Journal of Artificial Intelligence Research 7 (1997) 83-124 Submitted 6/97; published 9/97

Towards Flexible Teamwork

Milind Tambe TAMBE@QISI.EDU
Information Sciences Institute and Computer Science Department

University of Southern California

4676 Admaralty Way

Marina del Rey, CA 90292, USA

Abstract

Many Al researchers are today striving to build agent teams for complex, dynamic
multi-agent domains, with intended applications in arenas such as education, training,
entertainment, information integration, and collective robotics. Unfortunately, uncertain-
ties in these complex, dynamic domains obstruct coherent teamwork. In particular, team
members often encounter differing, incomplete, and possibly inconsistent views of their en-
vironment. Furthermore, team members can unexpectedly fail in fulfilling responsibilities
or discover unexpected opportunities. Highly flexible coordination and communication is
key in addressing such uncertainties. Simply fitting individual agents with precomputed
coordination plans will not do, for their inflexibility can cause severe failures in teamwork,
and their domain-specificity hinders reusability.

Our central hypothesis is that the key to such flexibility and reusability is providing
agents with general models of teamwork. Agents exploit such models to autonomously rea-
son about coordination and communication, providing requisite flexibility. Furthermore,
the models enable reuse across domains, both saving implementation effort and enforc-
ing consistency. This article presents one general, implemented model of teamwork, called
STEAM. The basic building block of teamwork in STEAM is joint intentions (Cohen &
Levesque, 1991b); teamwork in STEAM is based on agents’ building up a (partial) hierar-
chy of joint intentions (this hierarchy is seen to parallel Grosz & Kraus’s partial Shared-
Plans, 1996). Furthermore, in STEAM, team members monitor the team’s and individual
members’ performance, reorganizing the team as necessary. Finally, decision-theoretic com-
munication selectivity in STEAM ensures reduction in communication overheads of team-
work, with appropriate sensitivity to the environmental conditions. This article describes
STEAM’s application in three different complex domains, and presents detailed empirical
results.

1. Introduction

teamwork: cooperative effort by the members of a team to achieve a common
goal. — American Heritage Dictionary

Teamwork is becoming increasingly critical in many multi-agent environments, such as,
virtual training (Tambe et al., 1995; Rao et al., 1993), interactive education (for instance, in
virtual historical settings, Pimentel & Teixeira, 1994), internet-based information integra-
tion (Williamson, Sycara, & Decker, 1996), RoboCup robotic and synthetic soccer (Kitano
et al., 1995, 1997), interactive entertainment (Hayes-Roth, Brownston, & Gen, 1995; Reilly,
1996), and potential multi-robotic space missions. Teamwork in such complex, dynamic
domains is more than a simple union of simultaneous coordinated activity. An illustrative

©1997 Al Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

TAMBE

example provided by Cohen and Levesque (1991b) — worth repeating, given that the differ-
ence between simple coordination and teamwork is often unacknowledged in the literature
— focuses on the distinction between ordinary traffic and driving in a convoy. Ordinary
traffic is simultaneous and coordinated by traffic signs, but it is not considered teamwork.
Driving in a convoy, however, is an example of teamwork. The difference in the two situ-
ations is that while teamwork does involve coordination, in addition, it at least involves a
common team goal and cooperation among team members.

This article focuses on the development of a general model of teamwork to enable a
team to act coherently, overcoming the uncertainties of complex, dynamic environments.
In particular, in these environments, team members often encounter differing, incomplete
and possibly inconsistent views of the world and (mental) state of other agents. To act
coherently, team members must flexibly communicate to avoid miscoordination. Further-
more, such environments can often cause particular team members to unexpectedly fail
in fulfilling responsibilities, or to discover unexpected opportunities. Teams must thus be
capable of monitoring performance, and flexibly reorganizing and reallocating resources to
meet any contingencies. Unfortunately, implemented multi-agent systems often fail to pro-
vide the necessary flexibility in coordination and communication for coherent teamwork in
such domains (Jennings, 1994, 1995). In particular, in these systems, agents are supplied
only with preplanned, domain-specific coordination. When faced with the full brunt of un-
certainties of complex, dynamic domains, the inflexibility of such preplanned coordination
leads to drastic failures — it is simply difficult to anticipate and preplan for all possible con-
tingencies. Furthermore, in scaling up to increasingly complex teamwork situations, these
coordination failures continually recur. In addition, since coordination plans are domain
specific, they cannot be reused in other domains. Instead, coordination has to be redesigned
for each new domain.

The central hypothesis in this article is that providing agents with a general model
of teamwork enables them to address such difficulties. Such a model enables agents to
autonomously reason about coordination and communication, providing them the requisite
flexibility in teamwork. Such general models also allow reuse of teamwork capabilities
across domains. Not only does such reuse save implementation effort, but it also ensures
consistency in teamwork across applications (Rich & Sidner, 1997). Fortunately, recent
theories of teamwork have begun to provide the required models for flexible reasoning about
teamwork, e.g., joint intentions (Cohen & Levesque, 1991b; Levesque, Cohen, & Nunes,
1990), SharedPlan (Grosz, 1996; Grosz & Kraus, 1996; Grosz & Sidner, 1990) and joint
responsibility (Jennings, 1995), are some of the prominent ones among these. However,
most research efforts have failed to exploit such teamwork theories in building practical
applications (Jennings, 1994, 1995).

This article presents an implemented general model of teamwork, called STEAM (sim-
ply, a Shell for TEAMwork).! At its core, STEAM is based on the joint intentions theory
(Levesque et al., 1990; Cohen & Levesque, 1991b, 1991a); but it also parallels and in some
cases borrows from the SharedPlans theory (Grosz, 1996; Grosz & Kraus, 1996; Grosz &
Sidner, 1990). Thus, while STEAM uses joint intentions as the basic building block of team-
work, as in the SharedPlan theory, team members build up a complex hierarchical structure
of joint intentions, individual intentions and beliefs about others’ intentions. In STEAM,

1. STEAM code (with documentation/traces) is available as an online Appendix.

84

TowARDS FLEXIBLE TEAMWORK

communication is driven by commitments embodied in the joint intentions theory — team
members may communicate to attain mutual belief while building and disbanding joint
intentions. Thus, joint intentions provide STEAM a principled framework for reasoning
about communication, providing significant flexibility. STEAM also facilitates monitoring
of team performance by exploiting explicit representation of team goals and plans. If in-
dividuals responsible for particular subtasks fail in fulfilling their responsibilities, or if new
tasks are discovered without an appropriate assignment of team members to fulfill them,
team reorganization can occur. Such reorganization, as well as recovery from failures in
general, is also driven by the team’s joint intentions.

STEAM’s operationalization in complex, real-world domains (described in the next sec-
tion) has been key in its development to address important teamwork issues discussed above.
It has also led STEAM to address some practical issues, not addressed in teamwork the-
ories. One key illustration is in STEAM’s detailed attention to communication overheads
and risks, which can be significant. STEAM integrates decision theoretic communication
selectivity — agents deliberate upon communication necessities vis-a-vis incoherency in
teamwork. This decision theoretic framework thus enables improved flexibility in commu-
nication in response to unexpected changes in environmental conditions.

Operationalizing general models of teamwork, such as STEAM, necessitates key modi-
fications in the underlying agent architectures. Agent architectures such as Soar (Newell,
1990), RAP (Firby, 1987), PRS (Rao et al., 1993), BB1 (Hayes-Roth et al., 1995), and
IRMA (Pollack, 1992) have so far focused on individual agent’s flexible behaviors via mech-
anisms such as commitments and reactive plans. Such architectural mechanisms need to be
enhanced for flexible teamwork. In particular, an explicit representation of mutual beliefs,
reactive team plans and team goals is essential. Additional types of commitments, suitable
for a team context, may need to be embodied in the architectures as well. Without such
architectural moorings, agents are unable to exploit general models of teamwork, and reason
about communication and coordination. This view concurs with Grosz (1996), who states
that “capabilities for teamwork cannot be patched on, but must be designed in from the
start”.

Our operationalization of STEAM is based on enhancements to the Soar architecture
(Newell, 1990), plus a set of about 300 domain-independent Soar rules. Three different
teams have been developed based on this operationalization of STEAM. These teams have
a complex structure of team-subteam hierarchies, and operate in complex environments
— in fact, two of them operate in a commercially-developed simulation environment for
training. This article presents detailed experimental results from these teams, illustrating
the benefits of STEAM in their development.

STEAM is among just a very few implemented general models of teamwork. Other
models include Jennings’ joint responsibility framework in the GRATE* system (Jennings,
1995) (based on Joint Intentions theory), and Rich and Sidner’s COLLAGEN (Rich & Sid-
ner, 1997) (based on the SharedPlans theory), that both operate in complex domains. While
Section 7 will discuss these in greater detail, STEAM significantly differs from both these
frameworks, via its focus on a different (and arguably wider) set of teamwork capabilities
that arise in domains with teams of more than two-three agents, with more complex team
organizational hierarchies, and with practical emphasis on communication costs.

85

TAMBE

The rest of the article begins with a concrete motivation for our research via a description
of key teamwork problems in real-world domains (Section 2). Section 3 discusses theories of
teamwork and sketches their implications for STEAM. Section 4 next describes STEAM, our
implemented model of teamwork. Section 5 discusses STEAM’s selective communication.
Section 6 presents a detailed experimental evaluation. Section 7 discusses related work.
Finally, Section 8 presents summary and future work.

2. Illustrative Domains and Motivations

This investigation focuses on three separate domains. Two of the domains are based on a
real-world distributed, interactive simulator commercially developed for military training
(Calder et al., 1993). The simulator enables — via networking of several computers —
creation of large-scale, 3D synthetic battlefields, where humans, as well as hundreds or even
thousands of intelligent and semi-intelligent agents can co-participate (Tambe et al., 1995).

The first domain, Attack (Figure 1), involves pilot agents for a company of (up to eight)
synthetic attack helicopters. The company starts at the home-base, where the commander
pilot agent first sends orders and instructions to the company members. The company
processes these orders and then begins flying towards their specified battle position, i.e.,
the area from which the company will attack the enemy. While enroute to the battle-
position, depending on the orders, the company members may fly together or dynamically
split into pre-determined subteams. Once the company reaches a holding point, it halts.
One or two scout helicopters fly forward and first scout the battle position. Based on
communication from the scouts, other company members fly forward to the battle position.
Here, individual pilots repeatedly mask(hide) their helicopters and unmask to shoot missiles
at enemy targets. Once the attack completes, the helicopters regroup and return to their
home-base. While enroute to the home-base (or initially towards the battle-position), if
any company member spots enemy vehicles posing a threat to the company, it alerts others.
The company then evades and bypasses the enemy vehicles, while also protecting itself
using guns. When the company returns safely to home-base, it rearms and refuels, readying
itself for the next mission. An overview of the overall research and development effort in
this domain, simulation infrastructure, milestones, and agent behaviors is presented in (Hill
et al., 1997).

‘@‘@*‘@ HOLDING RIDGE
EDO? h@*—@ :Og #Eﬁ ENL\AY

BATTLE
POSITION VEHICLES

Figure 1: Attack domain: company flying in subteams

In the second domain, Transport (Figure 2), synthetic transport helicopters protected
by escort helicopters fly synthetic troops to land. In a typical mission, two or four escort
helicopters and four to twelve transport helicopters take off from separate ships at sea to
rendezvous at a link-up point. The escorts then provide a protective cover to the transport
helicopters during the entire flight to and from their pre-specified landing zone (where the

86

TowARDS FLEXIBLE TEAMWORK

synthetic troops dismount). This domain may involve teams of up to sixteen synthetic pilot
agents (the largest team we have encountered); although Figure 2 shows twelve.

LANDING ZONE

Figure 2: Transport domain with synthetic escort and transport helicopters.

Our third domain is RoboCup synthetic soccer (Kitano et al., 1995). RoboCup is
an international soccer tournament for robots and synthetic agents, aimed at promoting
research in multi-agent systems. In the synthetic agent track, over 30 teams will participate
in the first RoboCup’97 tournament at LJCAI'97 in Japan. The snapshot in Figure 3 shows
two competing teams: CMUnited (Stone & Veloso, 1996) versus our ISI team.>

The Attack domain is illustrative of the teamwork challenges. In our initial, pre-STEAM
implementation, the helicopter pilot agents were developed in the Soar integrated agent-
architecture (Newell, 1990; Rosenbloom et al., 1991). Each pilot agent was based on a
separate copy of Soar. For each such pilot, an operator hierarchy was defined. Figure
4 shows a portion of this hierarchy (Tambe, Schwamb, & Rosenbloom, 1995). Operators
are very similar to reactive plans commonly used in other agent architectures, such as
the architectures described in Section 1. Each operator consists of (i) precondition rules
for selection; (ii) rules for application (a complex operator subgoals); and (iii) rules for
termination. At any one point, only one path through this hierarchy is active, i.e., it governs
an individual’s behavior. For teamwork among individuals, domain-specific coordination
plans were added, as commonly done in other such efforts in this type of domain (Rajput &
Karr, 1995; Tidhar, Selvestrel, & Heinze, 1995; Laird, Jones, & Nielsen, 1994; Coradeschi,
1997), including our own (Tambe et al., 1995). For instance, after scouting the battle
position, a scout executes a plan to inform those waiting behind that the battle position is
scouted (not shown in Figure 4).

Initially, with two-three pilot agents and few enemy vehicles, limited behaviors and con-
trolled agent interaction, carefully preplanned coordination was adequate to demonstrate
desired behaviors. However, as the numbers of agents and vehicles increased, their behav-
iors were enriched, and domain experts (human pilots) began to specify complex missions,
significant numbers of unanticipated agent interactions surfaced. Faced with the full brunt

2. Since March 1997, a team of graduate students at the Information Sciences Institute (ISI) has joined
in in further research and maintenance of the ISI team. While the author continues to be responsible
for the teamwork in the player agents, others have made significant contributions to individual agent
behaviors.

87

TAMBE

ank| Bt okt

[Tara Rilav_m HE4

Figure 3: The Robocup synthetic soccer domain.

EXECUTE-MISSION

Fly—flight-plan
Engage Prepare-to
return—to-base
Initialize ~ reum
Fly Select Select Mask Unmask 5?;")%3"15 hover o
cntrl point control
route point
Dip
Initialize Mmaintain Select- Popul Employ-missile
High Low Contour hover masked Mask Goto pup
level level NOE position new-mask ...

location

Figure 4: Attack domain: Portion of a pilot agent’s operator hierarchy.

of the uncertainties in this complex, dynamic environment, the carefully hand-coded, pre-
planned coordination led to a variety of teamwork failures in the various demonstrations
and exercises in 1995-96. Figure 5 lists a small sample of the teamwork failures, roughly in
the order they were encountered.

One approach to address these failures is a further addition of domain-specific coordi-
nation plans; and indeed, this was the first approach we attempted. However, there are
several difficulties. First, there is no overarching framework that would enable anticipation
of teamwork failures; the teamwork failures just appear to arise unexpectedly. As a result,

88

TowARDS FLEXIBLE TEAMWORK

1. Upon abnormally terminating engagement with the enemy, the company commander returned
to home base alone, abandoning members of its own company at the battle position.

2. Upon reaching the holding area, the company waited, while a single scout started flying
forward. Unfortunately, the scout unexpectedly crashed into a hillside; now, the rest of the
company just waited indefinitely for the scout’s scouting message.

3. One pilot agent unexpectedly processed its initial orders before others. It then flew towards
the battle position, while its teammates were left behind at the home base.

4. Only a scout made it to the holding area (all other helicopters crashed or got shot down);
but the scout scouted the battle position anyhow, and waited indefinitely for its non-existent
company to move forward.

5. When the initial orders unexpectedly failed to allocate the scouting role to team members,
the company members waited indefinitely when they reached the holding point.

6. Instructions sent by the commander pilot agent to some company members were lost, because
the commander unexpectedly sent them while the members were busy with other tasks. Hence,
these members were unable to select appropriate actions.

7. While evading an enemy vehicle encountered enroute, one helicopter pilot agent unexpectedly
destroyed the vehicle via gunfire. However, this pilot agent did not inform others; and thus
an unnecessary, circuitous bypass route was planned.

8. In an extreme case, when all company members ran out of ammunition, the company failed
to infer that their mission could not continue.

9. Two separate companies of helicopters were accidentally allowed to use the same radio chan-
nels, leading to interference and loss of an initial message from one of the company commanders
— its company hung indefinitely.

Figure 5: Some illustrative examples of breakdown in teamwork.

coordination plans have to be added on a case-by-case basis — a difficult process, since fail-
ures have to be first encountered in actual runs. Furthermore, as the system continues to
scale up to increasingly complex teamwork scenarios, such failures continually recur. Thus,
a large number of special case coordination plans are potentially necessary. Finally, it is
difficult to reuse such plans in other domains.

Given these difficulties, we have pursued an alternative approach — provide agents
with a general model of teamwork. The agents can then themselves reason about their co-
ordination/communication responsibilities as well as anticipate and avoid (or recover from)
teamwork failures. Such an approach also requires an explicit representation of agents’ team
goals and team plans; for that is the very basis for reasoning about teamwork. Unfortu-
nately, the agent’s operator hierarchy shown in Figure 4 represents its own activities. Thus,
although the agent is provided information about its teammates, their participation in par-
ticular activities is not explicit (but rather, implicit in the coordination plans). As a result,
the agent remains ignorant as to which operators truly involve teamwork and the teammates
involved in them. For instance, execute-mission and engage are in reality team activities
involving the entire company; while mask and unmask involve no teamwork. Furthermore,
in some team tasks only subteams are involved, adding to the difficulty of relying on implicit

89

TAMBE

representations since the teammates involved in team tasks vary. Even more problematic
for implicit representation are team tasks where the team members perform non-identical
activities. For instance, consider team tasks such as travelling overwatch (where one sub-
team travels while the other overwatches), or wait while battle position scouted (where scouts
scout the battle position while the non-scouts wait). In such tasks, no single agent performs
the team activity, and yet it is important to represent and reason about the combined ac-
tivity that results. This difficulty in representation is not specific to the Soar architecture,
but the entire family of architectures mentioned in Section 1.

More importantly, concomitant with the explicit team goals and plans are certain com-
mitments and coordination responsibilities towards the team, based on the general model
of teamwork employed. In the absence of both the explicit representation of team goals and
plans, as well as commitments and responsibilities they engender, agents are often forced
to rely on the problematic domain-specific coordination plans, leading to aforementioned
teamwork failures.

3. Models of Teamwork

Several teamwork theories have been proposed in the literature (Cohen & Levesque, 1991b;
Grosz & Kraus, 1996; Jennings, 1995; Kinny et al., 1992). The theories are not intended
to be directly implemented (say via a theorem prover), but to be used as a specification
for agent design. They often prescribe general, rather than domain-specific, reasoning
processes or heuristics for teamwork. Different types of operational teamwork models could
potentially emerge from these theories — the space of such models remains to be fully
explored and understood. In developing STEAM, we have focused on the joint intentions
theory (Cohen & Levesque, 1991b; Levesque et al., 1990; Cohen & Levesque, 1991a), given
its detailed formal specification and prescriptive power. The joint intentions theory is
briefly reviewed in Section 3.1. STEAM ultimately builds on joint intentions in a way that
parallels the SharedPlan theory (Grosz & Sidner, 1990; Grosz, 1996; Grosz & Kraus, 1996).
The SharedPlans theory is very briefly reviewed in Section 3.2. Section 3.3 sketches the
implications of the theories for STEAM. It outlines the rationale for the design decisions
in STEAM — in the process, it briefly compares the capabilities provided by the joint
intentions and SharedPlan theories. STEAM is later presented in detail in Sections 4 and

5.

3.1 Joint Intentions Theory

The joint intentions framework (Cohen & Levesque, 1991b, 1991a; Levesque et al., 1990)
focuses on a team’s joint mental state, called a joint intention. A team © jointly intends a
team action if team members are jointly committed to completing that team action, while
mutually believing that they were doing it. A joint commitment in turn is defined as a joint
persistent goal (JPG). The team ©’s JPG to achieve p, where p stands for completion of a
team action, is denoted JPG(O, p, q). q is an irrelevance clause — as described below, it
enables a team to drop the JPG should they mutually believe q to be false. JPG(O, p, q)
holds iff three conditions are satisfied:

1. All team members mutually believe that p is currently false.

90

TowARDS FLEXIBLE TEAMWORK

2. All team members have p as their mutual goal, i.e, they mutually know that they want p to
be eventually true.

3. All team members mutually believe that until p is mutually known to be achieved, unachiev-
able or irrelevant they mutually believe that they each hold p as a weak goal (WAG).? WAG (4,
P, ©, q), where u is a team member in ©, implies that one of the following holds:

e 4 believes p is currently false and wants it to be eventually true, i.e., p is a normal
achievement goal); or

e Having privately discovered p to be achieved, unachievable or irrelevant (because q is
false), ¢ has committed to having this private belief become ©’s mutual belief.

JPG provides a basic change in plan expressiveness, since it builds on a team task p.
Furthermore, a JPG guarantees that team members cannot decommit until p is mutually
believed to be achieved, unachievable or irrelevant. Basically, JPG(0O, p, q) requires team
members to each hold p as a weak achievement goal (WAG). WAG(y, p, O, q), where p is
a team member in O, requires p to adopt p as its goal if it believes p to be false. However,
should p privately believe that p has terminated — i.e., p is either achieved, unachievable
or irrelevant — JPG(0O,p, q) is dissolved, but p is left with a commitment to have this
belief become ©’s mutual belief. To establish mutual belief, g must typically communicate
with its teammates about the status of the team task p.

The commitment to attain mutual belief in the termination of p is a key aspect of a
JPG. This commitment ensures that team members stay updated about the status of team
activities, and thus do not unnecessarily face risks or waste their time. For instance, consider
the first failure presented in Section 5, where the commander returned to home base alone,
abandoning its teammates to face a risky situation. Such failures can be avoided given the
commitments in a JPG. In our example, the commander would have communicated with
its teammates to establish mutual belief about the termination of the engagement.

To enter into a joint commitment (JPG) in the first place, all team members must
establish appropriate mutual beliefs and commitments. An explicit exchange of request
and confirm speech acts is one way that a team can achieve appropriate mutual beliefs
and commitments (Smith & Cohen, 1996). Since this exchange leads to establishment of
a JPG, we will refer to it in the following as the establish commitments protocol. The key
to this protocol is a persistent weak achievement goal (PWAG). PWAG(vi, p, ©) denotes
commitment of a team member vi to its team task p prior to the team’s establishing a
JPG.* p initiates the protocol while its teammates in ©, v1,.,vi..vn, respond:

1. pexecutes a Request(p, ©, p), cast as an Attempt(y, ¢, ¥). That is, p’s ultimate goal ¢ is
to both achieve p, and have all vi adopt PWAG(vi, p, ©). However, g is minimally committed
to 1, where ¢ denotes achieving mutual belief in © that p has the PWAG to achieve ¢. With
this Request, u adopts the PWAG.

2. Each vi responds via confirm or refuse. Confirm, also an Attempt, informs others that
vi has the PWAG to achieve p.

3. WAG was originally called WG in (Levesque et al., 1990), but later termed WAG in (Smith & Cohen,
1996).

4. The PWAG also includes an irrelevance clause q, but we will not include it here to simplify the following
description.

91

TAMBE

3. If ¥ i, vi confirm, JPG(O, p) is formed.

In establishing a JPG, this protocol synchronizes ©. In particular, with this protocol,
members simultaneously enter into a joint commitment towards a current team activity
p.- While the JPG is the end product of the establish commitment protocol, important
behavioral constraints are enforced during execution via the PWAGs. In step 1, the adop-
tion of a PWAG implies that if after requesting, u privately believes that p is achieved,
unachievable or irrelevant, it must inform its teammates. Furthermore, if y believes that
the minimal commitment % is not achieved, it must retry (e.g., if a message did not get
through it must retransmit the message). Step 2 similarly constrains team members vi to
inform others about p, and to rebroadcast. As step 3 indicates, all team members must
consent, via confirmation, to the establishment of a JPG. A JPG is not established if any
one agent refuses. Negotiations among team members may ensue in such a case; however,
that remains an open issue for future work.

3.2 Shared Plans Theory

In contrast with joint intentions, the concept of SharedPlans (SP) is not based on a joint
mental attitude (Grosz, 1996; Grosz & Kraus, 1996; Grosz & Sidner, 1990). Instead, SP
relies on a novel intentional attitude, intending that, which is similar to an agent’s normal
intention to do an action. However, an individual agent’s intention that is directed towards
its collaborator’s actions or towards a group’s joint action. Intention that is defined via a
set of axioms that guide an individual to take actions, including communicative actions,
that enable or facilitate its teammates, subteam or team to perform assigned tasks (Grosz
& Kraus, 1996).

An SP is either a full SharedPlan (FSP) or a partial Shared Plan(PSP). We will begin
with a definition of an FSP, and then follow with brief remarks about a PSP. An FSP to
do a represents a situation where every aspect of a joint activity « is fully determined.
This includes mutual belief and agreement in the complete recipe R, to do a. R, is
a specification of a set of actions 3;, which when executed under specified constraints,
constitutes performance of a. FSP(P, GR, a, T,, T,, R,) denotes a group GR’s plan P
at time T, to do action o at time T, using recipe R,. Very briefly, FSP(P, GR, o, T,
T4, Ry) holds iff the following conditions are satisfied:?

1. All members of group GR mutually believe that they each intend that the proposition Do(GR,
a, Ty) holds i.e., that GR does o over time T,.

2. All members of GR mutually believe that R, is the recipe for .
3. For each step g; in Ry:

o A subgroup GRj; (GRy C GR) has an FSP for j3;, using recipe Rg;. (GRy may only be
an individual, in which case, it must have a full individual plan, an analogue of FSP for
individuals.)

e Other members of GR believe that there exists a recipe such that GRj can bring about
B; and have an FSP for 3; (but other members may not know Rg;).

5. For the sake of brevity, a context clause C, 1s deleted from this definition. Also, in this article, we will
not address the contracting case discussed in (Grosz & Kraus, 1996).

92

TowARDS FLEXIBLE TEAMWORK

e Other members of GR intend that GRj can bring about 3; using some recipe.

The SharedPlan theory aspires to describe the entire web of a team’s intentions and
beliefs when engaged in teamwork. In this endeavor, an FSP represents a limiting case;
usually, when engaged in a team activity, a team only has a partial SharedPlan (PSP). The
PSP is a snapshot of the team’s mental state in a particular situation in their teamwork,
and further communication and planning is often used to fulfill the conditions of an FSP
(although, in dynamic domains, the team may never actually form an FSP). We focus on
three relevant arenas in which partiality may exist in a PSP. First, the recipe R, may be
only partially specified. Certainly, in dynamic environments, such as the ones of interest
in our work, recipes could be considered to evolve over time, as teams reactively decide
the next step based both on the context and the current situation. For instance, in the
Attack domain, the helicopter company may react to enemy vehicles seen enroute, thus
evolving their recipe. According to SP theory, team member must arrive at mutual belief
in their next step(s) #;. For each step ; in the recipe, the relevant subgroup must form a
SharedPlan.

Second, the team’s task allocation may be wunreconciled, e.g., the agent or group to
perform particular task may not be determined. In this situation, team members intend
that there exist some individual or subgroup to do the task. Among actions considered as
a result of the intending that, individuals may volunteer to perform the unreconciled task,
or persuade/order others to take over the task.

Third, individuals or subgroups may not have attained appropriate mutual beliefs for
forming an FSP, leading to communication within the team. Communication may also
arise due to agents’ “intention that” attitude both towards their team goal and towards
teammates’ activities. For instance, a team member’s intention that its team do an action j;,
and its belief that communication of some particular information will enable the team to do
B, will lead it to communicate that information to the team (as long as such communication
does not conflict with previous commitments).

3.3 The Influence of Teamwork Theories on STEAM

In STEAM, joint intentions are used as building blocks of teamwork. Several advantages
accrue due to this use. First, the commitments in a joint intention begin to provide a
principled framework for reasoning about coordination and communication in teamwork.
Thus, this framework begins to address teamwork failures such as those in Figure 5. Second,
the joint commitments in joint intentions provide guidance for monitoring and maintenance
of a team activity, i.e., agents should monitor conditions that cause the team activity to
be achieved or unachievable or irrelevant, and maintain the team activity at least until one
of these conditions arises. Third, a joint intention leads to an explicit representation of a
team activity, and thus facilitates reasoning about teamwork. In particular, as shown later,
agents can reason about the relationship between their team activity and an individual’s or
subteam’s contributions to it.

However, a single joint intention for a high-level team goal « is insufficient to provide
all of these advantages. To guarantee coherent teamwork, four additional issues must be
addressed. Here, the SharedPlans theory helps in analysis of STEAM’s approach, and in
one case, STEAM directly borrows from SharedPlans. A key observation is that analogous

93

TAMBE

to partial SharedPlans, STEAM builds up snapshots of the team’s mental state, but via
joint intentions.

The first issue involves coherence in teamwork — team members must pursue a common
solution path in service of their joint intention for the high-level team goal a. Indeed, as
Jennings (1995) observes, without such a constraint, team members could pursue alternative
solution paths that cancel each other, so no progress is made towards a. The SharedPlan
theory addresses such coherence by stepping beyond the team members’ “intentions that”
towards a. In addition, SharedPlans mandates mutual belief in a common recipe (even if
partial) and SharedPlans for individual steps 3; in the common recipe, thus generating a
recursive hierarchy to ensure coherence.

STEAM’s approach here parallels that of SharedPlans; however, it builds on joint inten-
tions rather than SharedPlans. That is, STEAM uses joint intentions as a building block
to hierarchically build up the mental attitude of individual team members, and ensure that
team members pursue a common solution path. In particular, as mentioned earlier, in
dynamic domains, given reactive plans, a recipe R, may evolve step by step during execu-
tion. In STEAM, as the recipe evolves, if a step 3; requires execution by the entire team,
STEAM requires that the entire team agree on 3;, and form joint intentions to execute it.
To execute a substep of f;, other joint intentions are formed, leading to a hierarchy. During
the expansion of this hierarchy, if a step involves only a subteam then that subteam must
form a joint intention to perform that step. If only an individual is involved in the step, it
must form an intention to do that step. In general, the resulting intention hierarchy evolves
dynamically, depending on the situations the team encounters.

Second, Grosz and Kraus (1996) discuss the tradeoffs in the amount of information team
members must maintain about teammates’ activities, particularly when a step 3; involves
only a subteam, or an individual. Grosz and Kraus address this tradeoff in SharedPlans
as shown in step 3b in Section 3.2, requiring that team members know only that a recipe
exists to enable a teammate(s) to perform its actions, but not the details of the recipe.
Similarly, STEAM requires that in case a step f3; is performed by a subteam (or just an
individual team member), remaining team members track the subteam’s joint intention (or
the relevant team member’s intention) to perform the step. This intention tracking need
not involve detailed plan recognition, e.g., as in our previous work (Tambe, 1995, 1996).
Instead, a team member must only be able to infer that its teammates intend (or cannot
or do not intend) to execute the step ;. This minimal constraint is necessary because
otherwise, team members may be unable to monitor the current status of the team activity,
e.g., that their team activity has fallen apart. In addition, some information about the
dependency relationship among team members’ actions is useful in monitoring, as discussed
in Section 4.2.

A third issue is the analogue of the “unreconciled” case in SharedPlans. STEAM forms
a joint intention to replan whenever a team’s joint intention for a step 3; is seen to be
unachievable. Replanning may lead the team to first analyze the cause of the initial un-
achievability. Among other possibilities, the cause could be the absence of assignment of
a subtask to a subteam or individual, or the failure of the relevant individual or subteam
in performing the subtask. In such a case, each team member acts to determine the ap-
propriate agent or subteam for performing the relevant task. As a result, an agent can
volunteer itself, or suggest to other individuals or subteams to perform the unassigned task.

94

TowARDS FLEXIBLE TEAMWORK

Of course, the unachievability may be the result of other causes besides lack of assignment;
replanning must then address this other cause (further discussion in Section 4.2).

A final issue is generalization of STEAM’s communication capabilities via a hybrid ap-
proach that combines the prescriptions of the joint intentions approach with some aspects
of SharedPlans. A key observation based on (Grosz & Kraus, 1996) is that the communica-
tion in joint intentions could potentially be arrived at in SharedPlans via axioms defining
intention that. For instance, consider that a team member has obtained private informa-
tion about the achievement of the team’s current team action ;. In joint intentions, this
team member will seek to attain mutual belief in the achievement of 31, leading to com-
munication. In contrast, in SharedPlans, the team member’s communication would arise
because: (i) it intends that the team do some action 35 which follows (1, and (ii) the team
cannot do 9 without all team members being aware of achievement of ;. Thus, further
first principles reasoning, based on interrelationships among actions, is required to derive
relevant communication in SharedPlans; but in this instance, joint intentions provide for
such communication without the reasoning.

In general, if the team’s termination of one action 3 is essential for the team to perform
some following action (3, the prescription in joint intentions — to attain mutual belief in
termination of team actions — is adequate for relevant communication. However, in some
cases, additional communication based on specific information-dependency relationships
among actions is also essential. For instance, the scouts in the Attack domain not only
inform all company members of completion of their scouting activity (so the company can
move forward), but also the precise coordinates of enemy location to enable the company
to occupy good attacking positions (information-dependency). Such communication could
also be potentially derived from the axioms of intention that in SharedPlans, but at the
cost of further reasoning.

STEAM does not rely on the first-principles reasoning from intention that for its commu-
nication, relying on the prescriptions of joint intentions instead. However, STEAM exploits
explicit declaration of information-dependency relationships among actions, for additional
communication. Thus, when communicating the termination of a team action 3;, STEAM
checks for any inferred or declared information-dependency relationships with any following
action ;. The information relevant for 3; is also communicated when attaining mutual
belief in the termination of §;. As a result, based on the specific information-dependency
relationship specified, different types of information are communicated, when terminating
(B;. Thus, the scouts can communicate the location of enemy units when communicating
the completion of their scouting — given the information-dependency relationship with the
planning of attacking positions. If no such relationship is specified, or if other relationships
are specified, the scouts would communicate different information.

STEAM thus starts with joint intentions, but then builds up hierarchical structures
that parallel the SharedPlans theory, particularly, partial SharedPlans. The result could
be considered a hybrid model of teamwork, that borrows from the strengths of both joint
intentions (formalization of commitments in building and maintaining joint intentions) and
SharedPlans (detailed treatment of team’s attitudes in complex tasks, as well as unrecon-
ciled tasks). This is of course not the only possible hybrid. As mentioned earlier, further
exploration in the space of teamwork models is clearly essential.

95

TAMBE

4. STEAM

STEAM’s basis is in executing hierarchical reactive plans, in common with architectures
mentioned in Section 1. The novel aspects of STEAM relate to its teamwork capabilities.
The key novelty in STEAM is team operators (reactive team plans). When agents developed
in STEAM select a team operator for execution, they instantiate a team’s joint intentions.
Team operators explicitly express a team’s joint activities, unlike the regular “individual
operators” which express an agent’s own activities. In the hierarchy in Figure 6, operators
shown in [] such as [Engage] are team operators, while others are individual operators.
Team activities such as travelling overwatch or waiting while battle position scouted are now
easily expressed as team operators, as shown in Figure 6, with activities of individuals or
subteams expressed as children of these operators. (Team operators marked with “*” are

typically executed by subteams in this domain.)

[EXECUTE-MISSION]

[Fly—flight—plan """""" [Engage] Wait-while—
____________ battle—position—-scouted

Fly— control /
route

Mask & Scout wait—for
‘/\ 5213%):15 [Observe * forward scouting
: Travelling pons. o T BT
[Travelling | Overwatch /\
y gﬁ/ A/\ ~]
level level Contour o [Travelllng]* [Trévelllng / Mask E]?;g:?ey
over
Hiﬂé\ popup Initidlize Maintain Select- Goto-new)
level level COMOUT NOE hover positon Mask Mask-location Dip

Figure 6: Attack domain: Portion of modified operator hierarchy with team operators.

As with individual operators, team operators also consist of: (i) precondition rules; (ii)
application rules; and (iii) termination rules. Whether an operator is a team operator or
an individual operator is dynamically determined. In particular, when an agent vi invokes
an operator for execution, the operator is annotated with an “executing agent”, which may
be dynamically determined to be an individual, or subteam, or a team. If the “executing
agent” is a particular team or subteam, the operator is determined to be a team operator.
If the “executing agent” is the agent vi itself, then an individual operator results. Thus,
precise team executing a team operator is not compiled in, but can be flexibly determined
at execution time. Figure 6 thus illustrates the configuration of operators that is typical in
the Attack domain.

Given an arbitrary team operator OP, all team members must simultaneously select OP
to establish a joint intention (joint intention for OP will be denoted as [OP]g). In Figure
6, at the highest level, the team forms a joint intention for [execute-mission]g. In service of
this joint intention, the team may form a joint intention [engage]g. In service of [engage]o,
individual team members all select individual operators to employ-weapons, thus forming
individual intentions. An entire hierarchy of joint and individual intentions is thus formed
when an agent participates in teamwork.

96

TowARDS FLEXIBLE TEAMWORK

A STEAM-based agent maintains its own private state for the application of its indi-
vidual operators; and a “team state” to apply team operators. A team state is the agent’s
(abstract) model of the team’s mutual beliefs about the world, e.g., in the Transport do-
main, the team state includes the coordinates of the landing zone. The team state is usually
initialized with information about the team, such as the team members in the team, possible
subteams, available communication channels for the team, the pre-determined team leader
and so forth. STEAM can also maintain subteam states for subteam participation. There
is of course no shared memory, and thus each team member maintains its own copy of the
team state, and any subteam states for subteams it participates in. To preserve the con-
sistency of a (sub)team state, one key restriction is imposed for modifications to it — only
the team operators representing that (sub)team’s joint intentions can modify it. Thus, the
state corresponding to a subteam € can only be modified in the context of a joint intention
[OP]q.

Thus, at minimum, STEAM requires the following modifications to the architectures
such as Soar, RAP, PRS and others mentioned in Section 1 to support teamwork: (i) gen-
eralization of operators (reactive plans) to represent team operators (reactive team plans);
(ii) representation of team and/or subteam states, and (iii) restrictions on team state mod-
ifications (only via appropriate team operators). While these team operators and team
states are at the foundation of STEAM, as a general model of teamwork, STEAM also
involves agents’ commitments in teamwork, monitoring and replanning capabilities, and
more. Hard-wiring this entire teamwork model within the agent architectures could po-
tentially lead to unnecessary rigidity in agent behaviors. Instead, the STEAM model is
maintained as a domain-independent, operational module (e.g., in the form of rules) to
guide agents’ behaviors in teamwork. In the future, appropriate generalizations of these
capabilities could begin to be integrated in agent architectures.

The following subsections now discuss key aspects of STEAM in detail. Section 4.1
discusses team operator execution in STEAM. Section 4.2 describes STEAM’s capabilities
for monitoring and replanning. Detailed pseudo-code for executing STEAM appears in
Appendix A.

4.1 Team Operator Execution

To execute a team operator, agents must first establish it as a joint intention. Thus, when
a member selects a team operator for execution, it first executes the establish commitments
protocol described below (introduced in Section 3.1):

1. Team leader broadcasts a message to the team © to establish PWAG to operator OP. Leader
now establishes PWAG. If [OP]e not established within time limit, repeat broadcast.

2. Subordinates vi in the team wait until they receive leader’s message. Then, turn by turn,

broadcast to © establishment of PWAG for OP; and establish PWAG.
3. Wait until V vi, vi establish PWAG for OP; establish [OP]g.

With this establish commitment protocol, agents avoid problems of the type where just
one member flies off to the battle position (item 3, Figure 5). In particular, a team member

cannot begin executing the mission without first establishing a joint intention [execute-
mission|g. During execution of the establish commitment protocol, PWAGs address several

97

TAMBE

contingencies — if an OP is believed achieved, unachievable or irrelevant prior to [OP]e,
agents inform teammates. Other contingencies are also addressed, e.g., even if a subordinate
initially disagrees with the leader, it will conform to the leader’s broadcasted choice of
operators. In general, resolving disagreements among team members via negotiation is a
significant research problem in its own right (Chu-Carroll & Carberry, 1996), which is not
addressed in STEAM. Instead, currently STEAM relies on a team leader to initiate the
request, and thus resolve disagreements.

After establishing a joint intention [OP]e, a team operator can only be terminated by
updating the team state (mutual beliefs). This restriction on team operator termination
avoids critical communication failures of the type where the commander returned to home-
base alone — instead, agents must now inform teammates when terminating team operators.
Furthermore, with each team operator, multiple termination conditions may be specified,
i.e., conditions that make the operator achieved, unachievable or irrelevant. Now, if an
agent’s private state contains a belief that matches with a team operator’s termination
condition, and such a belief is absent in its team state, then it creates a communicative
goal, i.e., a communication operator. This operator broadcasts the belief to the team,
updating the team state, and then terminating the team operator.

As mentioned earlier, during teamwork, an agent may be a participant in several joint
intentions, some involving the entire team, some only a subteam. Thus, an agent may be
participating in a joint intention involving the entire company, such as [execute-mission]g,
as well as one involving just a subteam, such as [mask-and-observe]g. When the termina-
tion condition of a specific team operator is satisfied, a STEAM-based agent will aim to
attain mutual belief in only the relevant subteam or team, e.g., facts relevant to [mask-and-
observe]g may only be communicated among .

During the broadcast of the communication message, STEAM checks for information-
dependency relationships with any following tasks; if one exists, relevant information is
extracted from the current world state and broadcast as well. The information-dependency
relationship may be specified individually per specific termination condition. For instance,
suppose a company member v4 sees some enemy tanks on the route while flying to home
base. It recognizes that this fact causes the team’s current joint intention [fly-flight-plan]e
to be unachievable. If this fact is absent in the team state, then a communication operator
is executed, resulting in a message broadcast indicating termination of the fly-flight-plan
team operator. In addition, STEAM uses the explicitly specified information-dependency
relationship with a following operator evade to extract the x,y location and direction of the
tank. As a result, the following communication is generated:

v/ terminate-JPG fly-flight-plan evade tank elaborations 61000 41000 right.

This message identifies the speaker (v4), and informs team members to terminate [fly-
flight-plan]g in order to evade a tank. Thus, v4 informs others; it does not evade tanks
on its own. The part of v4’s message that follows the key word elaborations is due to the
information-dependency relationship. This information — the x,y location and direction of
the tank — enables team members to evade appropriately. Separating out the information-

98

TowARDS FLEXIBLE TEAMWORK

dependency component in this fashion provides additional communication flexibility, as
explained earlier in Section 3.3.°

4.2 Monitoring and Replanning

One major source of teamwork failures, as outlined in Section 2, is agents’ inability to
monitor team performance. STEAM facilitates such monitoring by exploiting its explicit
representation of team operators. In particular, STEAM allows an explicit specification of
monitoring conditions to determine achievement, unachievability or irrelevancy of team op-
erators. In addition, STEAM facilitates explicit specification of the relationship between a
team operator and individuals’ or subteam’s contributions to it. STEAM uses these specifi-
cations to infer the achievement or unachievability of a team operator. These specifications
are based on the notion of a role. A role is an abstract specification of the set of activities
an individual or a subteam undertakes in service of the team’s overall activity. Thus, a role
constrains a team member vi (or a subteam) to some suboperator(s) op,; of the team
operator [OP]g. For instance, suppose a subteam 2 is assigned the role of a scout in the
Attack domain. This role constrains the subteam 2 to execute the suboperator(s) to scout
the battle position in service of the overall team operator wait-while-battle-position-scouted
(see Figure 6).

Based on the notion of roles, three primitive role-relationships (i) AND-combination
(ii) OR-combination and (iii) Role-dependency can currently be specified in STEAM. These
primitive role-relationships — called role-monitoring constraints — imply the following
relationships between a team operator [OP] and its suboperators:

1. AND-combination: [OPle <= AP, opy;
2. OR-combination: [OPle <= \/?_; opbui

3. Role dependency: op,; = op,; (opy; dependent on op, ;)

These primitive role-monitoring constraints may be combined, to specify more com-
plex relationships. For instance, for three agents vi, vj and vk, with roles op,;, op,; and
Opyk, a combination AND-OR role relationship can be specified as ((op,; V opy;) A opuk).
STEAM-based agents can now infer that the role non-performance of vk (-op,;) makes
OPg unachievable; but the role non-performance of just one of vi or vj is not critical to
OPg. Similarly, for two agents vi and vj, both an OR-combination plus role-dependency
may be specified as ((op.,; V op,;) A (opyi = op,j)). Role monitoring constraints may
be specified in terms of individuals’ roles, or subteam’s roles.

The mechanisms for tracking teammates’ role performance or inferring their role non-
performance is partly domain dependent. As mentioned in Section 3.3, in some domains,
an agent need not know its teammate’s detailed plan or track that in detail, but may rely
on high-level observations. For instance, in the Attack domain, if a helicopter is destroyed,
team members infer role non-performance for the affected team member. In other cases,
such as the RoboCup Soccer domain, no such high-level indication is available. Instead,

6. In the future, to enable STEAM-based agents to communicate with non-STEAM-based agents, a generic
communication language may be necessary. While generating natural language is currently outside the
scope of STEAM, STEAM does not preclude such a possibility. Alternatively, an artificial communication
language, such as (Sidner, 1994) may be used.

99

TAMBE

agents need to obtain role performance information via agent tracking (plan recognition)
(Tambe, 1995, 1996), e.g., is a player agent in the RoboCup simulation dashing ahead to
receive a pass? Communication may be another source of information regarding role non-
performance. First, as discussed below, STEAM leads individuals to announce role-changes
to the team, and thus other team members indirectly infer role-performance information.
Second, as discussed in Section 5.1, STEAM may lead individuals to directly communicate
their role non-performance. Additionally, a few domain-independent mechanisms for infer-
ring role performance are provided in STEAM. Thus, role non-performance is inferred if no
individual or subteam is specified for performance of a role (as in item 5, Figure 5). Also,
if all individuals within a subteam are found incapable of performing their roles, STEAM
infers the entire subteam cannot perform its role.

If, based on the role-monitoring constraints and the role performance information about
teammates, STEAM infers team operator [OP]g to be unachievable, it invokes [repair]e for
replanning. By casting repair as a team operator, agents automatically ensure the entire
team’s commitment for their replanning (the entire team is affected if [OP]e is unachiev-
able). Furthermore, agents inform teammates not only about possible repair results, but
also repair unachievability or irrelevancy. The actions taken in service of [repair]g depend
on the context. If [repair]e was invoked due to [OP]g’s domain-specific unachievability
conditions, domain-specific repair is triggered. In contrast, if [repair]g was invoked due to
role-monitoring constraint failures, STEAM leads each agent to first analyze the failure.
The analysis may reveal a critical role failure — a single role failure causing the unachiev-
ability of [OP]e — which may occur in an AND-combination if any agent or subteam fails
in its role; or an OR-combination when all team members are role-dependent on a sin-
gle individual or a single subteam. For instance, when agents are flying in formation via
[travelling]le (OR-combination), everyone is role-dependent on the lead helicopter. Thus,
should the lead crash, a critical role failure occurs.

The action taken in cases of a critical role failure is team reconfiguration, to determine
a team member, or subteam, to substitute for the critical role. As mentioned earlier, this
situation corresponds to the “unreconciled case” in SharedPlans, discussed in Section 3.2.
The steps taken in STEAM in this case are as follows:

1. Determine candidates for substitution: Each team member first matches it own capabilities
or those of other agents or subteams with the requirements of the critical role. Matching
currently relies on domain-specific knowledge. Of course, agents or subteams that are the
cause of the critical role failure cannot be candidates for substitution.

2. Check for critical conflicting commitments: Once an agent determines possible candidate(s),
including itself, it checks for conflicts with candidate’s existing commitments to the team. If
these commitments are already critical, the candidate is eliminated from consideration. For
instance, if the candidate is a participant in a team operator which 1s an AND-combination,
its responsibilities to the team are already critical — even if it possesses relevant capabilities,
it cannot take over the role in question. Similarly, the candidate is ruled out if all other team
members are role-dependent on it.

3. Announce role-substitution to the team: Candidate(s) not ruled out in step 2 can substitute
for the role. This could mean an individual volunteering itself, or a team leader volunteering
its subteam for the critical role. Since [repair]e is a team operator, and since role-substitution
implies its achievement, any role-substitution is announced to ©.

100

TowARDS FLEXIBLE TEAMWORK

4. Delete non-critical conflicting commitments: After assuming the new role in the team activity,
the relevant individual or subteam members delete their old roles and old commitments.

In the Attack domain, team members can follow the above procedure when recovering
from critical role failures such as item 5 in Figure 5. There, since a scouting subteam is
not specified, and the relevant operator wait-while-battle-position-scouted involves an AND-
combination of the scouting role with the non-scouts, a critical role failure occurs. A
subteam in the rest of the company is located to possess the capabilities of scouting. The
leader of this subteam determines that it can volunteer its subteam for scouting, and an-
nounces this change in role to the rest of the team. Members of this subteam then delete
conflicting commitments. [wait-while-battle-position-scouted]g is now executed with this
new role assignment. (Since such new role assignments are confined to the local context of
individual team operators, and since step 2 explicitly checks for critical conflicts, they do
not lead to any global side-effects.)

The entire repair procedure above can invoked in the context of a subteam €2, rather than
the team ©. In this case, [repair]g will be invoked as a team operator. STEAM follows
an identical repair procedure, in this case enabling individuals or sub-subteams to take
over particular critical roles. Furthermore, any repair communication here is automatically
restricted within 2.

In case the failure is a pure role dependency failure, only a single dependent agent vi
is disabled from role performance (because op,; = op,;). Here, vi must locate another
agent vk such that op,; = op,;. Role dependency failure could involve a subteam £;
instead of an individual; and the subteams engage in an identical repair.

If failure type is all roles failure, no agent performs its role; this state is irreparable.
In this situation, or in case no substitution is available for a critical role, [repair]g is itself
unachievable. Since the repair of [OP]g is itself unachievable, a complete failure is assumed,
and [complete-failure]g is now invoked. For instance, in the Attack domain, complete
failure implies returning to home base. By casting complete-failure as a team operator,
STEAM ensures that team members will not execute such drastic actions without consulting
teammates. If only a subteam {2 or an individual vi encounters complete-failure, they infer
inability to perform their roles in the team ©O’s on-going activity.

5. STEAM: Selective Communication

STEAM agents communicate to establish and terminate team operators. Given the large
number of team operators in a dynamic environment, this communication is a very sig-
nificant overhead (as Section 6 shows empirically), or risk (e.g., in hostile environments).
Therefore, STEAM integrates decision-theoretic communication selectivity. Here, STEAM
takes into consideration communication costs and benefits, as well as the likelihood that some
relevant information may be already mutually believed. While this pragmatic approach is
a response to the constraints of real-world domains, it is not necessarily a violation of the
prescriptions of the joint intentions framework. In particular, the joint intentions frame-
work does not mandate communication, but rather a commitment to attain mutual belief.
Via its decision-theoretic communication selectivity, STEAM attempts to follow the most
cost-effective method of attaining mutual belief relevant in joint intentions.

101

TAMBE

Figure 7 presents the decision tree for the decision to communicate a fact F, indicating
the termination of [OP]g. Rewards and costs are measured to the team, not an individual.
The two possible actions are NC (not communicate, cost 0) or C (communicate, cost Cc).
If the action is NC, two outcomes are possible. With probability (1-7), F was commonly
known anyway, and the team is rewarded B for terminating [OP]g. With probability 7,
however, I was not known, and thus there is miscoordination in terminating [OP]g (e.g.,
some agents come to know of F only later). Given a penalty C,,; for miscoordination, the
reward reduces to B-C,;. If the action is C, assuming reliable communication, I is known.

Rewards
NC (1-T) —(Fknown) B

Ccy = (F unknown) B — Cmt
[] Decision node L}

C\Ql< (Fknown) B
Cost: Cc 0 (F unknown) B — Cmt

Figure 7: Decision tree for communication.

QO chance node

EU(C), the expected utility of option C, is B-Cc . EU(NC) of option NC is B-7*C,,,;.
To maximize expected utility, an agent communicates iff EU(C) > EU(NC), i.e., iff:

T*Cmt>CC

Thus, for instance, in the Attack domain, when flying with high visibility, pilot agents do
not inform others of achievement of waypoints on their route, since 7 is low (high likelihood
of common knowledge), and C,,; is low (low penalty). However, they inform others about
enemy tanks on the route, since although 7 is low, C,,; is high. The communication cost
Cc could vary depending on the situation as well, and team members may flexibly reduce
(increase) communication if the cost increases (decreases) during their team activity. Inter-
estingly, if only a single agent is left in a team, 7 drops to zero, and thus, no communication
is necessary.

Expected utility maximization is also used for selectivity in the establish commitments
protocol. If v is the probability of lack of joint commitments, and C,,. the penalty for
executing [OP]e without joint commitments from the team, then an agent communicates

iff EU(C) > EU(NC), i.e., iff:
Y4 Che > Ce

5.1 Further Communication Generalization

Further generalization in communication is required to handle uncertainty in the termina-
tion criteria for joint intentions. For instance, a team member v4 may be uncertain that an
enemy tank seen enroute causes [fly-flight-plan]e to be unachievable — the tank’s threat
may not be clearcut. Yet not communicating could be highly risky. The decision tree for
communication is therefore extended to include é, the uncertainty of an event’s threat to
the joint intention (Figure 8). Since agents may now erroneously inform teammates to
terminate team operators, a nuisance cost -Ch is introduced.

102

TowARDS FLEXIBLE TEAMWORK

Rewards
o(/ (Terminates) B
yO\M) (Not Terminate) O
NC J/ (Terminates) B-Cmt
Cost: 0 L = (Not Terminate)

- d ()
Terminates B
C /
Cchw (Not Terminate) —Cn

0 [Irrelevant]

Figure 8: Extended decision tree with 4.

Again, an agent communicates iff EU(C) > EU(NC), i.e., iff §*7*C,,; > (Cc + (1-6)Cn).
If § is 1, i.e., a team operator has terminated, this equation reduces to — 7*C,,; > Cc —
seen previously. If § << 1, i.e., high uncertainty about termination, no communication
results if Cn is high. Therefore, the decision tree is further extended to include a new
message type — threat to joint intention — where Cn is zero, but benefits accrued are
lower (B - C.). This threat message maximizes expected utility when § << 1, i.e., if Cn is
high for communicating termination, a team member communicates a threat. For instance,
a threat message is used if an agent fails in its own role, which is a threat to the joint
intention. However, as before, termination messages are used when § = 1, where they
maximize expected utility.

5.2 Estimating Parameters (v, 7, §)

As afirst step, STEAM only uses qualitative (low, high, medium) parameter values. STEAM
estimates likelihood of lack of joint commitments 7, via team tracking (Tambe, 1996) —
dynamically inferring a team’s mental state from observations of team members’ actions.
Fortunately, rather than tracking each teammate separately, an agent vi can rely on its own
team operator execution for team tracking. In particular, suppose vi has selected a team
operator QP for execution, and it needs to estimate v for operator OP, and its team ©.
Now, if vi selected OP at random from a choice of equally preferable candidates, then its
teammates may differ in this selection. Thus, there is clearly a low likelihood of a joint
commitment — vi estimates 4 to be high. However, if OP is the only choice available, then
v depends on the preceding [OP2]q that vi executed with the team . (€2 may be just a
singleton, i.e., OP2 may be an individual operator that vi executed alone). There are three
cases to consider. First, if ® C Q (O is subteam of) or @ = €, all members of ©® were
jointly executing [OP2]q. Furthermore, [OP2]q could only be terminated via mutual belief
among ©. Thus, O is likely to be jointly committed to executing the only next choice OP —
~ is estimated low. Second, if @ C ©, some members in ® were not jointly participating in
team operator execution earlier; hence 7 is estimated high. Third, if no operator precedes
OP, e.g., OP is first in a subgoal, then 7 is estimated low.

While agents usually infer matching estimates of v, sometimes, estimates do mismatch.
Therefore, STEAM integrates some error recovery routines. For instance, if an agent vi

103

TAMBE

estimates v to be low, when others estimate it high, vi starts executing the team operator,
and only later receives messages for establishing joint commitments. vi recovers by stopping
current activities and re-establishing commitments. In contrast, if vi mis-estimates v to be
high, it unnecessarily waits for messages for establishing commitments. STEAM infers such
a mis-estimation via reception of unexpected messages; it then conducts a lookahead search
to catch up with teammates.

To estimate 7 (the probability that a fact is not common knowledge), STEAM assumes
identical sensory capabilities for team members, e.g., if some fact is visible to an agent,
then it is also visible to all colocated teammates. However, at present, domain knowledge
is also required to model information media such as radio channels, in estimating 7. ¢,
the probability of an event’s threat to a joint intention, is estimated 1 if a fact matches
specified termination conditions. Otherwise role monitoring constraints are used, e.g., in
an OR-combination, § is inversely proportional to the number of team members. The cost
parameters, C,,¢, Cpe, and Cc are assumed to be domain knowledge.

6. Evaluation

STEAM is currently implemented within Soar via conventions for encoding operators and
states, plus a set of 283 rules. Essentially these rules help encode the algorithm in Ap-
pendix A; some sample rules are presented in Appendix B. STEAM has been applied in the
three domains mentioned earlier: Attack, Transport and RoboCup. Table 1 provides some
information about the three domains. Column 1 lists the three domains. Column 2 lists
the maximum number of agents per team in each domain. Column 3 shows the possible
variations in the sizes of the team. Thus, in the Attack and Transport domains, the team
sizes may vary substantially; but not so in RoboCup. Column 4 shows the number of levels
in the team organization hierarchy (e.g., the team-subteam-individual hierarchy is a three
level hierarchy). Column 5 shows the maximum number of subteams active at any one time.

Domain | Max team | Team size Levels in Maximum num
name size varation | team hierarchy subteams
Attack 8 2-8 3 2
Transport 16 3-16 4 5
RoboCup 11 11 3 4

Table 1: The organizational hierarchy in the three domains.

STEAM’s application in these three domains provides some evidence of its generality.
In particular, not only do these domains differ in the team tasks performed, but as Table
1 illustrates, the domains differ substantially in the team sizes and structure. The rest of
this section now uses the three domains in detailed evaluation of STEAM using the criteria
of overall performance, reusability, teamwork flexibility, communication efficiency, as well
as effort in encoding and modifying teamwork capabilities.

104

TowARDS FLEXIBLE TEAMWORK

6.1 Overall Performance

One key evaluation criterion is the overall agent-team performance in our three domains.
Ultimately, STEAM-based agent teams must successfully accomplish their tasks, within
their given environments, both efficiently and accurately. This is a difficult challenge in
all three domains. Certainly, the Attack and Transport domains involve complex synthetic
military exercises with hundreds of other agents. Furthermore, in these domains, the domain
experts (expert human pilots) define the pilot teams’ missions (tasks), rather than the
developers. STEAM-based pilot teams have so far successfully met the challenges in these
domains — they have successfully participated in not one, but about 10 such synthetic
exercises, where the domain experts have issued favorable written and verbal performance
evaluations.

In the RoboCup domain, our player team must compete effectively against teams devel-
oped by other researchers worldwide. At the time of writing this article, our player team
easily wins against the winner of the pre-RoboCup’96 competition. However, all teams con-
tinue to evolve, and researchers continue to field new sophisticated teams. One key test for
all the teams in the near future is the RoboCup’97 tournament at the International Joint
Conference on Artificial Intelligence (IJCAI), Nagoya, Japan, in August 1997.

6.2 Reuse of Teamwork Capabilities

STEAM’s inter-domain and intra-domain reusability is approximately measured in Table
2. Column 1 once again lists the three different domains of STEAM’s application. Column
2 lists the total number of rules per agent per domain — which include the rules that
encode the domain knowledge acquired from domain experts as well as STEAM rules —
illustrating complexity of the agents’ knowledge base. The number of STEAM rules used
in these domains is listed in Column 3. Column 4 measures percent reuse of STEAM rules
across domains. (No reuse is shown in STEAM’s first domain, Attack). There is 100%
reuse in Transport, i.e., no new coordination/communication rules were written — a major
saving in encoding this domain. RoboCup, in its initial stages, has lower reuse. Here, due
to weakness in spatial reasoning and tracking, agents fail to recognize other team’s play, or
even own teammates’ failures (e.g., in executing a pass), hampering the reuse of rules for
role-monitoring constraints, repair and threat detection. With improved spatial reasoning
and tracking, reuse may improve in the future. Column 5 lists the total number of team
operators specified per domain, illustrating significant intra-domain reuse — essentially, for
each team operator, STEAM’s entire teamwork capabilities are brought to bear.

Domain | Total rules | STEAM rules | STEAM reuse | Team operators

Attack 1575 283 first-use 17
Transport 1333 283 100% 14
RoboCup 454 110 38% 11

Table 2: STEAM reusability data.

105

TAMBE

6.3 Flexibility in Teamwork

Teamwork flexibility is closely related with the measures of overall performance and reusabil-
ity. Since STEAM’s entire teamwork capabilities are brought to bear in executing team
operators in all of the domains, there are significant improvements in teamwork flexibility.
For instance, in benchmark runs of Attack, almost all of the teamwork failures from our
earlier implementation are avoided. Certainly, all of the failures in Figure 5 are addressed:

e [tems 1 and 7 are addressed because agents must now attain mutual belief in the
achievement, unachievability or irrelevancy of team operators. Thus, in item 1, the
commander now attains mutual belief that the helicopter company has completed its
engagement with the enemy; while in item 7, the irrelevancy of planning a bypass
route is communicated to the company.

o [tems 3 and 6 are addressed because agents now act jointly by first ensuring the
establishment of joint commitments before executing their roles. For instance, a team
member does not begin executing the mission as soon as it processes its orders (item
3); rather, it acts jointly with the team, after the team establishes joint commitments
to execute the mission.

o [tems 2, 4 and 5 are addressed because the team operator wait-while-battle-position-
scouted is specified to be an AND-combination of the role of the scouts and the
non-scouts. Thus, unachievability of team operators is detected, since either the
scouts or the non-scouts cannot perform their role, or the scouting-role assignment is
unspecified. In items 2 and 4 no repairs are possible, but at the least the company
infers a “complete-failure” and returns to home base, instead of waiting indefinitely.
In item 5, the unassigned role again leads to unachievability, but repair is possible
because one of the remaining subteams can take over the role of the scout.

o [tem 8 is addressed since the relevant operator engage is now explicitly defined as a
team operator with an OR-combination of members’ roles. Thus, based on commu-
nication from team members, team members’ can infer its unachievability.

o [tem 9 is addressed because in the establish-commitments protocol, the leader will
repeat its message if a response is not heard within time limit. However, in general,
attaining mutual belief given the possibility of uncertain communication channels is
a notoriously difficult challenge (Halpern & Moses, 1990); and this remains an issue
for future work.

As a further illustration of teamwork flexibility in STEAM, we created six variations in
the environmental conditions facing the Attack company of helicopter pilots. Each condition
required the pilot team to flexibly modify its communication to maintain coherence in
teamwork. The six variations are:

1. Condition 1: This is the baseline “normal” condition.

2. Condition 2: Although similar to condition 1, we assume in addition that certain radio
frequencies/channels which were previously separated, are now common. In partic-
ular, messages previously assumed to be privately delivered to only the commander
agent from its superiors, are now also made available to the other team members.

106

TowARDS FLEXIBLE TEAMWORK

3. Condition 3: Although similar to condition 2, the communication cost is raised from
“low” to “medium?”.

4. Condition j/: Although similar to condition 3, we assume in addition that the he-
licopter team has only a medium priority for ensuring simultaneous attack on the
enemy.

5. Condition 5: Here, we once again start with the baseline of condition 1, but assume
poor visibility in addition. Thus, agents may not accurately estimate their distances.

6. Condition 6: In addition to condition 5, here, the company has some flexibility in
reaching the battle position. The company is provided with the option of halting at
certain key locations, rather than continuing to fly.

The decision-theoretic framework in STEAM enables agents to flexibly respond to the
above conditions. Figure 9 plots the number of messages exchanged among team members
for each of the six conditions. The total number of messages in three teams — balanced,
cautious and reckless — are compared. Balanced agents fully exploit the decision theory
framework, and thus illustrate STEAM’s flexibility. Cautious agents always communicate,
ignoring the decision theory framework. Reckless agents communicate very little (only if
high C,.t, Cpne). Of course, truly reckless agents would likely not communicate at all, so
this definition is relaxed here. All three teams work with identical cost models, Cc, C,s,
and C,,.. The number of agents were fixed in this experiment to four, so all three teams
— cautious, balanced and reckless — could be run (as discussed in the next section, it is
difficult to run the cautious team with further increase in team size).

Focusing first on the balanced team, it was able to perform its mission under all six
conditions, by flexibly decreasing or increasing the number of messages in response. The
first set of conditions (conditions 2 through 4) illustrate that the balanced team can reduce
its communication in response to the situation faced, e.g., increase in communication cost.
However, under conditions 5 and 6, the balanced team can also increase its communication
to address the uncertainties. For instance, with condition 5, knowledge of poor visibility
automatically leads team members to explicitly communicate achievement of waypoints
on their route. In addition, with condition 6, the team has to communicate to establish
commitments when deciding to halt or to fly forward.

The cautious team was also able to perform the mission under all six conditions, but it
relies on many more messages and remains insensitive to conditions 2-4 that should result
in fewer messages. Indeed, its exchange of 10-20 fold more messages than the balanced
team to perform an identical task is not only a waste of precious communication resources,
but can create risks for the team in hostile environments. (The next subsection will discuss
the issue of communication efficiency in more detail.) The reckless team does communicate
fewer messages, but it fails to perform its basic mission. Even in the first normal case,
this helicopter company gets stuck on the way to the battle position, since a message with
medium C,,; but high 7is not communicated. Interestingly, the number of messages increase
in the reckless team under conditions 2-4. This is because condition 2 allows the reckless
team to avoid getting stuck before reaching the battle position. (In fact, this condition was
designed to get the reckless team unstuck.) Since the reckless team can now perform more of

107

TAMBE

350 , , | —
H------- H------- EF------1 E------ E]_—"
0 300 |
S
g 250]
e 200 "balanced-u" —o— i
5 "cautious-u" -8--
= 150 "reckless-u" -+--- .
2 100 F
>
< 50 i
0 ————————————————

|
1 2 3 4 5 6
Types of uncertainties

Figure 9: Change in communication with additional uncertainties.

the mission — reaching its battle position — more messages are exchanged. Unfortunately,
some key messages are still not exchanged, leaving team members stranded in the battle
position.

6.4 Communication Efficiency

Communication efficiency is critical in teamwork, particularly with scale-up in team size, else
communication overheads can cause significant degradation in team performance. Figure
10 and 11 attempt to measure the communication overhead of teamwork, and the usefulness
of STEAM’s decision-theoretic communication selectivity in lowering the overhead, partic-
ularly for a scale-up in team size. Both the figures compare the total number of messages
in the three teams introduced above — balanced, cautious and reckless — with increasing
numbers of agents per team. In the interest of a fair comparison, the total computational
resources available to each team were kept constant (a single SUN Ultral). While this
limits the maximum team size that could be run, the results shown below are sufficiently
illustrative in terms of scale-up.

Figure 10 focuses on the Attack domain. Decision-theoretic selectivity enables the bal-
anced team to perform well with few messages — this team is regularly fielded in synthetic
exercises. The cautious team exchanges 10 to 20-fold or more messages than the balanced
team — a substantial communication overhead. Indeed, beyond six agents, the simulation
with cautious team could not be run in real time.” Reckless agents in this case do not
exchange any messages at all.

Figure 11 focuses on the Transport domain; once again comparing the performance of
cautious, balanced and reckless teams for increasing numbers of agents in the team. Once
again, decision-theoretic selectivity enables the balanced team to perform well with few
messages — this team is regularly fielded in synthetic exercises. The cautious team once
again incurs a significant overhead of 10 to 20-fold or more messages than the balanced

7. The earlier experiments in Section 6.3 were run with four agents per team, so that the cautious team
could be run in real-time.

108

TowARDS FLEXIBLE TEAMWORK

500 T T T il T

450 | .
400 | —
350 s
300 | "palanced" <— A
250 + & “cautious” -8--]

200 reckless” —+-- |

150 .
100 .
50
0 ! ! | | |
2 3 4 5 6 7
Number of agents in team

Number of messages

8

Figure 10: Attack domain: selective communication. Reckless team exchanges no messages
and hence that plot overlaps with the x-axis.

team. Here, beyond seven agents, the simulation with the cautious team could not be
run in real time. Interestingly, in the test scenario for this experiment, the reckless team
is able to perform the mission appropriately even though this team exchanges just 1-2
messages, far fewer than the balanced team. To a certain extent, this result illustrates the
potential for improving the decision-theoretic selectivity in the balanced team. However,
when the test scenario for this experiment was changed, so that the transports arrived late
at the rendezvous point, the balanced team was able to continue to perform the mission
appropriately. However, the reckless team now performed inappropriately, highlighting the
risk in the reckless approach.

300 T T T T

@ 250 - P
> /,E]
@ 200 | .
GE) e
s 10F & .
3 100 £ "palanced-m" ——
g "cautious-m" -8--
zZ 50 | "reckless-m" -+--

W

0 ¥ [1 |

3 4 5 6 7 8
Number of agents in team

Figure 11: Transport domain: selective communication.

Figure 12 illustrates the differing communication patterns in the cautious and balanced
teams for the Attack domain, to attempt to understand the difference in their total com-

109

TAMBE

munication. Figure 12-a plots the varying degree of collaboration (y-axis) during different
phases (x-axis) in the Attack domain. Degree of collaboration is measured as the percentage
of team operators in a pilot’s operator hierarchy (which consists of team and individual op-
erators). A low percentage implies low degree of collaboration and vice versa. The solid line
plots the overall degree of collaboration in the team, taking into account all team operators.
The dashed line indicates the degree of collaboration without counting team operators exe-
cuted by this pilot agent’s subteam — the differing pattern in the two lines is an indication
of the differing degree of subteam activity. In particular, the two lines sometimes overlap
but separate out at other times, indicating the flexibility available to the subteam. The
overall degree of collaboration is lowest in phases 18-20 (20-40%), where agents engage the
enemy. Iigure 12-b plots the percentage of total communication per phase, for cautious
and balanced teams. For instance, the cautious team exchanges 1% of its total messages in
phase 20. Communication percentage is correlated to the degree of collaboration per phase
for the cautious team (coefficient 0.80), but not for the balanced team (coefficient -0.34).
Essentially, unlike the cautious team, the balanced team does not communicate while their
collaboration proceeds smoothly.

90 25 T T T ;‘ T T T
: 80 [et] 3 ;
S 70 i 220 | 1 “"cautious" —o—
® ook a i "balanced" -+
g on | €15 !
s : o n B
5 I R | B
‘ 4 o b i o
S o 210 A 7
3 30 R e 1 " P i
g 20 . S 5 R A .
o "team” B— o) o
10 "team-without-subteam” -x--- b o LR M
0 L L L L L L IR SIEITA (RREATE s (AL
0 5 10 15 20 25 30 35 0O 5 10 15 20 25 30 35
Phase Number Phase Number
(a) Degree of collaboration (b) Percentage communication

Figure 12: Attack domain: pattern of communication

6.5 Encoding and Modification Effort

The final evaluation criteria focus on the effort involved in encoding and modifying agents’
teamwork capabilities — comparing the effort in STEAM with alternatives. The key alter-
native is reproducing all of STEAM’s capabilities via special-case coordination plans, as in
our initial implementation in the Attack domain. We estimate that such an effort would
require significant additional encoding effort. For example, just to reproduce STEAM’s
selective communication capabilities, our initial implementation could potentially have re-
quired hundreds of special case operators. Consider our initial implementation in the Attack
domain. Here, the 17 team operators in STEAM (which would only be individual operators
in the initial implementation), would each require separate communication operators — two
operators each to signal commitments (request and confirm) and one to signal termination
of commitments. That is already a total of 51 (17x3). Furthermore, to reproduce selectivity,
additional special cases would be necessitated — in the extreme case, each combination of
values of (7, Cy¢, and Cc) or (7, Cpre, and Cc), could require a separate special case operator

110

TowARDS FLEXIBLE TEAMWORK

(51 x total combinations, already more than a hundred). Furthermore, separate operators
may be required depending on whether the communication occurs with the entire team or
only a subteam. Of course, it would appear that all such special cases could be economized
in our initial implementation by discovering generalizations — but then STEAM encodes
precisely such generalizations to avoid the many special cases.

An additional point of evaluation is easy of modifiability of agent team behaviors. In
our experience, domain knowledge acquired from experts is not static — rather it undergoes
a slow evolution. In the Attack domain, for instance, real-world military doctrine continues
to evolve, requiring modifications in our synthetic pilot team behaviors. In such situations,
STEAM appears to facilitate such modifications suggested by domain experts; at least, it
is often not necessary to add new coordination plans. For instance, in the Attack domain,
domain experts earlier suggested a modification, that the helicopter company should evade
enemy vehicles seen enroute, rather than flying over. Here, adding a new unachievabil-
ity condition for the team operator [fly-flight-plan]e was sufficient; STEAM then ensured
that the pilot agents coordinated the termination of [fly-flight-plan]g, even if just one arbi-
trary team member detected the enemy vehicles. (Of course, the evasion maneuvers, being
domain-specific, had to be added.)

7. Related Work

As mentioned earlier, most implementations of multi-agent collaboration continue to rely on
domain-specific coordination in service of teamwork (Jennings, 1994, 1995). More recently,
however, a few encouraging exceptions have emerged (Jennings, 1995; Rich & Sidner, 1997).
We first briefly review these systems and then contrast them with STEAM.

Jennings’s (1995) implementation of multi-agent collaboration in the domain of electric-
ity transportation management is also based on joint intentions — it is likely one of the first
implementations in a complex domain based on a general model of teamwork. He presents
a framework called joint responsibility based on a joint commitment to the team’s joint
goal ¢ and a joint recipe commitment to a common recipe Y. Two distinct types of joint
commitments — a modification to the joint intentions framework — are claimed necessary
because different actions are invoked when joint commitments are dropped. However, as
a result, joint responsibility would appear to be limited to a two-level hierarchy of a joint
goal and a joint plan, although individuals could execute complex activities in service of
the joint plan. The joint responsibility framework is implemented in the GRATE* system,
which appears to focus on a team of three agents. In GRATE*, teamwork proceeds with an
organizer agent detecting the need for joint action; it is then responsible for establishing a
team and ensuring members’ commitments as required by the joint responsibility method.
While the procedure for establishing joint commitments in STEAM is similar to GRATE*
— including the similarity of the “leader” in STEAM to the “organizer” in GRATE* —
STEAM does benefit from adopting PWAGs, which provides it additional flexibility.

STEAM is also related to COLLAGEN (Rich & Sidner, 1997), a prototype toolkit ap-
plied to build a collaborative interface agent for applications such as air-travel arrangements.
COLLAGEN’s origins are in the SharedPlans theory. Although the COLLAGEN implemen-
tation does not explicitly reason from the intend that attitude in SharedPlans introduced
in (Grosz & Kraus, 1996), it does incorporate discourse generation and interpretation algo-

111

TAMBE

rithms that originate in such reasoning (Lochbaum, 1994). Treating the underlying agent as
a blackbox, COLLAGEN facilitates the discourse between a human user and the blackbox
(intelligent agent). Several COLLAGEN features aid in such interaction, such as mainte-
nance of a segmented interaction history.

STEAM contrasts with COLLAGEN (Rich & Sidner, 1997) and GRATE* (Jennings,
1995) in several important ways. First, STEAM builds on joint intentions (with some
influence of SharedPlans), rather than the SharedPlan approach in COLLAGEN or the
joint responsibility approach of GRATE*. Particularly in contrast with joint responsibility,
STEAM allows teamwork based on deep joint goal/plan hierarchies. Second, STEAM has
the capability for role-monitoring constraints and role substitution in repairing team activi-
ties, not relevant in the other two systems. Third, STEAM has attempted scale-up in team
size. Thus, STEAM has introduced techniques both to reduce teamwork overheads, e.g.,
decision-theoretic communication selectivity, as well as to deal with a hierarchy of teams
and subteams, not relevant in smaller-scale teams. STEAM also illustrates reuse across
domains, not seen in the other two systems. Finally, rather than building a collaboration
layer on top of an existing domain-level system or blackbox (“loose coupling”), STEAM has
proposed tighter coupling via modifications to support teamwork in the agent architecture
itself, e.g., with explicit team goals and team states, and accompanying commitments. The
determining factor here would appear to be the tightness of collaboration, e.g., a deeply
nested, dynamic joint goal hierarchy should favor a tighter coupling.

In our previous work (Tambe, 1997b) we presented an initial implementation of a team-
work model, also based on joint intentions. That work clearly laid the groundwork for
STEAM, by defining team operators, and elaborating on their expressiveness. However,
STEAM was later developed because of (i) several problems in that work in continued de-
velopment of teamwork capabilities in the Attack domain, (ii) the presence of new domains
such as Transport, and (iii) significant scale-up in team sizes. Since STEAM both extends
and substantially revises that earlier work, it is best to treat STEAM as a separate system,
rather than an extension of that early work. STEAM also provides a conceptual advance
in a clearer analysis and specification of the joint mental attitude it builds up in a team.
In particular, via an explicit analogy to partial SharedPlans (Grosz & Kraus, 1996), this
article has spelled out the requirement for teams and subteams to build up a hierarchy of
joint intentions, beliefs about other team members’ intentions, and joint intentions for the
“unreconciled case”. This analysis also led to a generalization of communication based on
information-dependency.

The following now presents a detailed comparison between STEAM and the earlier work
(Tambe, 1997b) in terms of their capabilities. To begin with, STEAM includes an explicit
mechanism to establish joint commitments based on PWAGs, which was unaddressed in
previous work — so earlier, agents would implicitly, and hence sometimes incorrectly, as-
sume the existence of joint commitments. Also, in earlier work, monitoring and repair
was highly specialized. In particular, the mechanism provided for monitoring was based
on comparing achievement conditions of operators; this mechanism was later discovered
to be limited to monitoring and repair of just one pre-determined specialist role per team
operator. Furthermore, the role-substitution was defined via a special procedure executed
separately by individuals. In contrast, STEAM has significantly generalized monitoring and
repair via its explicit role-monitoring constraints, that enable monitoring of a much greater

112

TowARDS FLEXIBLE TEAMWORK

variety of failures, e.g., the “specialist” is just one case in all of the varied role-monitoring
constraint combinations. Furthermore, STEAM establishes a joint intention to resolve all
failures, rather than relying on any special case procedures. This is not merely a conceptual
advance in terms of an integrated treatment of repair, but has real behavioral implications
in providing additional flexibility embodied in the commitments in [repair]g. Further-
more, STEAM’s repair generalizes to subteams, addresses previous critical commitments,
as well as unallocated tasks. In terms of practical concerns, our previous work (Tambe,
1997b) raised the issue of communication risk in hostile environments, but suggested only a
heuristic evaluation of communication costs and benefits; a general purpose mechanism was
lacking. STEAM has filled the gap with its decision theoretic framework that now considers
various uncertainties, both for selective communication as well as enhancements in commu-
nication. Also, unlike STEAM, our earlier work did not deal with complex team-subteam
hierarchies, and its mechanisms did not generalize to subteams. Finally, STEAM is backed
up with detailed experimental results about both its flexibility and reuse across domains, all
outside the scope of the previous work.

STEAM is also related to coordination frameworks such as Partial Global Planning(PGP)
(Durfee & Lesser, 1991), and Generalized Partial Global Planning(GPGP) (Decker & Lesser,
1995). Although not driven via theories of collaboration, these coordination frameworks also
strive towards domain independence. The earlier work on PGP focuses on a system of co-
operating agents for consistent interpretation of data from a distributed sensor network
(Durfee & Lesser, 1991). Here, subordinate agents may exchange their individual goals
and plans of action. An assigned agent (e.g., a supervisor) may recognize that individual
plans of different agents meld into a partial global plan (PGP) — so called because PGPs
involve more than one agent but not necessarily all agents (partially global) — in service
of a common group goal. The PGP is a basis for planning coordination actions; and it
may be transmitted to subordinates for guidance in execution of individual actions. (PGP
can accommodate different types of organizations as well.) GPGP (Decker & Lesser, 1995)
provides several independent coordination modules, any subset of which may be combined
in response to coordination needs of a task environment; the GPGP approach can duplicate
and extend the PGP algorithm.

As a general model of teamwork, STEAM can provide a principled underlying model to
reason about at least some of the coordination specified in PGP, e.g., agents would establish
a joint intention towards the collective goal in a PGP, and modulate their communication
via decision-theoretic reasoning. That is, PGP “compiles out” some of the underlying rea-
soning in STEAM, and thus STEAM could provide additional flexibility in coordination.
Essentially, PGP and GPGP do not separate out coordination in teamwork from coordina-
tion in general (such as via a centralized coordinator). As a result, they fail to exploit the
responsibilities and commitments of teamwork in building up coordination relationships.
Analogously, some of the general coordination in PGP or GPGP is unaccounted for in
STEAM, and hence understanding relationships among STEAM and GPGP is an interest-
ing area of future work. There is a similar relationship between STEAM and the COOL
coordination framework (Barbuceanu & Fox, 1996). COOL also focuses on general pur-
pose coordination by relying on notions of obligations among agents. However, it explicitly
rejects the notion of joint goals and joint commitments. It would appear that individual

113

TAMBE

commitments in COOL would be inadequate in addressing some teamwork phenomena, but
further work is necessary in understanding the relationship among COOL and STEAM.

In team tracking (Tambe, 1996), i.e., inferring team’s joint intentions, the expressiveness
of team operators has been exploited. However, issues of establishing joint commitments,
communication, monitoring and repair are not addressed. The formal approach to team-
work in (Sonenberg et. al., 1994) transforms team plans into separate role-plans for exe-
cution by individuals, with rigidly embedded communications. STEAM purposely avoids
such transformations, so agents can flexibly reason with (i) explicit team goals/plans; and
(ii) selective communication (seen to be important in practice). In (Gmytrasiewicz, Dur-
fee, & Wehe, 1991), decision theory is applied for message prioritization in coordination
based on the agents’ recursive modeling of each others’ actions. STEAM applies decision
theory for communication selectivity and enhancements, but in a very different context —
practical operationalization of general, domain-independent teamwork model based on joint
intentions.

8. Summary and Future Work

Teamwork is becoming increasingly critical in a variety of multi-agent environments, rang-
ing from virtual environments for training and education, to internet-based information
integration, to potential multi-robotic space missions (Tambe et al., 1995; Rao et al., 1993;
Pimentel & Teixeira, 1994; Williamson et al., 1996; Kitano et al., 1997; Hayes-Roth et al.,
1995; Reilly, 1996). In previous implementations of multi-agent systems, including our own,
teamwork has often been based on pre-defined, domain-specific plans for coordination. Un-
fortunately, these plans are inflexible and thus no match for the uncertainties of complex,
dynamic environments. As a result, agents’ coherent teamwork can quickly dissolve into
miscoordinated misbehavior. Furthermore, the coordination plans cannot be reused in other
domains. Such reuse is important however, both to save implementation effort and enforce
consistency across applications.

Motivated by the critical need for teamwork flexibility and reusability, this article has
presented STEAM, a general model of teamwork. While STEAM’s development is driven
by practical needs of teamwork applications, its core is based on principled theories of team-
work. STEAM is one of just a few implemented systems that have begun to bridge the gap
between collaboration theories and practice. STEAM combines several key novel features:
(i) use of joint intentions as a building block for a team’s joint mental attitude (Levesque
et al., 1990; Cohen & Levesque, 1991b) — the article illustrates that STEAM builds up
a hierarchical structure of joint intentions and individual intentions, analogous to the par-
tial SharedPlans (Grosz & Kraus, 1996); (ii) integration of novel techniques for explicit
establishment of joint intentions (Smith & Cohen, 1996); (iii) principled communication
based on commitments in joint intentions; (iv) use of explicit role-monitoring constraints
as well as repair methods based on joint intentions; (v) application of decision-theoretic
techniques for communication selectivity and enhancements, within the context of the joint
intentions framework. To avail of the power of a model such as STEAM, a fundamental
change in agent architectures is essential — architectures must provide explicit support for
representation of and reasoning with team goals, (reactive) team plans and team states.
STEAM has been applied and evaluated in three complex domains. Two of the domains,

114

TowARDS FLEXIBLE TEAMWORK

Attack and Transport, are based on a real-world simulation environment for training, and
here our pilot agent teams have participated large-scale synthetic exercises with hundreds of
other synthetic agents. In the third domain, RoboCup, our player agent team is now under
development for participation in the forthcoming series of (simulated) soccer tournaments,

beginning at IJCAI-97.

Of course, STEAM is far from a complete model of teamwork, and several major is-
sues remain open for future work. One key issue is investigating STEAM’s interactions
with learning. Initial experiments with chunking (Newell, 1990) (a form of explanation-
based learning (Mitchell, Keller, & Kedar-Cabelli, 1986)) in STEAM reveal that agents
could automatize routine teamwork activities, rather than always reasoning about them.
Specifically, from STEAM’s domain-independent reasoning about teamwork, agents learn
situation-specific coordination rules. For instance, when the formation leader crashes, an-
other agent learns situation-specific rules to take over as formation lead and communicate. A
well-practiced team member could thus mostly rely on learned rules for “routine” activities,
but fall back on STEAM rules if it encounters any unanticipated situations. Additionally,
STEAM’s knowledge-intensive to learning approach could complement current inductive
learning approaches for multi-agent coordination (Sen, 1996).

Failure detection and recovery is also a key topic for future work, particularly in environ-
ments with unreliable communication. One novel approach exploits agent tracking (Tambe
& Rosenbloom, 1995; Tambe, 1996) to infer teammates’ high-level goals and intentions for
comparison with own goals and intentions. Differences in goals and intentions may indicate
coordination failures, since teammates often carry out identical or related tasks. However,
given the overheads of such an approach, it has to be carefully balanced with an agents’
other routine activities. Initial results of this approach are reported in (Kaminka & Tambe,

1997).

Enriching STEAM’s communication capabilities in a principled fashion is yet another
key topic for future work. Such enriched communication may form the basis of multi-agent
collaborative negotiation (Chu-Carroll & Carberry, 1996). Currently, STEAM relies on the
team or subteam leader when resolving disagreements, particularly when deciding the next
action. While leadership in teamwork is by itself an interesting phenomena of investigation,
enabling agents to negotiate their plans without a leader would also improve STEAM’s
flexibility. We hope that addressing such issues would ultimately lead STEAM towards
improved flexibility in teamwork.

Acknowledgements

This research was supported as part of contract N66001-95-C-6013 from ARPA/ISO. This
article is an extended version of a previous conference paper (Tambe, 1997a). I thank Johnny
Chen, Jon Gratch, Randy Hill and Paul Rosenbloom for their comments and support for
the work reported in this article. Discussions with Nick Jennings have helped improve the
quality of the article. T also thank IST team members working on the RoboCup effort for
their support of the work reported in this article. Domain expertise for this work was
provided by David Sullivan and Greg Jackson of BMH Inc., and Wayne Sumner of RDA
Logicon.

115

TAMBE

Appendix A: Detailed STEAM Specification

The pseudo-code described below follows the description of STEAM provided in this article.
It is based on execution of hierarchical operators, or reactive plans. All operators in the
hierarchy execute in parallel, and hence the “in parallel” construct. The comments in the
pseudo code are enclosed in /* */. The terminology is first described below, to clarify the
pseudo-code.

o Frecute-Team-Operator(a, O, C, {pl, p2,....,pon}) denotes the execution of a team
operator a, by a team 0, given the context of the current intention hierarchy C, and
with parameters p1, p2...pn.

o Terms v, Cpe, Cc, 7, C,y; are all exactly as in Section 5.
¢ [a]e denotes the team O’s joint intention to execute a.

o status([a]e, STATUS-OF-a) denotes the status of the joint intention [a]e, whether
it is mutually believed to be achieved, unachievable or irrelevant.

o satisfies (Achievement-conditions(a), f) denotes that the fact fsatisfies the achieve-
ment conditions of the team operator a; similarly with respect to unachievability and
irrelevancy conditions.

o Communicate(terminate-jpg(a), £,0) denotes communication to the team © to termi-
nate O’s joint commitment to a, due to the fact f.

o Update-state (team-state(©®), f) denotes the updating of the team state of @ with
the fact f.

e Update-status([a]e) denotes the updating of the team operator a with its current
status of achievement, unachievability or irrelevancy.

o Agent(a) is the individual agent or team executing operator a.

¢ actions(a) denote the actions of the operator a.

e teamtype(?)is a test of whether the agent 7 is a team or just one individual.
e self(?) is a test of whether the agent 1) denotes self.

¢ agent-status-change(u) denotes change in the role performance capability of agent
or subteam p.

o Frecute-individual-Operator(y, self, C, {pl, p2,...,pon}) denotes the execution of an
individual operator ¥ by self, given the context of the current intention hierarchy C,
and with parameters p1, p2...pn.

For expository purposes, “Execute-team-operator” and “Execute-individual-operator”

are defined as separate procedures. In reality, STEAM does not differentiate between the
two.

116

TowARDS FLEXIBLE TEAMWORK

Team Operator Execution

FEzecute-Team-Operator(a, O, C, {pl, p2,...,pn})
{

1. estimate y; /* See Section 5. */

2. if 4* Cpne > Cc execute establish commitments protocol;
/* see Section 4.1 for explanation. */

3. establish joint-intention [@]e;

4. While NOT(status([a]e, Achieved) \/ status([a]e, Unachievable) \/ status([a]e, Irrel-
evant)) Do

{

(a) if (satisfies (Achievement-conditions(a), f) \/ satisfies (Unachievability-conditions(«),
f) V satisfies (Irrelevance-conditions(«), f))
/* This is the case where fact f is found to satisfy the termination condition of a. The
case where f is only a threat to « (see Section 5.1) is analogous. */

{

i. estimate 7; /* see section 5. */

ii. if 7* G,y > Cc propose-operator Communicate(terminate-jpg(e), f, ©) with high
priority;
/* See Section 5 and 4.1*/

iii. if no other higher priority operator, in parallel
FEzecute-individual-operator(Communicate(terminate-jpg(a), f, ©), self, a/C, {pl,
o2, }):

iv. Update-state (team-state(O), f);

v. Update-status([a]e);

}
(b) if agent-status-change(u), where y € ©
{
i. Evaluate role-monitoring constraints; /* See Section 4.2. */

ii. if role-monitoring constraint failure cf such that (satisfies (Unachievability-conditions(«),
cf) then update-status([a]e);

}
c¢) if receive communication of terminate-jpg(«) and fact
g

{

if (satisfies (Achievement-conditions(a), f) \/ satisfies (Unachievability-conditions(a),
f) V satisfies (Irrelevance-conditions(a), f))

{
i. Update-state (team-state(©), f);
ii. Update-status([a]e);
}
}
(d) Update-state(team-state(0), actions(a));
/* execute domain-specific actions to modify team state of @ */

117

TAMBE

(e) if children operator §1,32,...0n of « proposed as candidates
{
i. Bi « select-best{A31...0n};
ii. if (teamtype(Agent(3i)) A (© = Agent(3i))) then in parallel
Fzecute-team-operator(fi, ©, a/C, {pl,p2...});
iii. if (teamtype(Agent(5i)) A (Agent(8i))C O) then in parallel
{
A. FEzecute-team-operator(3i, Agent(fi), a/C, {pl,p2...});
B. Instantiate role-monitoring constraints;
}

iv. if self(Agent(/i)) then in parallel

{
A. Fzecute-individual-operator(fi, self, a/C, pl...);

B. Instantiate role-monitoring constraints;

}
}

} /* End while statement in 4 */
5. terminate joint intention [a]e;

6. if status([a]e, Unachievable)

if (o« != Repair) /* If « is not itself Repair */

{

FEzecute-team-operator(Repair, ©, C, {a, cause-of-unachievability,...})

/* Repair is explained in detail in Section 4.2. Cause-of-unachievability, passed as a parameter
to Repair, may be role-monitoring constraint violation as in case 4b, or the domain-specific
unachievability conditions. */

} else {
FEzecute-team-operator(Complete-Failure, ©, C, {«, cause-of-unachievability,...})
/* If Repair is itself unachievable, complete-failure results, as in Section 4.2 */

}
}

} /* end procedure execute-team-operator */

Individual Operator Execution

Ezecute-individual-Operator(v, self, C, {pl, p2,...,pn})
{

1. establish v as an individual intention;

2. While NOT(status(y, Achieved) \/ status(y, Unachievable) \/ status(¢, Irrelevant))
Do

{
(a) if (satisfies (Achievement-conditions(v)), f) \/ satisfies (Unachievability-conditions(),
)V satisfies (Irrelevance-conditions(y), f))

i. Update-state (state(self), f);

118

TowARDS FLEXIBLE TEAMWORK

ii. Update-status(¢);

}
(b) Update-state(state(self), actions(v));
/* execute domain-specific actions to modify private state */

(c) if new children operator {31...6n} of ¢ proposed
{
i. Bi « select-best{A31...0n};
il. Ezecute-individual-operator(fi, self, ¥/C, {pl...})

}
} /* end while statement in 2 */

3. if status(y, Unachievable)
{
if (¢ != Repair)
{
Fzecute-individual-operator(Repair, self, C, {1, cause-of-unachievability,...})
/* Repair is explained in detail in Section 4.2. Cause-of-unachievability is only domain-specific
unachievability condition. This is passed as a parameter to repair. */
} else {
Ezecute-individual-operator(Complete- Failure, self, C, {1, cause-of-unachievability,...})
/* If Repair is itself unachievable, complete-failure results, as in Section 4.2 */

}
}

} /* end procedure execute-individual-operator */

Appendix B: STEAM Sample Rules

The sample rules described below follow the description of STEAM provided in this article,
and essentially help encode the algorithm described in Appendix A. The rules, as with the
algorithm in Appendix A, are based on execution of hierarchical operators, or reactive plans.
While the sample rules below are described in simplified if-then form, the actual rules are
encoded in Soar, and are available as an online Appendix.

SAMPLE:RULE:CREATE-COMMUNICATIVE-GOAL-ON-ACHIEVED
/* This rule focuses on generating a communicative goal
if an agent’s private state contains a belief that satisfies
the achievement condition of a team operator [OP]e.
See section 4.1. */

IF

agent vi’s private state contains a fact F

AND

fact F matches an achievement condition AC

of a team operator [OP]g

AND

fact F is not currently mutually believed

AND

a communicative goal for F is not already generated

THEN

119

TAMBE

create possible communicative goal CG to communicate fact F to team
O to terminate [OP]e.

SAMPLE:RULE:CREATE-COMMUNICATIVE-GOAL-ON-UNACHIEVABLE
/* This rule is similar to the one above. */

IF

agent vi’s private state contains a fact F

AND

fact F matches an unachievability condition UC

of a team operator [OP]g

AND

fact F is not currently mutually believed

AND

a communicative goal for F is not already generated

THEN

create possible communicative goal CG to communicate fact F to team
O to terminate [OP]eg.

SAMPLE:RULE:ESTIMATE-VALUE-FOR-NON-COMMUNICATION
/* This rule estimates 7*C,,; for non-communication

given a communicative goal, using the formula from

Section 5.*/

IF

CG is a possible communicative goal to communicate fact F to team
O to terminate [OP]e

AND

Cpt 1s estimated high

AND

T is estimated low

THEN

Estimated value of non-communication is medium.

SAMPLE:RULE:DECISION-ON-COMMUNICATION

/* This rule makes the communication decision using the formula * with 7*C,,; and Cc
from Section 5.*%/

IF

CG is a possible communicative goal to communicate fact F to team

© to terminate [OP]e

AND

Estimated value of non-communication for CG is medium

AND

Estimated value of communication for CG is low

THEN

post CG as a communicative goal to communicate fact F to team

© to terminate [OP]e

SAMPLE:RULE:MONITOR-UNACHIEVABILITY:AND-COMBINATION
/* This rule checks for unachievability of role-monitoring
constraints involving an AND-combination. See section 4.2.

/

120

TowARDS FLEXIBLE TEAMWORK

IF

A current joint intention [OP]g involves an AND-combination

AND

vi is a member performing role to execute sub-operator op

AND

no other member vj is also performing role to execute sub-operator op
AND

vi cannot perform role

THEN

Current joint intention [OP]e is unachievable, due to a critical role failure
of v1 in performing op

References

Barbuceanu, M., & Fox, M. (1996). The architecture of an agent building shell. In
Wooldridge, M., Muller, J., & Tambe, M. (Eds.), Intelligent Agents, Volume II: Lec-

ture Notes in Artificial Intelligence 1037. Springer-Verlag, Heidelberg, Germany.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar, J. M. F., & Ceranowicz, A. 7.
(1993). Modsaf behavior simulation and control. In Proceedings of the Conference on
Computer Generated Forces and Behavioral Representation.

Chu-Carroll, J., & Carberry, S. (1996). Conflict detection and resolution in collaborative
planning. In Wooldridge, M., Muller, J., & Tambe, M. (Eds.), Intelligent Agents,
Volume II: Lecture Notes in Artificial Intelligence 1037. Springer-Verlag, Heidelberg,
Germany.

Cohen, P. R., & Levesque, H. J. (1991a). Confirmation and joint action. In Proceedings of
the International Joint Conference on Artificial Intelligence.

Cohen, P. R., & Levesque, H. J. (1991b). Teamwork. Nous, 35.

Coradeschi, S. (1997). A decision mechanism for reactive and coordinated agents. Tech.
rep. 615, Linkoping University. (Licentiate Thesis).

Decker, K., & Lesser, V. (1995). Designing a family of coordination algorithms. In Proceed-
ings of the International Conference on Multi-Agent Systems.

Durfee, E., & Lesser, V. (1991). Partial global planning: a coordination framework for
distributed planning. IEFFF transactions on Systems, Man and Cybernetics, 21(5).

Firby, J. (1987). An investigation into reactive planning in complex domains. In Proceedings
of the National Conference on Artificial Intelligence (AAAI).

Gmytrasiewicz, P. J., Durfee, E. H., & Wehe, D. K. (1991). A decision theoretic approach
to co-ordinating multi-agent interactions. In Proceedings of International Joint Con-
ference on Artificial Intelligence.

Grosz, B. (1996). Collaborating systems. Al magazine, 17(2).

121

TAMBE

Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group actions. Artificial
Intelligence, 86, 269-358.

Grosz, B. J., & Sidner, C. L. (1990). Plans for discourse. In Cohen, P. R., Morgan,
J., & Pollack, M. (Eds.), Intentions in Communication, pp. 417-445. MIT Press,
Cambridge, MA.

Halpern, J. Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3), 549-587.

Hayes-Roth, B., Brownston, L., & Gen, R. V. (1995). Multiagent collaboration in directed
improvisation. In Proceedings of the International Conference on Multi-Agent Systems

(ICMAS-95).

Hill, R., Chen, J., Gratch, J., Rosenbloom, P., & Tambe, M. (1997). Intelligent agents for
the synthetic battlefield: a company of rotary wing aircraft. In Proceedings of the
Innovative Applications of Artificial Intelligence.

Jennings, N. (1994). Commitments and conventions: the foundation of coordination in
multi-agent systems. The Knowledge Engineering Review, 8.

Jennings, N. (1995). Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75.

Kaminka, G. A., & Tambe, M. (1997). Social comparison for failure monitoring and recov-
ery in multi-agent settings. In Proceedings of the National Conference on Artificial
Intelligence, p. (Student abstract).

Kinny, D., Ljungberg, M., Rao, A., Sonenberg, E., Tidhard, G., & Werner, E. (1992).
Planned team activity. In Castelfranchi, C., & Werner, E. (Eds.), Artificial Social
Systems, Lecture notes in AI 830. Springer, NY.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, 1., & Osawa, E. (1995). Robocup: The robot
world cup initiative. In Proceedings of IJCAI-95 Workshop on Fntertainment and
Al/Alife.

Kitano, H., Tambe, M., Stone, P., Veloso, M., Noda, I., Osawa, E., & Asada, M. (1997).
The robocup synthetic agents’ challenge. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI).

Laird, J. E., Jones, R. M., & Nielsen, P. E. (1994). Coordinated behavior of computer
generated forces in tacair-soar. In Proceedings of the Fourth Conference on Com-
puter Generated Forces and Behavioral Representation. Orlando, Florida: Institute
for Simulation and Training, University of Central Florida.

Levesque, H. J., Cohen, P. R., & Nunes, J. (1990). On acting together. In Proceedings of
the National Conference on Artificial Intelligence. Menlo Park, Calif.: AAAT press.

Lochbaum, K. E. (1994). Using collaborative plans to model the intentional structure of
discourse. Ph.D. thesis, Harvard University.

122

TowARDS FLEXIBLE TEAMWORK

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based general-
ization: A unifying view. Machine Learning, 1(1), 47-80.

Newell, A. (1990). Unified Theories of Cognition. Harvard Univ. Press, Cambridge, Mass.

Pimentel, K., & Teixeira, K. (1994). Virtual reality: Through the new looking glass.
Windcrest /McGraw-Hill, Blue Ridge Summit, PA.

Pollack, M. (1992). The uses of plans. Artificial Intelligence, 57, 43-68.

Rajput, S., & Karr, C. R. (1995). Cooperative behavior in modsaf. Tech. rep. IST-CR-95-35,
Institute for simulation and training, University of Central Florida.

Rao, A. S., Lucas, A., Morley, D., Selvestrel, M., & Murray, G. (1993). Agent-oriented
architecture for air-combat simulation. Tech. rep. Technical Note 42, The Australian
Artificial Intelligence Institute.

Reilly, W. S. (1996). Believable Emotional and Social Agents. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University.

Rich, C., & Sidner, C. (1997). COLLAGEN: When agents collaborate with people. In

Proceedings of the International Conference on Autonomous Agents (Agents’97).

Rosenbloom, P. S., Laird, J. E., Newell, A., , & McCarl, R. (1991). A preliminary analysis of
the soar architecture as a basis for general intelligence. Artificial Intelligence, 47(1-3),
289-325.

Sen, S. (1996). Proceedings of the Spring Symposium on Adaptation, Coevolution and Learn-
ing. American Association for Artificial Intelligence, Menlo Park, CA.

Sidner, C. (1994). An artificial discourse language for collaborative negotiation. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI).

Smith, I., & Cohen, P. (1996). Towards semantics for an agent communication language
based on speech acts. In Proceedings of the National Conference on Artificial Intelli-

gence (AAAI).

Sonenberg, E., Tidhard, G., Werner, E., Kinny, D., Ljungberg, M., & Rao, A. (1994).
Planned team activity. Tech. rep. 26, Australian AT Institute.

Stone, P., & Veloso, M. (1996). Towards collaborative and adversarial learning: a case
study in robotic soccer. In Sen, S. (Ed.), AAAI Spring Symposium on Adaptation,
Coevolution and Learning in multi-agent systems.

Tambe, M. (1995). Recursive agent and agent-group tracking in a real-time dynamic en-
vironment. In Proceedings of the International Conference on Multi-agent systems

(ICMAS).

Tambe, M. (1996). Tracking dynamic team activity. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).

123

TAMBE

Tambe, M. (1997a). Agent architectures for flexible, practical teamwork. In Proceedings of
the National Conference on Artificial Intelligence (AAAI).

Tambe, M. (1997b). Implementing agent teams in dynamic multi-agent environments. Ap-
plied Artificial Intelligence. (to appear).

Tambe, M., Johnson, W. L., Jones, R., Koss, F., Laird, J. E., Rosenbloom, P. S., &
Schwamb, K. (1995). Intelligent agents for interactive simulation environments. Al
Magazine, 16(1).

Tambe, M., & Rosenbloom, P. S. (1995). RESC: An approach for real-time, dynamic agent
tracking. In Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI).

Tambe, M., Schwamb, K., & Rosenbloom, P. S. (1995). Building intelligent pilots for
simulated rotary wing aircraft. In Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation.

Tidhar, G., Selvestrel, M., & Heinze, C. (1995). Modeling teams and team tactics in
whole air mission modeling. Tech. rep. Technical Note 60, The Australian Artificial

Intelligence Institute.

Williamson, M., Sycara, K., & Decker, K. (1996). Executing decision-theoretic plans in
multi-agent environments. In Proceedings of the AAAI Fall Symposium on Plan Fxe-
cution: Problems and Issues.

124

