AutomatedNegotiationforProvisioningVirtualPrivate NetworksusingFIPA -CompliantAgents

P.Faratin ¹,N.R.Jennings ²,P.Buckle ³andC.Sierra ⁴

¹Dept.ofElectronicEngineering,QueenMaryandWestfieldCollege,UniversityofLondon, LondonE14NS, UK.Email: P.Faratin@gmw.ac.uk

> ² Dept.ofElectronicsandComputerScience,UniversityofSouthampton, SouthamptonSO171BJ,UK. Email: nrj@ecs.soton.ac.uk

³AdvancedIPServicesandManagement,NortelNetworks,HarlowLabs,Harlow,UK. Email: pbuckle@nortelnetworks.com

⁴IIIA-ArtificialIntelligenceResearchInstitute,CSIC -SpanishCouncilforScientificResearch, 08193Bellaterra,Catalonia,Spain. Email: sierra@iiia.csic.es

ABSTRACT

Thispaperdescribesthedesignandimplementation of negotiating agents for the task of provisioning virtual private networks. The agents and their interactions comply with the FIPA specification and they are implemented using the FIPA of the negotiation algorithms.

1. INTRODUCTION

Multi-agentsystem(MAS)researchfocusesonhowasocietyofautonomous,computational agentscaninteractinordertosolvecomplex, realworldproblems that are inherently distributed innature(Bond andG asser,1998).Duetothedistributedandinter one of the key issues in any MAS is that of coordination. To achieve coordination in a given application, anumber of sub-problems need to be addressed (Weiss, 1999). Firstly, th ereisaneed todefinea language and protocol of interaction. The former specifies the syntax and semantics ofthecommunication. The latter specifies the normative (or constraining) rules of who can say whatinthecourseoftheinteraction. Secondly ,thereisaneedtospecifyhowagentswillreason about the coordination problem. That is, there is a need to model how agents will represent and reasonabouttheactions, plans and knowledge of themselves and others. Thirdly, there is a need toidentify howcoherentsystem -widebehaviourcanbeattainedfromagentsthatinvariablyhave alocalandpartialviewoftheproblem. Finally, in addition to the aforementioned modelling problems, there is also an eed to actually engineer apractical MASthrought hedesignof platformsandmethodologies(BondandGasser,1998).

The work reported here addresses all the aforementioned coordination subspace in the engineering aspects are addressed by adopting the domain of the problem of the Foundation for Intelligent Physical Agents (FIPA). FIPA specifies the normative standard for the syntax and semantics of the language used during agent interaction, as well as the protocol of interaction. Agents are the nembed ded within this environmen to the interact, complying with the standard, to solve their domain problem. The problem domain we consider is the competitive and dynamic provisioning of virtual private networks (VPNs) by end

users. Agents in this scenariore as on about the coordination process by using an ovel negotiation model that we have developed and a FIPA compliant negotiation protocol. This model aids the agents in reaching agreements and in coordinating their interactions, while respecting their computational and information bounded ness.

The contribution of this work is two fold. Firstly, we present an ewagent platform (called **OS**) that is both practical and generic. This is the first, freely available implementation of the FIPA standard. Secondly, we present the design and utilisation of an egotiation model that is suitable for a range of real -world applications. This model advances the state of the art in that it is based upon practical assumptions and that it in corporates a wide range of negotiation techniques (including concession making, making trade -offs between issues and issue modification during the course of an ongoing negotiation).

Theremainder of the paper is structured as follows. Section 2 presents the FIPA - OSplat form. Section 3 introduces the VPN scenario and section 4 describes its implementation using FIPA - OS. This scenario is the nused to motivate and detail the negotiation model in section 5. Finally, section 6 presents the conclusions and future work

2. FIPA-OS

ThepurposeofFIPAistopromotethedevelop mentofspecificationsofgenericagent technologiesthatmaximiseinteroperabilitywithinandacrossagentbasedapplications.Partofits functionistoproduceaspecificationforanagentenablingsoftwareframework.Contributorsare freetoproduceth eirownimplementationsofthissoftwareframeworkaslongasitsconstruction andoperationcomplieswiththepublishedFIPAspecification.Inthiswaytheindividualsoftware frameworksareinteroperable.Withinthiscontext,FIPA -OS¹isanopensourcei mplementationof themandatoryelementscontainedwithintheFIPAspecificationforagentinteroperability.The FIPA-OSdistributioncontainsclassfiles,Javasourcecodeanddocumentation.Italsoincludesa simpletestagenttoaccesstheagentplatform servicesandsomevisualisationsoftware.

TheFIPA -OSarchitecturecanbeenvisagedasanon -strictlayeredmodel.Inanon -strictlayered model, entities innon -adjacentlayers canaccesse achother directly. The developer is able to extend the architec ture, not only by appending value -added layers (such asspecial ist service agents or facilitator agents on top) but in addition, lower or midlayers can be replaced, modified or deleted. In addition to the mandatory components of the FIPAR eference Model (see section 2.1), the FIPA -OS distribution includes support for:

- DifferenttypesofAgentShellsforproducingagentswhichcanthencommunicatewitheach otherusingtheFIPA -OSfacilities;
- Multi-layeredsupportforagentcommunication;
- Messageandconver sationmanagement;
- Dynamic platform configuration to support multiple communication in frastructures and multiple types of persistence (enabling integration with legacypersistences of tware);
- Abstractinterfaces and software design patterns.

_

¹FIPA -OSisanagentframework,originatingfromresearchatNortelNetworks'HarlowLaboratoriesintheUK.Itisavailableas managedOpenSource[FIPA -OSURL]andiscur rentlyusedwithinanumberofindustrialandacademicinstitutions,includingthe ACTSprojectFACTS[FACTSURL].

2.1 FIPAReference Model

The FIPA reference model illustrates the core components of the FIPA - OS distribution (figure 1). The agent reference model provides the normative framework within which FIPA agents exist and operate. Combined with the FIPA agent lifecycle, it esta blishes the logical and temporal contexts for the creation, operation and retirement of agents.

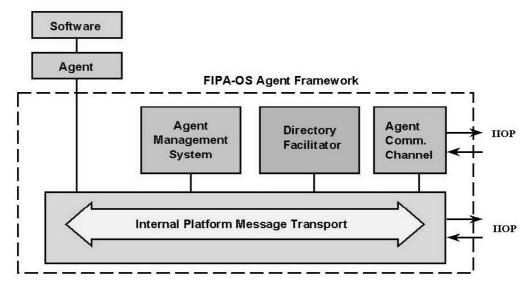


Figure1:FIPA -OSAgentFramework

TheDirectoryFacilitator(DF),AgentManagementSystem(AMS)andAgentCommunication Channel(AC C)arespecifictypesofagents,whichsupportagentmanagement.TheDFprovides "yellowpages"servicestootheragents.TheAMSandACCsupportinter -agentcommunication usingFIPA'sagentcommunicationlanguage(ACL).TheACCsupportsinteroperabilityb oth withinandacrossdifferentplatforms.TheInternalPlatformMessageTransport(IPMT)provides amessageroutingserviceforagentsonaparticularplatformthatmustbereliable,orderlyand adheretothedetailedrequirementsspecifiedinsection5.2 of(FIPA97V2,Part2).Together,the ACC,AMS,IPMTandDFformwhatwillbetermedthe AgentPlatform (AP).Theseare mandatory,normativecomponentsofthemodel.ForfurtherinformationontheFIPAAgent Platformsee(FIPA97V2,Part1,AgentManagement)and(FIPA98,Part13).

InadditiontothemandatorycomponentsoftheFIPAReferenceModel,theFIPA -OSdistribution includesanAgentShellthatcanbeseenasanemptytemplateforanagent.Mult ipleagentsthat cancommunicatewitheachotherusingtheFIPA -OSfacilitiescanthenbeproducedfromthis template.DetailsofhowthisAgentShellhasbeenusedtocreatetheagentsdescribedinthis paperaregiveninsection3.1.

3. DesigningVPNProvi sioningAgents

Thescenarioweconsideristheprovisioningofapubliccommunicationnetwork(suchasthe Internet)asavirtualprivatenetwork(VPN)forendusers.Intherealworld,asingleservicetoan enduserconsistsofdifferentcombinationsof arangeofnetworkservices(seefigure2).These networkservicescanbebroadlydecomposedintothreedomains,whichmayberepresentedby agents.Thethreedomainsandtheirrepresentativeagentsare:

- 1. EndUserCommunicationDomain: PersonalCommunicati onAgent (PCA).
- 2. NetworkServicesDomain: ServiceProviderDomainAgent (SPA)
- 3. NetworkConnectionDomain: NetworkProviderDomainAgent (NPA).

AServiceProviderhastheresponsibilitytotranslatethedifferingrequirementsofthetwoend domainsof:i)t heoverallnetworkservicedomain,andii)providingtherequiredservicetothe enduser. Thegoalofallparties involved istofind the best deals available in terms of quality of service, cost and penalty.

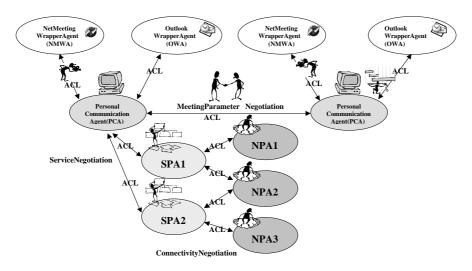


Figure2:InterDomainAge ntNegotiation

Therequirements of the service are established by the PCA with its enduser. To be concrete, we consider the case in which the enduser wishest ose tupavide oconference meeting. The PCA contacts other users 'PCAs and schedules avide ocon ference meeting. The initiating PCA then negotiates with the SPA to obtain the best service deal available. The SPA then remeets ary parameters for the required service and negotiates with the NPA sto obtain the optimal solution.

Theov erallproblemthenishowtoprovisiontheseservicessothattheysatisfy,accordingto somecriteriasuchastheprice,thetimeorqualityoftheservice,notonlythecustomersbutalso theserviceproviders. Achievementofthisgoalmayrequireplanni ngandsolvingsubproblems amonganynumberofserviceprovidersandcustomers. Indeed, there are often more than one service provider which both the customer and other service providers can request services or subservices from respectively. However, sin ceeach group is autonomous, service sand information must be requested. For example, a service provider must somehow be persuaded to perform a service, or a service customer must be persuaded to accept a lower quality of service. Therefore the overall sys tem can be viewed as a group of interacting and autonomous agents that provide and consume services to one another through a service of multi lateral negotiations.

Additionally, these agents are operating in a highly dynamic environment: services need to be updated, new one scome on line, olds ervices are removed and currently agreed services fail. Customer's requirements may also change: new services may be required, services may be required so one ror later than initially anticipated, higher quality may be come more important, etc. In all of these cases, negotiation is the means of managing this complexity. New services become candidates of provisioning, those effected by the failed services can be reprovisioned, and service conditions can be dynamically configured or reconfigured. In the course of the senegotiations, agents are required to make concessions to one another, to make trade - offs between the negotiation is sue sand to some times bring new is sue sint othen egotiation in order to facilitate agreement making.

3.1 ExtendingtheAgentShelltoconstructDomainSpecificAgents

AllagentsintheFIPA -OSdistributionextendthe *AgentWorldAgent* class(partofthe *aw* package). Theinternal structure of an agent is not specified and is left to the individual age nt designer. For example the following object model (figure 3) illustrates how the platformagents (AMS, DF and ACC) have been constructed by inheriting and extending the agent shell, *AgentWorldAgent*. Allofthed omain specific agents (PCA, SPA, NPA, AVW A, NMWA) described in this paper are constructed in a similar fashion.

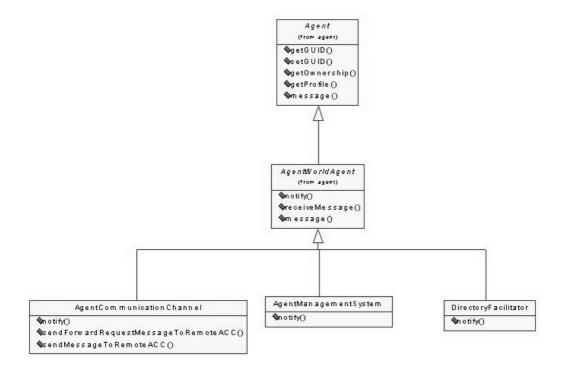


Figure3:ObjectModelforFIPA -OSPlatformAgents

Thekeyrolesinourapplicationarethoseoftheinvolvedcustomers(orend -user)(sub -section 3.2), theserviceprovider(sub -section 3.3) and the network provider(sub -section 3.4). Each of these roles are mapped to specific kinds of software agents, taking into account the following assumptions about the future network environment:

- Typicallymultiplecompetingnetworkproviders(I SPsortelecomoperators), each managing auniquenetworkdomain, will allow subscribing to their connectivity services, possibly during a relatively short period of time.
- Serviceproviderswillhavethetaskofnegotiatingwithmultiplenetworkproviders and selectingaspecificonetoactuallydelivertheservice.Newplayerscouldtakethisrole, althoughtheISPsoroperatorsthemselvescanalsocarryitout.

3.2 PersonalCommunicationAgents

The Personal Communication Agent (PCA) represents the user in the esystem. The PCA is responsible for enacting the interests of its enduser when negotiating with other PCAs for scheduling a meeting and when selecting an appropriate SPA. To do this in the best way possible, the PCA sare responsible for managing the user 's profile and preferences. The PCA is also

responsible for interacting with third party software (Calendar Managerand Video Conference software in this case) at the local level (i.e. on the user's terminal). The PCA supports the following capabilities (more details of which are provided in section 4):

- FIPAagentcommunicationprotocol(FIPAACLmessagehandling)(FIPA97,V2,Part2) and interaction with FIPAagent platform components (DF,AMS and ACC) (FIPA97,V2, Part1).
- FIPAagentnegotiationprotoco ls(fipa -iterated-contract-netandfipa -request)andsubsequent dialoguehandling(FIPA97,V2,Part2).
- Userprofilemanagementfortheendusers' preferences regardingscheduling meetings and videoconference (VC) configuration parameters.
- Interactionwi ththirdpartysoftware. The handling of this third partysoftware is agent platform specificand is described in more in (FIPA 97, V2, Part 3).
- Serviceoffernegotiationcapabilities for issues including: information about events, VC description, and information about the participants (including the organiser).

3.3 ServiceProviderAgents

The Service Provider Agent (SPA) can be considered as a VPN service broker between PCAs and NPAs. It examines the service request from the coordinating PCA and composes as rvice offer (including price and quality of service) based on its ownservice capabilities. This service offer will be the subject of the negotiation between PCA and SPA. If this negotiation has completed successfully, the SPA will subsequently startneg of intions with several NPAs, which will conclude in the selection of the NPA that is most suited to provision the required network, related to the service request of the PCA. The SPA supports the following capabilities:

- FIPAagentcommunicationprotocol(FIP AACLmessagehandling),(FIPA97,V2,Part2) and interaction with FIPAagent platform components (DF,AMS and ACC),(FIPA97,V2,Part1).
- FIPAagentnegotiationprotocols(fipa -iterated-contract-netandfipa -request)andsubsequent dialoguehandling(FI PA97,V2,Part2).
- Serviceoffercomposition, based on a set of service capabilities.
- Serviceandnetworkoffernegotiationcapabilities for issues including: event information, VC description, price, penalty, and participants.

3.4 NetworkProviderAgents

A NetworkProviderAgent(NPA)isresponsibleformanagingitsownnetworkdomain.Network offersarecomposed,basedonnetworkcapabilities(networkrelatedqualityofserviceparameters whichcanbesupplied).Thesenetworkoffersarethesubjectofthen egotiationbetweentheSPA andNPA.TheNPAsupportsthefollowingcapabilities:

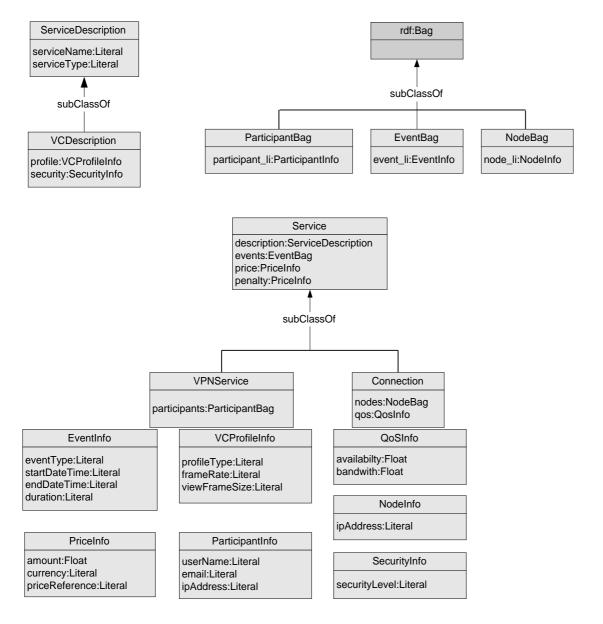


Figure 4: RDFClassDiagramfortheServiceOntology

- FIPAagentcommunicationprotocol(FIPAACLmessagehandling)(FIPA97,V2,Part2) and in teractionwithFIPAagentplatformcomponents(DF,AMSandACC),(FIPA97,V2,Part1).
- FIPAagentnegotiationprotocols(fipa -iterated-contract-netandfipa -request)andsubsequent dialoguehandling,(FIPA97,V2,Part1).
- Networkoffercomposition, based on a set of network capabilities.
- Networkoffernegotiationcapabilities for issues including: Eventin formation, connection description, price, and node names.

3.5 UsingtheFIPAACL

UnderstandinganACLmessagerequiresprocessingthemessagewithregardt oitstemporal positionwithinaparticularinteractionsequencebetweentwoormoreagents. This involves understanding the type of communication called a communication act, (it is specified in the message and may be are questors tatement of factor quer y), understanding the structure of the content and finally understanding these mantics of the request.

AsACLcommunicationissorich, it is often represented a samulti - tiered layer in its own right (Fininetal, 1997). FIPA - OS supports ACL communication using four main sets of components: conversation, ACL message, content (syntax) and ontology (contents emantics). Notal loft hese components need to be used by each agent and different combinations of different types of each these components can be supported at each layer of the FIPA - OS agent architecture. This flexibility is needed because in a heterogeneous world, different agents may encode and transport the content differently.

FIPA-OSsupportsbothASCIIstringandXMLencodingoftheACLmessageus ingthe appropriatedecoderandparser. There are several supportedencodings for the ACL message content in cluding, FIPASL0 and FIPASL1 and the proposed FIPA -RDF specification (FIPA99, Part 18) for encoding the content in XML. Allagents in the scenari odes cribed in this paper use the ASCII string representation for ACL as described in (FIPA97, V2, Part 2) and FIPA -RDF encoding for the content expressions as described in (FIPA99, Part 18).

The VPNService Provisioning Ontology, shown as an object model (figure 4), provides more details of the issues overwhich the agents negotiate. For the purposes of the negotiation described in this document, arbitrary compositions of the issue sillustrated in the object model presented can be used to form the negotiate. For the purpose soft the negotiation described in this document, arbitrary compositions of the issue sillustrated in the object model presented can be used to form the negotiate. For the purpose soft the negotiation described in this document, arbitrary compositions of the issue sillustrated in the object model presented can be used to form the negotiate. For the purpose soft the negotiation described in this document, arbitrary composition soft he issue sillustrated in the object model presented can be used to form the negotiate. For the purpose soft he negotiation described in this document, arbitrary composition soft he issue sillustrated in the object model presented can be used to form the negotiate. For the purpose soft he negotiate is not a subject to the object model presented can be used to form the negotiate. For the purpose soft he negotiate is not a subject to the negotiate of the negotiate is not a subject to the negotiate of the neg

4. ImplementingtheScenario

EachofthePCA,SPAandNPAagenttypeshavebeenimplementedusingtheFIPA distribution. Thenegotiationabilities described in section 5 have been implemented as an additional component that extends the basic functionality of the Agent Shell. The functionality of each of the implemented agents is discussed below.

4.1 PCA

PCAsactonbehalfof userstoarrangemutuallyconvenientmeetings(intermsoftimeand perhapslocation)forallparticipantswiththeminimumofinteractionfromtheusers.Itshouldbe stressedthatalthoughtheuserinteractionisminimised,thefinaldecision -makingpro cessshould belefttotheuser.WhenthePCAisstarted,itcarriesoutanumberoftasksbeforeitisreadyto interactwithotheragents.Specifically,it:

- RegistersitselfwiththeAMS.
- RegistersitselfwiththeDF(Thisallowsotheragentstolookup thePCA'sGloballyUnique Identifier(GUID)(FIPA97,V2,Part1)sothattheycansendACLmessagestoit).TheDF descriptionusedbythePCAcontainstheagenttype" facts-pca",servicetype" pca",service name" pca".Theownershipissettobetheem ailaddressoftheusertowhichthePCA represents.

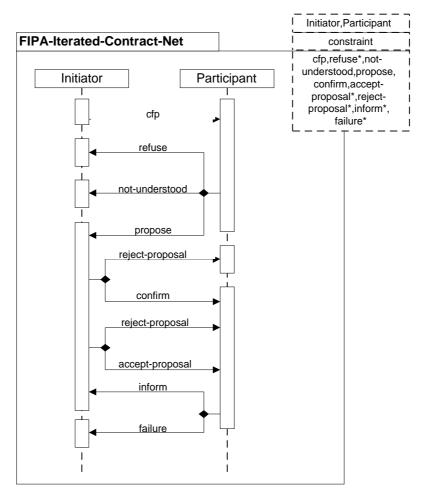


Figure 5: The FIPA Standard Iterated Contract Net Protocol

- SearchestheDFfortheexistenceofanOutlookCalendarWrapperAgent(OWA)that belongstotheuser.
- Searchesth eDFfortheexistenceofaNetMeetingWrapperAgent(NMWA)thatbelongsto theuser.

4.1.1 CommunicationwithOWAandNMWA

The PCA is notitiself designed to integrate with legacy systems, instead this task is left towrapper agents that can be utilised to carry out the necessary interactions. The two wrappers gents used by the PCA are the OWA and NMWA, which, respectively, provide access to the user's calendar and video conferencing tools.

4.1.2 NegotiationwithotherPCA'stoschedulemeetings

Uponreceiptofaninp utfromtheenduserindicatingthathewishestoarrangeameeting,the PCAinitiatesanegotiation(initiatingPCAisreferredtoastheIPCA)withtheinvitees'"remote" PCA's(referredtoastheRPCA's).Thisnegotiationcanbesplitintofivedistinct stages:

• IPCAchecksitscalendar

The IPCA first ensures the user is available at the times they wish to attempt to book a meeting. This is accomplished by querying the user's OWA. If they are not free, then the negotiation phase halts and an error message eigenerated.

• IPCAsendscallforproposalstoallRPCAs

TheIPCAdetermineswhichPCAsbelongtotheinvitedusersbyinterrogatingtheDFand sendsacallforproposals(CFP)toeach,includingarangeofpossibletimesastowhento holdthemeeting. TheCFPalsocontainsinformationabouttheotherparticipants,although theirspecificdetailswillnotbeyetknown(e.g.whatIPaddresstheywouldbejoininga videoconferencefrom). WheninitiatingthenegotiationwiththeRPCAstheACLmessage encodingtheCFPindicatestherequiredInteractionProtocol(FIPA99,Part2),which constrainstheexpectedperformativestobeusedineachmessageexchange.Inthiscase,itis theFIPA -Iterated-Contract-Netprotocol.

RPCAssendproposalsbacktotheIPCA

TheRPCA's response is based upon: the CFP, the preferences of the user (e.g. what times of day they wish to be available for meetings) and, the times the user is available during the ranges suggested in the CFP. This process results in either a "propose" with times the user is available or a "failure"/" refuse "being sent back to the IPCA. In the case of the "propose" message, more detailed information about the participant is sent back (i.e. the IP address from which the user will join the meeting and the user's vide opreferences). In the case of the "refuse"/" failure "message (either due to the OWA refusing or failing to deal with the queries, or because the user is not available at all) the OWA is closed.

IPCAevaluatestheproposals

OncetheIPCAhas received are sponse from each of the RPCAs, providing that at least one RPCA has made a proposal, the actual meeting scheduling process is executed. Otherwise the IPCA closes its OWA, and informs the user of the outcome.

IPCAsendsaccept/rejectmessages totheRPCAs

Ifameetingcannotbearrangedgiventheproposalsmade, "reject" messagesaresenttoallof the RPCA's to indicate that their proposals have been rejected. If a meeting could be arranged, "reject" messages are just sent to the RPCA's whose users cannot attendand "accept" messages are sent to the RPCA's whose users can (along with the precise details of the meeting, and the other participants who will be attending.

4.1.3 NegotiationwithSPAstoarrangeVPNprovisioning

Onceameetingtimehasb eenarrangedandatleastoneRPCAhasrespondedfavourablytothe "accept" message, the PCA attempts to locate a number of SPAs by sending a query to the DF. If none can be located, then the PCA will send are sponse through the PCA GUI, indicating the arranged meeting time and the participants who can attend, but will include a warning message indicating that a VPN has not been provisioned for the time of the meeting.

ShouldatleastoneSPAbefound,theIPCAwillbeginnegotiatingwiththeSPAsoverth of service(QoS)required for themeeting (i.e. the PCA will aim to get the closest QoS to that defined by each user's VCProfile, which were exchanged during themeetings cheduling). This negotiation follows the FIPA—Iterated-Contract-Net protocol, and the PCA has a mechanism to generate counter—proposals based upon the proposals made by the SPAs and the QoS targetitis trying to reach. Once a compromise has been reached between the SPA and PCA and an agreement has been made, the PCA then informs the user, through the GUI, of the details of the arranged meeting.

4.1.4 StartingthevideoconferenceoncetheVPNhasbeencommissioned

Upon receiving a request from an SPA indicating that the VPN is being commissioned, the PCA takes the following steps:

• IPCAconfigureslocalA/Vconferencingapplicationtohostthemeeting

Theuser's NMWA is initialised, and then sent the "start" command to configure the videoconferencing application (s) (i.e. Net Meeting/CamWiz) to host the meeting. If this fails an errorm essage is displayed for the user.

IPCAinformsRPCA'sthattheconferenceisready

TheIPCAwillperformaDFlook -upofthenecessaryRPCAs, then send them a "request" message with the details of the meeting. Upon receipt of this message, an RPCA will initialise the participating user's AVWA, and send it a "command in order that the video conferencing application (s) should call into the conference that the IPCA's associated AVWA has initiated. Once this has been completed successfully, the RPCA replies with an inform/done message to indicate success, otherwise it will respond with a refuse/failure message based upon the reason why the user cannot join the conference.

4.2 SPA

SPAsnegotiatewithanIPCAregardingthestateandconditions(e.g.typeofse rvice, startingtime oftheservice, price, penalty) of theservice that the SPA is to provide. It then negotiates with collaborating NPA sto find the best solution for the provisioning of the service to the customer. An SPA has an interest in maximising its profit.

4.2.1 RegisterwithAMSandDF

The SPA must register with an AMS and a DF before it can function. The current version of the SPA registers its elfin the following manner: agent type "facts-spa", ownership "www.agentworld.co.uk", service type "spa" and service name "spa".

4.2.2 NegotiateswithPCA

WhenameetingisagreedamongthePCAs,theIPCAsendstheSPAsaservicerequest. The IPCAstartsthenegotiationoverservice characteristics (including price, framerate, view frame size and penalty). The negotiation may consist of a number of iterations following the FIPA Iterated-Negotiation protocol until the negotiation either succeeds or fails. The negotiation su when the maximum time for negotiation of the IPCA or SPA is reached. The negotiation su when the proposed service characteristics are agreed between the IPCA and an SPA.

4.2.3 QueriestheDFforinformationonavailableNPAs

When these rvice characteristics are agreed, the SPAs endare quest to the DF for a search on the information of available NPAs.

4.2.4 NegotiateswithNPA(s)

When the DF replies with a list of NPAs, the SPA calculates the necessary bandwidth for the agreed service, and respect to the surface of t

```
(cfp
:sender spa3-spa@iiop://195.8.93.19:50/acc
:receiver npa5-npa@iiop://195.8.93.19:50/acc
  (<?xml version="1.0"?>
  <rdf:RDF
            xml:lang="en"
             xmlns:so="http://193.121.106.20:8001/schemas/ServiceOntology#"
             xmlns:st="http://193.121.106.20:8001/schemas/Serv iceTransaction#"
             xmlns:fipa="http://193.121.106.20:8001/schemas/FipaSchema#"
             xmlns:rdf="http://www.w3.org/1999/02/22 -rdf-syntax-ns#">
  <st:proposeConnection rdf:ID="initialCFP">
       <fipa:actor>SPA</fipa:actor>
       <fipa:argument rdf:resource="VPNService"/>
  </st:proposeConnection>
  <so:Connection rdf:about="VPNService">
        <so:description rdf:resource="vcdescription"/>
        <so:events rdf:resource="events"/>
       <so:price rdf:resource="price1"/>
       <so:qos rdf:resource="qos1"/>
  </so:Connection>
  <so:VCDescription rdf:about="vcdescription">
     <so:serviceType>VideoConference</so:serviceType>
     <so:serviceName>Netmeeting</so:serviceName>
     <so:profile rdf:resource="vcprofile"/>
  </so:VCDescription>
  <so:VCProfileInfo rdf:about="vcprofile">
     <so:profileType>ViedoConference</so:profileType>
     <so:frameRate>Med</so:frameRate>
     <so:viewFrameSize>Small</so:viewFrameSize>
  </so:VCProfileInfo>
  <so:EventBag rdf:about="events">
        <so:event_li rdf:resource="event1"/>
  </so:EventBag>
  <so:EventInfo rdf:about="event1">
       <so:startDateTime>19990708T111100000Z</so:startDateTime>
       <so:duration>+00000000T010000000</so:duration>
  </so:EventInfo>
  <so:PriceInfo rdf:about="price1">
       <so:amount>9.377499</so:amount>
       <so:currency rdf:resource="http://bt00sz:8001/schemas/UnitSchema#Euro"/>
       <so:priceReference rdf:resource="http://bt00sz:8001/schemas/UnitSchema#Second"/>
  </so:PriceInfo>
  <so:QoSInfo rdf:about="gos1">
      <so:availability>85.0</so:availability>
      <so:bandwidth>7.4600005</so:bandwidth>
  </so:OoSInfo>
  </rdf:RDF>)
:reply-with spa3-spa0
:in-reply-to spa3-spa0
:language FIPA-RDF
:ontology vpn-service
:protocol fipa-iterated-contract-net
 :conversation-id 931452074937)
```

If all of the SPA - NPA negotiations fail, the SPA will inform the IPCA that the agreed service can not be provided. However, if one of the SPA - NPA negotiations succeeds, the SPA will confirm with the PCA about the agreed service and it will then set its internal time roal arm at the agreed start time.

4.2.5 InformsPCAofstartingtime

When the start time of the meeting is agreed, the SPA will request that the NPA provisions the agreed VPN and that the IPCA starts the agreed AV conference.

4.3 NPA

NPAsareresponsiblefortheprovisioningofthenetworkconnectivity uponrequestsfromthe SPA.NPAsnegotiatewiththeSPAabouttermsandconditionsofnetworkconnectivity.A NetworkProviderhasaninterestinmaximisingitsprofit.

4.3.1 NPARegisterswithAMSandDF

NPAsmustregisterwithanAMSandaDFbeforetheyca nfunction. The current version of the NPA registers itself with a agent type "facts-npa", ownership "www.agentworld.co.uk", service type "npa" and service name "npa".

4.3.2 NPANegotiateswithSPA

Whenserviceprovisioningisagreedbetweenthe SPA and IPCA, the SPA sends a selection of NPAs a connection request (cfp). SPA starts the negotiation over connectivity characteristics (include price, bandwidth, availability and penalty). The negotiation may consist of a number of iterations following the FIPA—Iterated-Negotiation protocol until the negotiation succeeds or fails (when the maximum time for negotiation of the SPA or NPA has been reached). The negotiation succeeds when the proposed connection characteristics are agreed by the SPA.

5. AgentNegotiation

TheprevioussectionshaveexplainedthesolutiontechnologythataddressestheACLandthe engineeringproblemforaMAS. This section focuses on the coordination negotiation element of these rvice provisioning aspecto four system. In particular, we for us on the reasoning model that the *VPN* agents employinor dertore a chagreements for providing and consuming services from one another. The model is based on a formal definition, the details and rational eforthed esign choices for which are contained in (Faratin *et al.*, 1998, Faratin *et al.*, 1999, Faratin *et al.*, 2000, Jennings *et al.*, 2000, Sierra *et al.*, 1999).

The decisions faced by our agents are a combination of:

- offergeneration decisions (what initial offers hould be generated? what counter offers hould be given insituations where the opponent's offer is unacceptable?), and
- *evaluatorydecisions* (whenshouldnegotiationbeabandoned?andwhenshouldanagreement bedeemedtohavebeenreached?).

The solution to the sedecision problems is captured in the agentarchitecture (figure 6). The evaluatory decision (Eval components in figure 6) is expanded on in (Faratin et al. 1999). The offergeneration components (or what is referred to as the mechanisms) of the architecture (Responsive, Tradeoff and Issue man. components in figure 6) are distinguished by the following properties:

- the computational and informational cost the mechanism in curson the agent
- thesocialbenefitofthemechanismfortheagents

Thefirstpropertyisafeaturethatdistinguishes ourworkfrommuchoftheworkongametheory models(e.g.(RosencheinandZlotkin,1994)). Thedesignofthe *VPN* negotiatingagentishighly constrainedbythefactthatinrealworldapplicationsagentsareseldomcomputationallyand informationallyunbo unded, an assumption which under pinsmany of the classic game theory models. The provisioning of a *VPN* service is a real time process. Service sare required within tightscheduling windows and an egotiation mechanism must respect the time limits of the age nt. Furthermore, negotiation is only a single element of the agent's deliberations and so it must not consumed is proportionate amounts of computational resource. In addition to being computationally bounded, agents are also information bound. For example, an *IPCA* agent will

Thesecondfeaturerelatestotheconcernforthedesignofamechanismthatachi evessome measureofsocial(orglobal)coherencyfromlocalanddistributedprocessing.Since VPN agents are economical agents the none such measure of social coherency is the sum of the value for each the contract of the contracoftheagentsforanoutcome(c.f.paretooptimaldea ls(Gorfman etal ,1993)). Nashisanother, (Gorfman etal ,1993). Usingthisfeature, we can distinguish between mechanisms that are concerned with individual utility of the outcomes without concern for the social welfare, and ones that produce outcomest hat are both individually and jointly preferred by the agents. For example, ifadealisrequiredverysoonthennegotiationbetweenthe IPCA and SPA agentsisdrivenby concern for a deal that is perhaps not socially optimal but on ethat is agree able by bothagents.On theotherhand, if there is time to negotiate, then the same negotiation may involve both agents $searching for deals that are not only individually rational but may also be be neficial to the other {\it constant}. The constant is a superior of the constant of the constan$ agent.

Giventhesepropertieswehavedesig nedandimplementedthreenegotiationmechanisms (responsive,trade -offandissuemanipulationmechanisms)which differentially implement these properties. Figure 6 describes the functional model of the agent's reasoning during negotiation. Giventhenego tiationdeadline(Tmax),theopponent'slastoffer(*Y*)andtheagent'slastoffer(X) (thethreeinputsintothenegotiationarchitectureinfigure6)allthreemechanismssimultaneously computeanewoffer(X') (boxesResponsive,Trade infigure6). The -offandIssueman, mechanism's evaluatory component then makes the decision to either accept(A)or reject(R)the opponent's last offer Y, or counteroffer (X'), the new contract, to the opponent. The final choice ofwhichmechanism's suggestion to offer is handledbythe *meta-strategy* module. The processes involvedineachmechanismaredescribednext.

5.1 ResponsiveMechanisms

Responsivemechanismsmodelreactivenegotiationbehaviourtoanumberofenvironmental factors. The underlying rational eand motivatio nforthedesignofthesemechanismshasbeenthe need to model concession ary behaviours that are initiated by progressively more importantenvironmentalfactorsduringthecourseofnegotiationprocess. For example, if *IPCA*has committedmanyresourcesdu ringitsnegotiationwith SPA and the time of the required video *PCA* may prefer simple and less costly decision servicewithother *RPCAs* is soon, then the mechanismsthatcanresultinconcessions. Concession may resultina nagreement, and therefore noto nlyfree IPCA's resources, which can be used for other activities, but also achieve the goal of establishingameetingwiththe RPCAs.

Responsivemechanismsgenerateoffersbylinearlycombiningsimpledecayfunctions, called *tactics* (Faratin *etal* ,1999) . Tacticsgeneratevaluesforissuesusingonlyasingleenvironmental criterion. We have designed three families of tactics:

- **Time-dependenttactics** :modelincreasinglevelsofconcessionasthedeadlineforthe negotiationapproaches;
- Resource-dependent actics: modelincreasinglevels of concession with diminishing levels of resources;
- **Behaviour-dependenttactics** :modelconcessionsbasedonthebehaviouroftheother negotiatingparty.

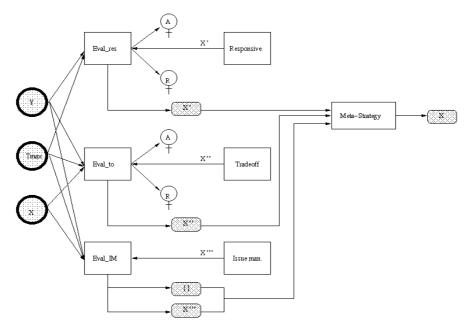


Figure6:TheNegotiationArchitecture

Todeterminethebestcou rseofaction, anagent may need to consider and assess more than just one environmental condition. Since each tactic generates a value for an issue using only a single criterion, the concept of strategy is introduced to model the modification, over time, of tactic weights as the criteria change their relative importance in response to environmental changes.

5.2 Trade-offMechanisms

Aconcessionmechanismgeneratescontractsthatareindividually rational. That is, given the currentstateoftheenvironment, themechanismcomputeswhatisthebestofferanagentcan proposethatmaximises its value. However, in some cases there is also an eed for agent sto actin amoresociallyresponsiblemanner. Thus, for example, negotiation between *NPAs* tojointly provideanISservicetoa SPA agentisnaturallyacooperativeactivitywhenthe NPAs represent the same network operator. In such cases, the agents are concerned both with the outcome of the negotiationforthemselvesandfortheirnegotiationopponent.Insho rt, they care about equity andsocialwelfare(Gorfman etal ,1993),aswellastheirindividualutility. Aconcession mechanisminsuchcontextsisinefficient,intermsofpossiblejointvaluegains(Rosencheinand Zlotkin, 1994). This requirement ledus todesignmodelsthatcanuncoverwin -winnegotiation solutions(Raiffa,1992), again in the presence of limited knowledge and computational boundedness. Win - Winnegotiationrefers to a bargaining situation where both parties search for solutionsthat"sq ueezeout"moregains(eithermutuallyorindividually)thanthecurrently agreeddeal.

Theparticularmechanismforwin -winnegotiationthatwedevelopedinthiscontextisthatof agentsmaking trade-offs(Faratin etal .,2000).Intuitively,atrade -offiswhereonepartylowers itsscoresonsomenegotiationissuesandsimultaneouslydemandsmoreonothers.Thus,an NPA mayacceptaserviceoflowerqualityifitischeaper,orashorterdeadlineifitreceivesahigher price.Suchmovementsareintend edtogenerateanofferthat,althoughofthesamevaluetothe proposer,maybenefitthenegotiationopponentandhenceincreasetheoverallgainsbetweenthe twoagents.

Anagentwilldecidetomakeatrade -offactionwhenitdoesnotwishtodecreasei tsaspirational level(denoted θ)foragivenservice -orientednegotiation. Thus, the agent first need stogenerate some/allofthepotentialcontractsforwhichitreceivesthescoreof θ . Technically, it needs to generatecontractsthatlieontheiso -value(orindifference)curvefor θ (Raiffa, 1992). Because all thesepotentialcontractshavethesamevaluefortheagent, it is in different amongst them. Given this fact, the aim of the trade -offmechanismistofindthecontractthatismostpreferable(and henceacceptable)tothenegotiationopponentsincethismaximisesthejointgain.Moreformally, θ .theiso -curvesetatlevel aniso -curveisdefinedasfollows:givenanaspirationalscoringvalue θforagent *a*isdefinedas:

Iso_a(
$$\theta$$
)={ $x / V_a(x) = \theta$ }

where $V_a(x)$ is the value of contract x for agent a. From this set, the agent needs to select the contract that maximises the joint gain. However, since an agent does not know its opponent's utility functions ome form of approximation is needed. The heur is tic we employ is to select the contract that is most "similar" to the opponent 's last proposal (since this might be more acceptable to the opponent). To compute similarity we use the concept of fuzzy similarity, (Zadeh, 1971). Fuzzy similarity is an approx imation heuristic, which supports reasoning of the kind" *if pistrue*, then qisclose to being true imation heuristic, which supports reasoning of the kind" if pistrue, then qisclose to be in grave in a time to show the support of the

Atrade -offisdefinedasfo llows. Given an offer, x, from agent a to b, and a subsequent counter offer, y, from agent b to a, with $\theta = Va(x)$, a trade off for sent a with respect to y is defined as:

trade
$$-off_a(x,y) = argmaxz$$
 $\in iso_a(\theta) \{ Sim(z,y) \}$

where the similarity, Sim, be tween two contracts is defined as a weighted combination of the similarity of the issues. The similarity between two contracts x and y over the set of issues y is defined as:

$$Sim(x,y) = \sum_{i \in I} w^a Sim_i(x_i, y_i)$$

with $2(j \in J)w^a_{j=1}$ and Sim_i being the similarity function for issue j.

5.3 IssueManipulationMechanisms

Ourotherdeliberationmechanismistheissuesetmanipulation(Faratin etal ..1999). Negotiation processes are directed and centred around the resolution of conflicts over a set of issuesJ.Thi s setmayconsistofoneormoreissues(distributed and integrative bargaining respectively (Raiffa, 1992)). For simplification we assume the ontology of the set of possible negotiation is sues (see figure4) J,issharedknowledgeamongsttheagents.It isfurtherassumedthatagentsbegin -specifiedsetof"core"issues, $J(core) \subseteq J$, and possibly other mutually negotiationwithapre agreednon -coresetmembers, $J(\neg core) \subseteq J$. Alterationsto J(core) are not permitted since some price of services are mandatory. However, elements of featuressuchasthe $J(\neg core)$ canbe altereddynamically. Agentscanaddorremove issues into $J(\neg core)$ astheysearchfornew possibleanduptonowunconsidered solutions.

Inthe VPN scenario, agents negotiate over both core and non -core issues. Moreover, it is sometimes important to be able to change the set of issues in order to make an agreement more likely or relevant. For example, a SPA may begin QoS negotiation with a NPA specifying only bandwidth. However, subsequent y NPA may decide to include into the QoS negotiation a packet loss is sue with a high value if SPA has demanded a high capacity bandwidth. Alternatively,

SPA may decide to remove the bandwidth issue from the QoS negotiation with NPA if IPCA has changed its deliberate overhow to combine these add and remove operators in a manner that maximises some measure --- such as the contracts core (Faratin etal, 1999). However, a search of the etree of possible operators to find the optimum set of issues may be computationally expensive. To overcome this problem we are in the process of implementing any time algorithms that use the negotiation time limits to compute a, possibly sub optimal, solution.

5.4 MetaStrategies

The above -mentioned mechanisms formally capture the decision problems of *VPN*agentsinthe courseofservicenegotiation. However, since there are three choices of mechanism an agent is nowfacedwiththedecisionproblemofwhicho fthethreetochoosefrom. The function of the meta-strategyreasoneristoresolvethisdecisionproblembyselectingoneoftheoffersofthe responsive,trade -offorissuemanipulationmechanisms. Themeta -strategyofwhichmechanism asedonanynumberofdecisionfactorssuchasthetimedeadlinetoreacha toselectcanbeb solutioninnegotiation, the concernfor global optimality of the negotiated solution, the behaviour oftheopponentinnegotiation, negotiation is instalemate, etc. For example, ifthetimetoreacha solutionisadequate, VPN agentsmayadoptameta -strategythatutilisesthetrade -offmechanism tosearchforanegotiationdealthatincreasestheglobalbenefit. On the other hand, if the time to reachasolutionisveryshort,th enaresponsivemechanismismorelikelytofindagreementsthat, althoughareoflowerjointutility, are nonetheless better than nodeal. Alternatively, if negotiation $is perceived to be indead lock then modification of the set of issues innegotiation \\ m$ avbreak deadlocks. The choicerule of which mechanism to select is currently being empirically investigatedinanumberofdifferentnegotiationenvironments.

6. Conclusions

Thispaperhasdescribedthedesignandimplementationofamulti -agentsystemfor provisioning virtualprivatenetworks. The implementation is based upon the FIPA standard and was realised through the FIPA -OSplatform. A key component of this application was the automated negotiation that took place between the various stakeholder agen ts. To this end, we described the negotiation algorithms we have developed and implemented for this application. Our algorithms enable agent stoengage in flexible negotiations and incorporate structures for concession making in the face of varying environ mental factors, is sue trade -of fmechanisms and is sue manipulation mechanisms.

REFERENCES

A.BondandL.Gasser(1988) ReadingsinDistributedArtificialIntelligence .MorganKaufmann Publishers,Inc.,SanMateo,California.

K.P.CorfmanandS.Gupta(19 93) *Mathematicalmodelsofgroupchoiceandnegotiations*. HandbookinOperationsResearchandManagementSciences, 5,83 -142.

P.Faratin, C.Sierra, and N.R.Jennings (1998) Negotiation Decision Functions for Autonomous Agents . Int. Journal of Robotics and Autonomous Systems 24(3 -4)159 -182

P.Faratin, C.Sierra, N.R.Jenningsand P.Buckle (1999) Designing Responsive and Deliberative Automated Negotiators . Proc. AAAI Workshop on Negotiation: Settling Conflicts and Identifying Opportunities, Orlando, FL, 12-18.

P.Faratin, C.Sierra, and N.R.Jennings (2000) *Using Similarity - Criteriato Make Negotiation Trade - Offs.* Proc.IntConf.OnMulti - Agent Systems (ICMAS - 2000), Boston, USA.

FACTSURL: http://www.labs.bt.com/profsoc/facts/

T.Finin, Y.Labrouand J.Mayfield (1997) *KQMLasanagentcommunicationlanguage* In Software Agents, Bradshaw JM (ed.), MITPress, 291 -316.

FIPA-OSURL: http://www.nortelnetworks.com/fipa-os

FIPA97V2,Part2 AgentCommunications .October1998URL: http://www.fipa.org/spec/fipa97.html

FIPA97V2,Part1 AgentManagement .October1998URL: http://www.fipa.org/spec/fipa97.html

FIPA97Part3 Agent/SoftwareIntegration. October1997URL: http://www.fipa.org/spec/fipa97.html

FIPA98,Part13 Developer'sGuide October1998URL: http://www.fipa.org/spec/fipa98.html

FIPA99,Part18 ContentLanguagelibrary January2000URL: http://www.fipa.org/spec/fipa99.html

FIPA99,Part2 AgentCommunication January2000URL: http://www.fipa.org/spec/fipa99.html

N.R.Jennings, P.Faratin, T.J.Norman, P.O'Brienand B.Odgers (2000) *Autonomous Agents for Business Process Management*. Int. Journal of Applied Artificial Intelligence 14(2).

H.Raiffa(1982) The Artand Science of Negotiation . Harvard University Press, Cambridge, USA.

J.S.RosencheinandG.Zlotkin(1994) RulesofEncounter. TheMITPress,Cambridge,USA.

C.Sierra, P.Faratinand N.R.Jennings (1999) *Deliberative Automated Negotiators Using Fuzzy Similarity*. ProcEUSFLAT -ESTYLF Joint Conf. on Fuzzy Logic, Palmade Mallorca, Spain, 155 158.

G.Weiss(1999) MultiagentSystems ,TheMITPress,Cambridge,Massachusetts.

L.A.Zadeh(1971) SimilarityRelationsandFuzzyOrderings. InformationSciences, 3,177 -200.