
i n t e l l i g e n c e • W i n t e r 2 0 0 0 21

In a recent study Prechelt (1999) compared
the relative performance of Java and C++ in
execution time and memory usage. Unlike

many benchmark studies, Prechelt compared
multiple implementations of the same task by
multiple programmers in order to control for
the effects of differences in programmer skill.
Prechelt concluded that “as of JDK 1.2, Java
programs are typically much slower than pro-
grams written in C or C++. They also con-
sume much more memory.”

We repeated Prechelt’s study using
Lisp as the implementation language.
Our results show that Lisp’s perfor-
mance is comparable to or better than
C++ in execution speed; it also has sig-
nificantly lower variability, which
translates into reduced project risk.
Furthermore, development time is sig-
nificantly lower and less variable than
either C++ or Java. Memory consump-
tion is comparable to Java. Lisp thus
presents a viable alternative to Java for
dynamic applications where perfor-
mance is important.

Experiment
Our data set consists of 16 programs
written by 14 programmers. (Two pro-
grammers submitted more than one
program, as was the case in the original
study.) Twelve of the programs were
written in Common Lisp (Steele
1990), and the other four were in
Scheme (ACM 1991). All of the sub-
jects were volunteers recruited from an
Internet newsgroup.

To the extent possible we duplicat-
ed the circumstances of the original
study. We used the same problem
statement (slightly edited but essential-
ly unchanged), the same program
input files, and the same kind of
machine for the benchmark tests: a
SPARC Ultra 1. The only difference
was that the original machine had 192

MB of RAM and ours had only 64 MB; how-
ever, none of the programs used all the avail-
able RAM, so the results should not have
changed. Common Lisp benchmarks were run
using Allegro CL 4.3. Scheme benchmarks
were run using MzScheme (Flatt 2000). All
the programs were compiled to native code.

Results
Figure 1 shows the results of our experiment

Lisp as an Alternative to Java

Point of View

Figure 1: Experimental results. The vertical lines from left to right indicate, respectively, the 10th
percentile, median, and 90th percentile. The hollow box encloses the 25th to 50th percentile. The

thick grey line is the width of two standard deviations centered on the mean.

Erann Gat
Jet Propulsion Laboratory,

California Institute of

Technology

Pasadena, CA 91109

gat@jpl.nasa.gov

and the data from the original Prechelt study.
The results are presented as cumulative prob-
ability distribution functions. The Y-value at a
particular point on the curve represents the
fraction of programs with performance on a
particular metric that was equal to or better
than the X-value at that point. The horizontal
extent of the curve indicates the range of val-
ues. A smooth curve indicates evenly distrib-
uted values. A curve with discontinuous
jumps indicates clustering of the data at the
jumps.

Two striking results
are immediately obvious
from the figures. First,
development time for the
Lisp programs was signif-
icantly lower than the
development time for the
C, C+, and Java pro-
grams. It was also signifi-
cantly less variable.
Development time for
Lisp ranged from a low
of 2 hours to a high of
8.5, compared to a range
of 3 to 25 hours for C
and C++ and 4 to 63 hours
for Java. Programmer experience cannot
account for the difference. The experience
level was lower for Lisp programmers than for
both the other groups (an average of 6.2 years
for Lisp versus 9.6 for C and C++ and 7.7 for
Java). The Lisp programs were also signifi-
cantly shorter than the C, C++, and Java pro-
grams. The Lisp programs ranged from 51 to
182 lines of code. The mean was 119, the
median was 134, and the standard deviation
was 10. The C, C++, and Java programs
ranged from 107 to 614 lines, with a median
of 244 and a mean of 277.

Second, although execution times of the
fastest C and C++ programs were faster than
the fastest Lisp programs, the runtime perfor-
mance of the Lisp programs in the aggregate
was substantially better than C and C++ (and
vastly better than Java). The median runtime
for Lisp was 30 seconds versus 54 for C and
C++. The mean runtime was 41 seconds ver-
sus 165 for C and C++. Even more striking is

the low variability in the results. The standard
deviation of the Lisp runtimes was 11 seconds
versus 77 for C and C++. Furthermore, much
of the variation in the Lisp data was due to a
single outlier at 212 seconds (which was pro-
duced by the programmer with the least Lisp
experience: less than a year). If this outlier is
ignored, the mean is 29.8 seconds, essentially
identical to the median, and the standard
deviation is only 2.6 seconds.

Memory consumption for Lisp was signifi-
cantly higher than for C

and C++ and roughly
comparable to Java.
However, this result is
somewhat misleading for
two reasons. First, Lisp
and Java both perform
internal memory man-
agement using garbage
collection, so often Lisp
and Java runtimes will
allocate memory from
the operating system that
is not actually being used
by the application pro-
gram. Second, the memo-

ry consumption of Lisp
programs includes memory used by the Lisp
development environment, compiler, and
runtime libraries. This allocation can be sub-
stantially reduced by removing from the Lisp
image features that are not used by the appli-
cation, an optimization we did not perform.

Analysis and Speculation
Our study contains one significant method-
ological flaw: all the subjects were self-selected
(a necessary expediency given that we did not
have ready access to a supply of graduate stu-
dents who knew Lisp). About the only firm
conclusion we can draw is that it would be
worthwhile to conduct a follow-up study with
better controls. If our results can be replicated
they would indicate that Lisp offers major
advantages for software development: reduced
development time and reduced variability in
performance resulting in reduced project risk.

Our results beg two questions: (1) Why
does Lisp seem to do as well as it does? and (2)

22 W i n t e r 2 0 0 0 • i n t e l l i g e n c e

Lisp seems to offer

reduced development

time and reduced

variability

in performance.

If these results are real why isn’t Lisp used
more than it is? The following answers should
be considered no more than informed specu-
lation.

When discussing Lisp’s performance we
need to separate four aspects that have poten-
tially different explanations. First, Lisp’s run-
time performance appears comparable to C
and C++. This result contradicts the conven-
tional wisdom that Lisp is slow. The simple
explanation is probably the correct one: the
conventional wisdom is just wrong. There
was a time when Lisp was slow because com-
pilers were unavailable or immature. Those
days are long gone. Modern Lisp compilers
are mature, stable, and of exceptionally high
quality.

The second performance result is the low
development time. Lisp has a much faster
debug cycle than C, C++, or Java. The compi-
lation model for most languages is based on
the idea of a compilation unit, usually a file.
Changing any part of a compilation unit
requires, at least, recompiling the entire unit
and relinking the entire program. It typically
also requires stopping the program and start-
ing it up again, resulting in a loss of any state
computed by the previous version. The result
is a debug cycle measured in minutes, often
tens of minutes.

Lisp compilers, by contrast, are inherently
designed to be incremental and interactive.
Individual functions can be individually com-
piled and linked into running programs. It is
not necessary to stop a program and restart it
to make a change, so state from previous runs
can be preserved and used in the next run
rather than being recomputed. It is not
unusual to go through several change–com-
pile–execute cycles in one minute when pro-
gramming in Lisp.

The third result is the smaller size of the
Lisp code. This can be explained by two fac-
tors. First, Lisp programs do not require type
declarations, which tend to consume many
lines of code in other languages. Second, Lisp
has powerful abstraction facilities like first-
class functions that allow complex algorithms
to be written in a very few lines of code. A
classic example is the following code for trans-

posing a matrix represented as a list of lists:
(defun transpose (m) (apply ‘mapcar

‘list m))

The final performance result is the low
variability of runtimes and development
times—which has several possible explana-
tions. It might be because the subjects were
self-selected. It might be because the bench-
mark task involved search and managing a
complex linked data structure, two jobs for
which Lisp happens to be specifically designed
and particularly well suited. Or it might be
because Lisp programmers tend to be good
programmers. This in turn might be because
good programmers tend to gravitate toward
Lisp, or it might be because programming in
Lisp tends to make one a good programmer.

This last possibility is not as outlandish as
it might at first appear. Lisp has many features
that make it an easy language to learn and use.
It has simple and uniform syntax and seman-
tics. There is ubiquitous editor support to
help handle what little syntax there is. The
basic mechanics of the language can be mas-
tered in a day. This leaves the programmer free
to concentrate on designing and implement-
ing algorithms instead of worrying about the
vagaries of abstract virtual destructors and
where to put the semicolons. If Lisp program-
mers are better programmers it may be
because the language gives them more time to
become better programmers.

Which brings us to the question why, if
Lisp is so great, is it not more widely used?
This has been a great puzzle in the Lisp com-
munity for years. One contributing factor is
that when artificial intelligence fell out of
favor in the 1980s for failing to deliver on its
lofty promises, Lisp was tarred with the same
brush. Another factor is the dogged persis-
tence of the myth that Lisp is big and slow.
Hopefully this work will begin to correct that
problem.

Conclusions
Lisp is often considered an esoteric AI lan-
guage. Our results suggest that it might be
worthwhile to revisit this view. Lisp provides
nearly all of the advantages that make Java
attractive, including automatic memory man-

i n t e l l i g e n c e • W i n t e r 2 0 0 0 23

Point of View

PERMISSION TO MAKE DIGITAL OR

HARD COPIES OF ALL OR PART OF THIS

WORK FOR PERSONAL OR CLASSROOM

USE IS GRANTED WITHOUT FEE PRO-

VIDED THAT COPIES ARE NOT MADE

OR DISTRIBUTED FOR PROFIT OR COM-

MERCIAL ADVANTAGE AND THAT

COPIES BEAR THIS NOTICE AND THE

FULL CITATION ON THE FIRST PAGE.

TO COPY OTHERWISE, TO REPUBLISH,

TO POST ON SERVERS OR TO REDIS-

TRIBUTE TO LISTS, REQUIRES PRIOR

SPECIFIC PERMISSION AND/OR A FEE.

© ACM 1523-8822 00/1200 $5.00

agement, dynamic object-oriented program-
ming, and portability. Our results suggest that
Lisp is superior to Java and comparable to
C++ in runtime, and it is superior to both in
programming effort and variability of results.
This last item is particularly significant
because it translates directly into reduced risk
for software development.

Acknowledgments
Thanks to Lutz Prechelt for making available
the raw data from the original study and to
Dan Dvorak for calling the Prechelt study to
my attention. Lutz Prechelt, Dan Dvorak, and
Kirk Reinholtz provided comments on an
early draft of this paper. This work was per-
formed at the Jet Propulsion Laboratory,
California Institute of Technology, under a

contract with the National Aeronautics and
Space Administration.

For information on Java resources, see intel-
ligence (Summer 2000) or visit:
tigger.cs.uwm.edu/~syali/ali-links/

References
ACM. The revised report on the algorithmic language

Scheme (W. Clinger and J. Rees, eds.). 1991. ACM

Lisp Pointers 4, 3, pp. 1–55.

Flatt, M. MzScheme Language Manual. 2000. Available

at http://www.cs.rice.edu/CS/PLT/packages/mzscheme/

Prechelt, L. 1999. Java vs. C++: Efficiency issues to

interpersonal issues. Communications of the ACM

(October).

Steele, G.L. 1990. Common Lisp: The Language. 2nd ed.

Digital Press.

24 W i n t e r 2 0 0 0 • i n t e l l i g e n c e

