Usually the system deduces unknown because the user
has not given enough information to the system, i.e. he has not answered to all the
questions the system has asked. Maybe the user has not answered these questions
because he did not know the relevance of the question. It will be then much more
informative if the system was able to deduce, not unknown, but the set of facts you
should know in order to prove a value for the question.

That is why for the reasons explained above we will introduce an enriched
communication scenario and the possibility of information to be reconsidered in
order to avoid the unknown answer.

On the other hand, the expert who develops the ES can not look at the ES under
development as a blackbox. In order to validate the system he needs to see an opened
perspective of the running ES. The standard behaviour offered to the experts consists
of a trace of the execution, that is, which is the rule the system tries to fire, which is
the value of a deduced fact, and so on. This trace give to the expert an idea of the
execution flow, but he needs to validate the KB for each case it proves. We propose a
richer tool for the expert, consisting in a KB specialised for the current context
under test.

1.1. Enriched Communication Scenario

As explained above, the behaviour of a classical ES is the following:
1st) The user asks a question to the ES for example P?
2nd) The ES uses its deductive and control knowledge to find a certainty degree

for P.
3rd) The ES gives this certainty value back to the user.
Looking carefully at how experts communicate their knowledge and at their

problem solving procedures we can find much more complex communication
mechanisms. Sometimes experts can not reduce their interaction only to the
communication of certainty values of predicates. For instance, when communicating,
experts in medical diagnosis also need:

1) To condition their answers.
Suppose that it is not known if a patient is allergic to penicillin. A module

deducing the possibility of giving penicillin can answer: Penicillin is a good
treatment from a clinical point of view if there is no allergy to it. From a logical
point of view, the answer could be:

{if no(allergy_penicillin) then Penicillin is very_possible}

 - 3 - Partial Evaluation in MILORD II

2) To give conclusions that have to be considered with the answer.
If in a culture of sputum pneumococcus have been isolated then it is strongly

suggested to make an antibiogram to the patient.
{Pneumococcus_isolation is sure, Make_Antibiogram is definite}

3) To give conditioned conclusions to be considered with the answer.
A treatment with ciprofloxacine is not recommended for breast-feeding women.

However if a woman is on breast-feeding period then the treatment can be carried if
the woman stops breast-feeding.

{Cipro is very_possible, if breast-feeding then stop_breast-feeding is definite}
4) To give a more general answer.
Imagine that Gram positive coccus are detected. An answer to the predicate

pneumococcus is at that moment too precise and cannot be given, but at least the
morphological classification can be answered, i. e. : {coccus is definite}

These types of communication can be modelled by the next schematic sets of
formulas:

The possible sets of answers to a question p? can be:
1) {(c1 � c2 � ... � cn) ∅ p}
2) {p, c1, c2, ..., cn} ∅ p}
3) {p, ((c11 � c12 � ... � c1n) ∅ r1), ..., ((cm1 � cm2 � ... � cmn) ∅ rm)}
4) {c1, c2, ..., cn}
To model such communication protocols, we need to extend the ES answering

procedure. What we need is to answer to a given question with a set of formulas
(rules and facts). To answer the question, the rules considered are those in deductive
paths to and from the question. The facts in the answer are those that have been
obtained in the application of such rules. The rules in the answer are those which
could not be applied because they used unknown knowledge. We only consider the
rules in the deduction tree of the question because we assume that when an user
makes a question it expects an answer, and eventually all the relevant information
associated with it to that question only.

Example 1: Consider a module M with the following set of rules:
Rules = {if Gram_negative_rods then Treatment_with_ciprofloxacine is

possible, if Treatment_with_ciprofloxacine and breast-feeding then Stop_breast-
feeding is definite, if Bacterian_infection and Gram_negative_rods then
Treatment_with_ceftriaxone is very_possible}

and the following set of facts:
Facts = {Gram_negative_rods is definite, breast-feeding is definite,

Bacterian_infection is definite }
Given the question Treatment_with_ciprofloxacine? made by an user we can see

the different answers obtained by a classical procedure and by the one we propose:
Classical answer = {Treatment_with_ciprofloxacine is possible}
Proposed answer = {Treatment_with_ciprofloxacine is possible, Stop_breast-

feeding is definite}

 - 4 - Partial Evaluation in MILORD II

The mechanism of computing classical answers is to look for a proof of the
question. This proof will trivially be obtained by a modus ponens application:

if Gram_negative_rods then Treatment_with_ciprofloxacine is possible
Gram_negative_rods is definitive
--

-
Treatment_with_ciprofloxacine is possible
In our proposal, the set of rules related to Treatment_with_ciprofloxacine is

obtained first:
{if Treatment_with_ciprofloxacine and breast-feeding then Stop_breast-feeding

is definitive, if Gram_negative_rods then Treatment_with_ciprofloxacine is
possible}

then, using the set of known facts, rules will be partially evaluated in order to
obtain the reduced final set of formulas:

{Treatment_with_ciprofloxacine is possible, Stop_breast-feeding is definite}
Example 2: Consider the same set of rules of the previous example and the

following set of facts:
Facts = {Gram_negative_rods is definite, breast-feeding is unknown,

Bacterian_infection is definite}
then the answers will be:
Classical answer ={Treatment_with_ciprofloxacine is very_possible}
Proposed answer ={Treatment_with_ciprofloxacine is possible, if breast-feeding

then Stop_breast-feeding is definite}
In this second case the classical evaluation provides the same result as in the

previous example but in our proposal a different final set of formulas will be
provided. This set is different because the fact breast-feeding is unknown and then
the third rule cannot be applied:

{Treatment_with_ciprofloxacine is possible, if breast-feeding then Stop_breast-
feeding is definite}

It is very important to consider that in a real case the answer can be very large
and very difficult to understand. Then the most important point is to notice witch are
the most relevant facts we should know in order to obtain a proof conditioned to the
unknown information. A complexity criteria is used for the answers. When there is
too much unknown information, the system gives to the user a summary witch
allows him to reconsider the unknown information, and leads him to the solution.

The language MILORD II is an extension of a previous knowledge based
language called MILORD (GOD 88), (SIE 89), used to develop several medical
expert systems (VER 89) (BEL 91). We have to remark that MILORD II is a
modular language, where each module is a partial knowledge base (KB). The
communication scenario (presented above) is the same between the user and the ES
that the communication among modules.

All these points will be developed along this paper. In section 2 a description of

 - 5 - Partial Evaluation in MILORD II

MILORD II modular language is presented. The desired communication behaviour
is obtained by an execution model based on partial evaluation. The overall
description of this mechanism will be presented in section 3.

2. Milord II Modular Language

2.1. Introduction.

The experience in KB design, specially using knowledge acquisition techniques
(PLA 89), allows us to detect a number of necessities that can be tackled with the
methodology we propose here. Amongst them we can emphasise: Modularity,
reusability, incrementality, local control, validation and multilanguage
representation. Let us briefly discuss the meaning of this words.

Modularity. The usual way of understanding a complex problem is to
decompose it into simple subproblems using simple operations. To make a useful
decomposition of problems, subproblems must have a simple and well defined
interaction.

To determine the adequate nature of modules, or partial KB's, that represent the
subproblems and to define the operations of combination of these KB's is a key point
in the design of a language for KE.

Reusability. In the building process of a KB it is important to be able to reuse
existing partial KB's of problems solved beforehand (CHA 86) (GOG 86). For
instance, although the diagnosis of infectious chest illness and that of chest tumours
are essentially different, they could share the analysis of a thorax radiography. So, as
a requirement of our language, we need generic program units that could be
instantiated, or reused, in different contexts.

Incremental modification of KB's. The KB building methodology is an
iterating two-step process. First a prototype is build (or modified), then it is
validated. Thus, it is convenient to have some safe refinement operations that
support this process of incremental KB building (modification). These operations
have to preserve the adequacy of the KB behaviour with respect to the expert
behaviour.

Local Control. Control is a component of the problem solving task tied to the
domain knowledge. Thus it must be a component of each partial KB.

Validation. The problem of KB validation has been applied only to the KB
considered as a whole, without taking into account its building process. It is then
necessary to think about validation characteristics in the building process, i.e. in the
different and successive partial KB's which, conveniently combined and
progressively refined, will result in the total KB. The validation should not be just a

 - 6 - Partial Evaluation in MILORD II

final quality control test, but it must be integrated into the building process of the
system.

Multilanguage representation. The basic operations of construction and
modification are independent from the underlying language used to define the bodies
of the modules. This independence allows the use of different languages of
representation in the different modules (HAR 89). An easy example of this is the use
of different multi-valued logics in each module (SIE 90).

On the modules two types of operations are defined: the composition or
combination of modules into a new module which contains them as submodules, and
the refinement of a module. The process of development of a KB is represented with
a DAG in which the arcs symbolise both the operations of composition and the
operations of refinement and where the nodes stand for the modules (the content of
the nodes is explained in the paragraph devoted to the description of the language).
The roots of this graph stand for the more general and less defined partial KB
specifications, i.e. the body is not completely defined. The terminal nodes are the
more concrete and executable KB's.

2.2. Proposed language: MILORD II

In this section the major elements of the language MILORD II are presented by
means of an example. Most part of the example is artificial; it has been designed
exclusively in order to introduce the syntax and semantics of the language. The
example will be introduced progressively. The modules whose contents are not
defined in the paper will be marked in italics.

2.2.1. Modules

The basic KB units written in MILORD II are the modules. These are
hierarchically organised, and are composed of a set of importation, exportation, rule,
control, meta-rule and submodule declarations. The Import/Export interface
establishes the input/output behaviour of the module and the declaration of the
submodules settles the hierarchic structure of the KB. The declaration of submodules
is identical in every aspect to the declaration of the modules (see the example in
figure 1).

The language provides three basic mechanisms of module manipulation:
1) Composition of modules through the declaration of submodules,
2) Refinement of modules, and
3) Composition of modules through operators defined by the user via generic

modules definition.
The semantics of a module are, intuitively, a module identifier that can be

 - 7 - Partial Evaluation in MILORD II

referenced by the other modules and a piece of code whose main functionalities are
shown below.

2.2.2. Primitive declarations

The most basic elements of MILORD II are the same as in MILORD (GOD 88),
(SIE 89), the underlying current language of MILORD II. These are facts of order
0+, production rules and meta-rules. Figure 1 exemplifies the primitive declarations
outlined in this section.

Import declarations
Imported facts are those whose values are obtained at run time from the user.

These facts are declared by:
 Import fact1, fact2,..., factn
and the values are obtained when needed in the evaluation of a rule. With this

declaration we define the input interface of the module which contains it. The code
of a module containing an import declaration will be allowed to ask for values of
imported facts only. They will be obtained from the user.

Export declarations
Exported facts are those facts that can be used by other modules. All exported

facts must be conclusions of rules in the module or else be imported by the module.
They are declared by:

 Export fact1, fact2, ..., factn
Conclusions of rules and imported facts not mentioned in the export declaration

are hidden to the rest of the modules, i.e. they cannot be used in the body of the rest
of the modules. This is the only mandatory declaration in the construction of a
module. A module with no exported facts is meaningless. The code of a module
containing an export declaration will provide means to answer questions about the
values of the exported facts only. Also visible submodules will provide code with the
same characteristics that will be added to the code of the module that contains them.

Kernel declarations
The kernel is made up of two components called deductive knowledge and

control knowledge. Deductive knowledge includes the declarations of the object
language which in our current implementation is a production rule language.
Control knowledge is represented by means of a meta-language which acts by
reflection over the deductive knowledge and the module hierarchy. The current
implementation of the meta-language allows the definition of meta-rules and the
definition of some control parameters (v.g. evaluation type). In the future the meta-
language will allow a structured and incremental programming of the control. A
module with an empty kernel can be considered to be a pure interface. The kernel of
a module can be incrementally filled up by using the incremental programming
primitive operation ":" (not developed in this paper).

 - 8 - Partial Evaluation in MILORD II

The kernel provides the code of a module without any restrictions on the
interface. In our case the code is basically a set of rules and meta-rules to be
interpreted by an inference engine.

Module Ext_data =

 Begin
 Module T1 = type1_data
 ...
 Module Tn = typen_data
 Import fever, inmunodepressed
 Export ext_data1, ext_data2, ..., ext_datam

 Deductive knowledge
 Rules :
 R1 if T1/X1 and inmunodepressed
 then conclude ext_data1 is sure

 ...
 Rm if T1/X3 and T4/X5
 then conclude ext_datam is quite_possible

 End deductive
 Control knowledge
 Evaluation is lazy
 Deductive control is nil
 Structural control is
 MR1 if no(fever) and no(T4/X3)
 then eliminate(T1)

 End control
 End

Ext_data

Type1_data Typen_data

T1 Tn
...

T1 to Tn are labels in the archs standing for internal names of pointed modules inside

ext_data

Figure 1: Module definition and its graphical representation.

In figure 1 the text of a module declaration can be found. Bellow it the graph

representation of the module is presented. A graphic, and intuitive, representation of
combinations between modules will be used along the paper.

 - 9 - Partial Evaluation in MILORD II

2.2.3. Module and submodule declarations

Modules (or submodules) have the form:

 Module modidentifier [: modexpr1][= modexpr2]

where modexpr1 and modexpr2 can be either

a) An encapsulated set of primitive declarations and submodule
declarations with a limited scope,

b) A module name defined elsewhere or even not yet defined, or
c) A generic module application.

modexpr1 defines a module from which the module modidentifier is a
refinement.

The symbol ":" stands for the module refinement operation and the symbol "="
for the module composition operation. If modexpr1 and modexpr2 are the empty
string, the effect of the declaration is just to keep the modidentifier in the
environment where the declaration is made. In the next sections we detail these
forms of module declarations.

Encapsulated declarations
The module Ex_data (figure 1) is an example of an encapsulated set of

declarations. It contains all the primitive declarations mentioned in the previous
section and also the declaration of a set of submodules. Its semantics are those
explained in the primitive declarations section.

Declarations by reference: module composition.
Module names are used to refer to other modules. The referred modules may not

have been created in the moment when their names are used, expediting thus a top
down design.

Module Method_of_DA (figure 2) references module Ext_data renaming it B.
This declaration makes all facts exported by Ext_data be visible in the kernel of
Method_of_DA. Thus, Method_of_DA rules can use these facts in their premises
prefixing them with the identifier of the submodule which exports them. The symbol
for prefixing is "/". The concatenation of prefixes allows to represent the path to a
fact in the modular hierarchy. The prefix is useful to distinguish between different
instances of the same facts in different submodules.

If we do not want to change the name of the module referenced in a submodule
declaration, we can use the declaration Inherit (see module DM_noexpert). In order
to make the facts of a module directly accessible without prefixing them we declare
it open.

The formal semantics of hierarchical composition of modules is built up from
two elementary operations: (1) The union of bodies of modules and (2) the renaming
of name spaces that avoid the undesired interactions between module bodies.

The semantics of a submodule is a variant of the semantics of a module. The

 - 10 - Partial Evaluation in MILORD II

exported facts and submodules of a submodule will be visible outside the module
declaration if the ':' operation allows it, i.e. if the submodule is not hidden by ':'. For
instance in figure 2 the submodule C:sigext is not visible outside method_of_DA
because Domain_model_of_DA does not contain any submodule called C. So,
Method_of_DA/C/P can not be used. Despite that, inside the module
Method_of_DA the submodule C will keep all its semantic functionalities, i.e. C/P
will be allowed.

 Module Domain_model_of_DA =

 Begin
 Module B : Sigext
 Export DA1; ...; DAn

 End

 Module Method_of_DA :
 Domain_model_of_DA =
 Begin
 Module B = Ext_data
 Module C
 Deductive knowledge =
 R1 if B/ext_dataj and ...

 then DAi1

 ...
 Rm if B/ext_datak and ...

 then DAim

 ...
 End deductive
 End

Sigext Domain_model_of_DA

B

?

Sigext Domain_model_of_DA

B

?

Ext_data

Method_
 of_DA

C

Verification

B

?
Graphical representation of the modules and example of verification step over the graph
structure of the modules.

 - 11 - Partial Evaluation in MILORD II

Figure 2. Example of module refinement.

2.2.4. Declaration of generic modules

The instantiation of a generic module is considered as a module declaration.
This topic will be developed in the section 4.5.

The definition of generic modules opens to the user the possibility of defining
specific operations of composition. This standard technique consists of isolating a
piece of program, or module, from its context and then abstract it by specifying:

1) Those modules upon which the abstracted module may depend (requirements
or import interface).

2) The contribution of the abstracted module to the rest of the program (results or
export interface). The internal definition of this abstracted module is made in
terms of the import interfaces.

The obvious example of this technique is functional programming, where such
abstractions form the basic program units. The functional body defines how to
compute the output (results) in terms of the input (requirements). In modular
programming such abstractions are in fact program-valued functions and are called
parametric or generic modules (the parameter type being the import interfaces).
When applied to particular modules that satisfy their import interfaces, they result in
a new module which satisfies their export interface. The method for building large
KB systems consists of applying generic modules to previously built particular
modules.

An example of definition of generic modules is showed in figure 3. That
example is obtained from Bacter-IA, a medical application being developed in our
laboratory using Colapses. There, the module Global_gram represents a general
gram analysis over different samples, that have in common only those aspects
established in the module Sample: the output interface. In concrete, modules such as
Sputum,providing different views over the same exported facts can be defined.
Keeping the common parts in a generic module we can save code and time and
make the code much more understandable. Finally when a module is needed to make
the gram analysis of an sputum sample, it is only necessary to put both modules
together by a generic module application Global_Gram(Sputum).

To further determine the semantics of generic modules we can say that:
* The parameters of the definition are declared as refinements between names of

formal variables and modular expressions. These modular expressions
guarantee a minimal output interface to be used in the body of the generic
module.

* When instantiating a generic module upon some concrete modules, the
refinement operation declared in the parameters is carried out. Then, and
with the help of code-expanding techniques, the resultant module is obtained.

 - 12 - Partial Evaluation in MILORD II

* The instantiation of a generic module upon concrete modules can be restricted
by a declaration of submodule sharing between the current parameters. That
is, the submodules which have been declared as "shared" must be identical.
(AGU 89).

We want to support the process of incremental KB building by means of generic
modules. So whenever the definition of a module changes, these changes must be
reflected in the rest of the program. The way to do it is just to repeat the module
applications that refer to the modified module. This re-linking process can be
automatised by the compiler, so that the user gets rid of this task.

Module Sample =
 Begin
 Export DCGP, CGPC, CGPP
 End
Module Global_Gram (X : Sample) =
 Begin
 Module D = Respiratory_diagnosis
 Module T = Type_of_infection
 Module P = Previous_treatment
 Export Pneumococcus, Haemophillus, BGN
 Deductive knowledge =
 Rules:
 R001 If X/DCGP and D/Bacterial then
 conclude pneumococcus is very_possible
 R002 If X/DCGP and D/Bacterian and T/Common_acquired then
 conclude Pneumococcus is quite_possible
 R003 If X/CBGN and D/BCRO then
 conclude Haemophillus is very_possible
 R004 If X/CBGN and D/BCRO and P/Previous then
 conclude Haemophillus is quite_possible
 R005 If X/BGN and D/BCRO then
 conclude BGN is very_few_possible
 ...
 End deductive
 End

Module Sputum : Sample =
 Begin
 Import Class_sputum
 Export DCGP, CGPC, CGPP
 Deductive knowledge
 Rules:

 - 13 - Partial Evaluation in MILORD II

 R001 If Class_Sputum = DCGP then
 conclude DCGP is very_possible
 ...
 End deductive
 End
Module Sputum_Gram = Global_Gram(Sputum)

Figure 3. Example of generic module definition and application.

3. Execution Model of MILORD II

Deduction in MILORD was provided by classical inference engines (backward
and forward) with uncertainty. This mechanism does not provide the possibility of
complex communication as explained in section 1. We are implementing MILORD
II with an inference engine based on partial evaluation. In this section we will
explain the fundamentals of the partial evaluation in MILORD II and the general
behaviour of the system.

3.1. Partial Evaluation

Partial evaluation takes as its input a program and a partial specification of the
program input , and produces a new version of the program: a specialised program
for the particular input values. Logic programming is specially suited for partial
evaluation as shown in (VEN 84) and (GAL 86).

In the partial evaluation used in MILORD II a program is a partial KB or
module, and the partial specification of the input of the program is a set of fact
values. Each fact value of the input can specialise those rules of the KB which
contain that fact in their premises. The specialisation of rules is performed by
reducing the number of conditions of the rules, and obtaining new facts when
conditions are exhausted. The new facts thus obtained can in their turn specialise
other rules. The whole specialisation of the KB will finish when no rule of the KB
has a known fact into its conditions, that is, when the KB is composed of a set of fact
values and a set of rules without known facts in their premises.

The algorithm is based on two basic operations:
1) Reduction of the conditions:
Given a rule:
(A � B � … � Z∅ D) ρ = (A ∅ (B � … � Z ∅ D)) ρ

 - 14 - Partial Evaluation in MILORD II

where ρ is its truth value and a fact A with truth value α, we can partial evaluate
the rule to obtain

(B � … � Z ∅ D) ρ' , where ρ' = MP1 (α, ρ) is the new truth value of the rule.
2) Modus Ponens:
Given a rule,
(A ∅ B) ρ
if we know that the truth value of fact A is α, we can deduce B with a certainty

value β = MP (α, ρ).

3.2. Module Execution

In this section we will explain the general execution algorithm of a module. This
algorithm is based on three elemental operations:

1) Questioning: This operation will obtain a question to make outside of the
module (to the user or to another module).

2) The partial evaluator: This operation reduces the state of a module, taking
into account the answer to the question obtained by the above mentioned operation.

3) Filter: This operation returns a set of formulas directly related to the goal of
the module.

The execution of a module is initiated when a goal to prove by this module is set.
From then on a loop starts between the operations of questioning and partial
evaluation until the state of the module can not be further reduced, this will happen
when all the conditions of the rules belonging to that state have unknown values. It
is then that the filter operation starts and gives as result a subset of the formulas in
the state directly related to the goal, i.e. the formulas in the deductive path to and
from the goal in their reduced form.

4. Implementation

MILORD II is being implemented in two parts, the interpreter in Common Lisp
and the compiler in C.

MILORD II is being implemented in Allegro Common Lisp for Macintosh
machines. We use the window facilities of Allegro Common Lisp in order to present
an easy tool for the users.

1 MP (modus ponens) is a function that takes the truthvalue of the condition A, and the truthvalue of the rule

ρ, and returns the truth value of the conclusion B.

 - 15 - Partial Evaluation in MILORD II

5. Conclusions

Partial evaluation together with powerful modularisation techniques allow to
define much structured and explanatory expert systems than with the classical
approaches. The language MILORD II is the result of a research project who intends
to adapt some techniques of wide use in software engineering to the languages of
Artificial Intelligence. Concepts such Generic modules and refinement take a new
meaning in the area of Artificial Intelligence that allow experts to express much
more flexible their knowledge. Even more, it allows to verify the programming of
KB's in an incremental way, this is a possible solution to one of the biggest bottle-
necks in knowledge engineering: the validation and verification of KB's. The
language is been used in the development of several expert systems, four of which
are in the area of medicine.

References

(AGU 89) Agustí J., Sierra C., Sannella D., 1989 : "Adding generic
modules to flat rule-based languages: A low cost approach", in
Methodologies for Intelligent Systems, 4, Elsevier, pp. 43-51.

(BEL 91) Belmonte M., 1991: Renoir: Un sistema experto para la
ayuda en el diagnostico de colagenosis y artropatias
inflamatorias. Ph. D. Thesis, Universitat Autònoma de
Barcelona.

(CHA 86) Chandrasekaran B., 1986 : "Generic Tasks in Knowledge-
Based Reasoning: High-level Building Blocks for Expert
Systems Design", Research Report, Ohio State University.

(GAL 86) Gallagher, J 1986: Transforming logic programming by
specialising interpreters. Proceedings ECAI'86, pp. 109-122

(GOD 88) Godo L., López de Mántaras R., Sierra C., Verdaguer A.
1988: “Managing Linguistically Expressed Uncertainty in
MILORD Application to Medical Diagnosis”. AI com., vol 1 n
1 pp 14-31.

(GOG 86) Goguen J. A., 1986 : "Reusing and Interconnecting Software
Components", IEEE Computer, February 1986, pp. 16-28.

(HAR 89) Harper R., Sannella D., Tarlecki A., 1989 : "Structure and
Representation in LCF", Proceedings of 4th IEEE Symp. on
Logic of Computer Science.

(PLA 89) Plaza E., López de Mántaras R., 1989: "Model-Based

 - 16 - Partial Evaluation in MILORD II

knowledge acquisition for heuristic classification systems",
SIGART Newsletter, April 1989, N 108, pp. 98-105.

(SIE 89) Sierra C., 1989 : MILORD: Arquitectura meta-nivell per a
sistemes experts en classificació, Ph. D. Thesis, Universitat
Politècnica de Catalunya.

(SIE 90) Sierra C., Agustí J. 1990 : COLAPSES: Towards a
Methodology and a Language for Knowledge Engineering.
Avignon'91 Tools, Techniques and Methods, pp. 407-423.

(VEN 84) Venken R. 1984: A Prolog meta-interpreter for partial
evaluation and its application to source tranformation and
query-optimisation. Proceedings ECAI'84, pp. 91-100.

(VER 89) Verdaguer A. 1989: Pneumon-IA: Aplicació dels sistemes
experts al diagnòstic mèdic, Ph. D. Thesis, Universitat
Autònoma de Barcelona.

