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Abstract

The problem of the combination of imprecision and uncertainty combination from

the approximate reasoning point of view is addressed. An imprecise and uncertain in-

formation can be represented as a fuzzy quantity together with a certainty value. In

order to simplify the use of such information, it is necessary to combine the imprecision

and uncertainty of the fuzzy number. In this paper we propose a method for combining

them based on the use of information measures. The ®rst step consists in truncating the

fuzzy number by the certainty value. Since non-normalized fuzzy numbers are di�cult

to use, we transform the truncated fuzzy number into a normalized fuzzy number which

contains the same amount of information. To formalize this process, we develop a

theoretical context for the information measures on fuzzy values. We study the fuzzy

numbers transformation and its properties, and give an approximate reasoning inter-

pretation to the approach. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

The co-existence of imprecision and uncertainty within a concrete datum
appears in many applications. For example, in the study of optimization
methods in fuzzy graphs [4] or in the framework of uncertain fuzzy databases
[1]. In these two cases, the given solutions give rise to a series of inconveniences
derived, mainly, from the use of non-normalized or non-trapezoidal fuzzy sets,
respectively.

In this paper we investigate the problems associated with the combina-
tion of imprecision and uncertainty from the approximate reasoning point
of view. To do that, we use the general transformation function T intro-
duced in [14] that will allow us to relate our results to other approaches of
the literature and that will open new ways for the treatment of this prob-
lem.

This type of information can be expressed, in general, by an imprecise value
A (represented, for example, by a trapezoidal fuzzy number) together with a
certainty level a associated with such value. The situation can be formulated as
a conditional expression in the following terms.

If the datum is totally true then its value is A. Since we have a certainty level
a < 1, the generalized modus ponens could be formulated as:

If the certainty level is 1, then the value is A.
If the certainty level is a < 1, then the value is A0:

This situation is equivalent to the generic case:

Therefore, a natural way to solve the problem is to consider that the datum
we are handling is A0 de®ned as: lA0 �x� � I�a; lA�x�� where I is a material im-
plication function which re¯ects the interpretation given to the compatibility
degree.

There exist in the literature two main ways of dealing with imprecise and
uncertain data and can be interpreted as follows:
1. To Truncate: If the datum is �a;A�, then A0 is de®ned by the membership

function lA0 �x� � min�a; lA�x�� which directly implies that we are using
Mamdani's implication in our reasoning.

2. To Expand: If we assume that a is a necessity, then A0 is given by the mem-
bership function lA0 �x� � max�1ÿ a; lA�x��, which corresponds to Kleene±
Dienes' implication as foundation of our reasoning.
These two approaches correspond to the disjunctive and conjunctive

representation of the inference rule, respectively.
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From our point of view, we understand that the use of these implication
functions [2,3,15] for information representation (which is our ®nal objective)
could induce an error, since datum A0 we are using will be evaluated in terms of
compatibility with other data and, in these cases:
1. Mamdani's implication results in a decrease of the compatibility to level a in

any case. This result seems to be reasonable as a is the certainty degree but it
obliges us to work with non-normalized fuzzy numbers.

2. Kleene±Dienes' implication imposes that any datum would be compatible
with A0 at least at level 1ÿ a. This result may not be suitable for some
applications, since it assigns the same possibility to all the points of the
underlying domain independently from the distance to the support set of
A. Let us think that, for example, if A is very heavy with certainty a, the val-
ues close to 0 will have the same possibility than those close to the support
of very heavy.
Our main objective is to ®nd a transformation function that, based on

di�erent criteria, ensures us a suitable change. The intuitive ideas used to ®nd
such a transformation function are:
· To truncate A at level a (we obtain Aa).
· To normalize Aa (we obtain AT).

If we assume the translation of uncertainty into imprecision, then impreci-
sion of AT must be larger than A imprecision but AT will never be de®ned on
the whole domain. The idea is to increase such imprecision around the support
set of value A. The transformation used is according to equitative distribution
of imprecision on the support of A which is valid when no more information is
provided, i.e., imprecision is distributed according to a metric which takes into
account the nearness to the original information. Following these ideas, when
we have the information that X is black with certainty a, we will never give a
positive possibility to colour white but to colours near enough to black de-
pending on value a.

This way of reasoning has not been used yet and will permit us to ensure
that the information amount provided by an uncertain imprecise value A is the
same as the information provided by its transformation AT, which is fully true
and normalized.

The paper is organized as follows. In Section 2, the preliminary concepts
and the notation used are introduced. In Section 3, the axiomatic de®nition
of an information function on fuzzy numbers and its properties are given.
Based on this information function, a transformation for fuzzy numbers is
introduced in Section 4. This transformation ensures that the amount of
information before and after its application remains equal. In Section 5, we
are going to prove that the transformation function de®ned is an implication
function. To do it, we are checking that all the conditions an implication
function must hold, are also held by our transformation function. Finally, in
Section 6, the main conclusions of this work are summarized.
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2. Preliminary concepts

A fuzzy value is a fuzzy representation about the real value of a property
(attribute) when it is not precisely known.

In this paper, according to Goguen's Fuzzi®cation Principle [10], we will call
every fuzzy set of the real line fuzzy quantity. A fuzzy number is a particular
case of a fuzzy quantity with the following properties.

De®nition 1. The fuzzy quantity A with membership function lA�x� is a fuzzy
number i�:
1. 8a 2 �0; 1�; Aa � fx 2 R j lA�x�P ag (a-cuts of A) is a convex set.
2. lA�x� is an upper-semicontinuous function.
3. The support set of A Supp�A� � fx 2 R j lA�x� > 0g is a bounded set of R,

where R is the set of real numbers.

The given de®nition is based on the de®nition given by Dubois and Prade [7]
but we do not require either normalization or that the modal interval is a
singleton.

We will use ~R to denote the set of fuzzy numbers, and h�A� to denote the
height of the fuzzy number A. For the sake of simplicity, we will use capital
letters at the beginning of the alphabet to represent fuzzy numbers.

The interval �aa; ba� (see Fig. 1) is called the a-cut of A. So then, fuzzy
numbers are fuzzy quantities whose a-cuts are closed and bounded intervals:
Aa � �aa; ba� with a 2 �0; 1�. The set Supp�A� � fx 2 R j lA�x� > 0g is called the
support set of A.

If there is, at least, one point x verifying lA�x� � 1 we say that A is a nor-
malized fuzzy number.

Sometimes, a trapezoidal shape is used to represent fuzzy numbers. This
representation is very useful as the fuzzy number is completely characterized by

Fig. 1. Fuzzy number.
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four parameters �m1;m2; a; b� and the height h�A� as shown in Fig. 2. Other
parametrical representation for fuzzy numbers can be found in [5]. We
will call modal set all values in the interval �m1;m2�, i.e., the set
fx 2 Supp�A� j 8y 2 R; lA�x�P lA�y�g. The values a and b are called left and
right spreads, respectively.

When a fuzzy number is not normalized, this situation can be interpreted as
a lack of con®dence in the information provided by such numbers [6,11]. In
fact, the height of the fuzzy number could be considered as a certainty degree
of the represented value. On the other hand, if we assume these considerations,
normalized fuzzy numbers represent imprecise quantities on which we have
complete certainty. As we will see along this paper, this uncertainty can be
translated, using some suitable transformations, into imprecision, taking into
account that the less the uncertainty (or the more the certainty) about a fuzzy
number, the more is the imprecision of such a number. This transformation
will be done in such a way that the amount of information of the fuzzy number
will be constant before and after the modi®cation.

3. An information measure on fuzzy values

As pointed out in Section 2, we are going to translate uncertainty into im-
precision and vice versa under certain conditions. The most important of these
conditions is that the amount of information provided by the fuzzy number
remains equal before and after the transformation. So then, the ®rst step is to
de®ne an information function for fuzzy numbers.

We propose an axiomatic de®nition of information, partially inspired in the
theory of generalized information given by Kamp�e de F�eriet [13] and that can
be related to the precision indexes [8] and the speci®city concept, introduced by
Yager in [16].

Fig. 2. Trapezoidal fuzzy number.
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De®nition 2. Let D � ~R j R � D; we say that the application I de®ned as

I : D! �0; 1�
is an information on D if it veri®es:
1. I�A� � 1 8A 2 R,
2. 8A;B 2 D j h�A� � h�B� and A � B) I�B�6 I�A�:
The ®rst condition means that real numbers are totally informative and, the
second one, that considering two fuzzy numbers with the same height, if one of
them is contained in the other one, then it is obvious that the ®rst one, which is
more precise, is also more informative.

The given de®nition of information is very similar to the de®nition of the
precision index, in fact, when applied to normalized fuzzy numbers, both of
them coincide. This coincidence is very reasonable because, when there is no
uncertainty, information is equivalent to precision. In this way, the informa-
tion function is a generalization of the precision indexes.

De®nition 3. Let A 2 D be a fuzzy number. We say that A has the maximum
information or that A is totally informative with respect to I i� I�A� � 1.

Obviously, real numbers are totally informative with respect to any infor-
mation measure I , that is, 8r 2 R; I�r� � 1.

The information about fuzzy numbers depends on di�erent factors, in
particular, on imprecision and certainty. We focus on general types of infor-
mation related only to this two factors.

To compute a measure of the imprecision contained in a fuzzy number, we
will consider a measure of the imprecision of its a-cuts, which are closed in-
tervals on which the following function is de®ned:

8A 2 ~R; fA�a� �
ba ÿ aa if a6 h�A�;
0 otherwise:

(

From this imprecision function on the a-cuts, we de®ne the total imprecision
of a fuzzy value as a combination of the imprecision in every level a. When
a � 0, we will consider that fA�0� is the length of the support set.

De®nition 4. The imprecision of a fuzzy number is de®ned as follows:

f : ~R! R�0 ;

8A 2 ~R; f �A� �
Z h

0

�A�fA�a�da:
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The imprecision function f coincides with the area below the membership
function of the fuzzy value, as shown in Fig. 3.

Obviously, it is held that 8A;B 2 ~R j A � B) fA�a�6 fB�a� 8a 2 �0; h� when
h�A� � h�B� � h and, therefore f �A�6 f �B�:

Related to the height (certainty) and the imprecision of a fuzzy value, we
de®ne the following general type of function on ~R:

IF : ~R! �0; 1�;

IF�A� �F�h�A�; f �A��:
The following result guarantees that, for certain types of F functions, IF is a

information function on R.

Proposition 1. Let F : �0; 1� � R�0 ! �0; 1� such that
1. F�1; 0� � 1;
2. 8y; z 2 R�0 j y6 z)F�x; z�6F�x; y� 8x 2 �0; 1�:
then, IF is an information function on ~R.

Proof. Let A 2 R. Then obviously h�A� � 1 and f �A� � 0. Then, IF�A� �
F�1; 0� � 1.

Let A;B 2 ~R j A � B and h�A� � h�B�. Then f �A�6 f �B� and it is veri®ed
that

F�h�B�; f �B�� � IF�B�6F�h�A�; f �A�� � IF�A�
and therefore, IF is an information on ~R. �

When F veri®es the previous conditions, we will call function IF an
F-information. In this way, associated with a class of functions, we can build
some particular types of information on ~R with the property of not depending

Fig. 3.
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on the position the fuzzy value has on R, as shown in the following proposi-
tion.

Proposition 2. Let F be a function verifying conditions established in Proposi-
tion 1, A 2 ~R and t 2 R. Then,

IF�A� � IF�A� t�:

Proof. If A 2 ~R and t 2 R then A� t 2 ~R and lA�t�z� � lA�zÿ t� 8z 2 R. Be-
sides, h�A� t� � supz2RflA�t�z�g � supz2RflA�zÿ t�g � supz2RflA�z�g � h�A�
and �A� t�a � Aa � t, resulting that fA�a� � fA�t�a� and f �A� � f �A� t�;
therefore the result is immediate. �

There are many ways to build information functions but, for our purpose,
we are de®ning information associated with a particular function. This
F-information will permit, subsequently, the de®nition of transformations that
keep constant the amount of information a fuzzy number provides.

Let us consider the function

F : �0; 1� � R�0 ! �0; 1�;

F�x; y� � x
k � y � 1

; k 2 R�;

that trivially veri®es the conditions established in Proposition 1. Hence, we can
de®ne the following F-information.

De®nition 5. We de®ne the function

IF : ~R! �0; 1�;

8A 2 ~R; IF�A� � h�A�
k � f �A� � 1

;

where h�A� is the fuzzy number height, f �A� is the imprecision associated with
A and k 6� 0 a parameter which depends on the domain scale (in Section 5, this
parameter is widely explained).

Evidently, by Proposition 1, IF is an information function and, it trivially
follows that

8A 2 ~R; 06 IF�A�6 h�A�6 1:

As can be immediately deduced from its de®nition, information IF is always
bounded by the fuzzy number height. Therefore, fuzzy numbers with maximum
information with respect to IF must also have maximum height (h�A� � 1) and,
consequently, minimum imprecision (f �A� � 0).
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The fuzzy numbers shown in Figs. 4(a) and (b) provide the same informa-
tion as

0:5

1� 1
� 1

3� 1
� 0:25

assuming k � 1.
The fuzzy numbers shown in Figs. 4(b) and (d) are the same fuzzy numbers

expressed in di�erent domain scales. As the information provided by both
numbers should be the same, the k parameter must be adapted to the scale
changes considering a base or reference scale where k is set to 1 (in this case
kilometers)

1

3� 1
� 1

1
1000
� 3000� 1

;

so then, if the base scale is kilometers and the current scale in meters, k pa-
rameter must be set to 1=1000.

Fig. 4. Fuzzy values examples.
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The case of Fig. 4(c) is not really a fuzzy number representation if we strictly
follow De®nition 1, but it is very illustrative to see how these types of fuzzy
quantities with in®nite support, provide information 0, as f �A� � 1.

We could also wonder which interval has the same information amount as a
concrete normalized trapezoidal fuzzy number. The answer to this question is
the following ± Let us suppose our normalized trapezoidal fuzzy number is the
general one represented in Fig. 5(a). One of the possible intervals (the one
centered in the modal set) with the same information as the fuzzy number is
represented in Fig. 5(b) expressed by B � �m1 ÿ a

2
;m2 � b

2
�. It can be easily

proved that I�A� � I�B� and that B � E�A�, i.e. the mean value of A in the sense
of Dubois and Prade [9,12].

Once we have an information function on fuzzy numbers, we want to use it
to de®ne transformations which preserve such information function value. The
idea is to ®nd an equivalent representation of the considered fuzzy number in
such a way that we change uncertainty by imprecision keeping constant the
relationship between them de®ned by the information function.

4. Fuzzy numbers transformations

4.1. Basic model

The aim of the transformations we are proposing in this section is, basically,
to be able to modify the height of a fuzzy number but keeping the information
contained in it. The reason for doing this is that, in most applications, it is very
convenient that fuzzy numbers are normalized (simplicity, better understand-
ing for users, etc. . .). Given a fuzzy number, a transformation on it will give
another fuzzy number with the same information amount but di�erent height.
So then, to de®ne transformations, we will request that the information

Fig. 5. Normalized trapezoidal fuzzy number and the corresponding interval.
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function remains ®xed, i.e., we will modify certainty and imprecision but
keeping constant the relation between both numbers, which is de®ned by the
information function.

The de®nition of transformation will be obtained from the condition of
equality in the information but, as a ®rst step, we must establish what we
understand for transformation of a fuzzy number on a subset of ~R.

De®nition 6. Let us consider a 2 �0; 1� and the class of fuzzy numbers D � ~R.
We say that

Ta : D! ~R

is a transformation for an information function I on D, if it veri®es that:
1. Ta�A� 2 D;
2. h�Ta�A�� � a;
3. I�Ta�A�� � I�A� 8A 2 D:
In this way, for a height level a, Ta�A� need not exist but, if it does, it must
verify the conditions above.

De®nition 7. Given the transformation Ta, we say that A 2 D is transformable
for a � �0; 1� if there exists Ta�A�.

We will denote H�A� � fa 2 �0; 1� j 9Ta�A�g the set of levels, where A is
transformable.

Though most of the results obtained here can be generalized for any type of
fuzzy number, we will focus on trapezoidal ones for the sake of simplicity in the
transformation function. We will note by s the class of trapezoidal fuzzy
numbers on R.

Given a fuzzy number A 2 s, we are looking for the conditions that another
fuzzy number B, with ®xed height a 2 �0; 1�, must hold to have the same in-
formation amount as A.

Proposition 3. Let A;B 2 s be two fuzzy numbers with heights h�A� � aA and
h�B� � aB, respectively. Then,

IF�A� � IF�B� () fB�0� � fB�aB� � fA�0� � fA�aA� � 2

k
D�aA; aB�;

where

D�aA; aB� � aB ÿ aA

aA � aB
:

Proof. It is immediate for trapezoidal fuzzy numbers, taking into account that
f �A� � ��fA�0� � fA�aA��=2� � aA: �
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That is, the sum of base imprecision and modal imprecision must be mod-
i®ed by the value �2=k� � D�aA; aB� for A can be transformed into a fuzzy
number B of ®xed height. Besides, if we pretend to put up the height of A
�aA < aB�, then D�aA; aB� is positive and the sum of base imprecision and modal
imprecision of B must augment; on the other hand, to put down the height
�aB < aA�, since D�aA; aB� is negative, imprecision must be decreased. When the
height is ®xed, it is obvious that imprecision remains equal.

So then, the relation between uncertainty and imprecision is the following:
· An increase of certainty means an increase of imprecision.
· A decrease of imprecision means a decrease of certainty.

Proposition 3 permits us to de®ne a transformation assuming that:
1. Modal imprecision is preserved.
2. The increase/decrease of imprecision is equally distributed in the right and

left sides of the fuzzy number independently from its shape.

De®nition 8. Let A 2 s be a fuzzy number such that

A � f�m1;m2; a; b�; aAg;
where m1;m2; a and b are shown in Fig. 2 and aA is the height of A.

Let a 2 �0; 1�. We will denote D�aA; a� � D and de®ne

Ta�A� � m1;m2; a
��

� D
k
; b� D

k

�
; a

�
for those a in which the transformation makes sense.

Proposition 4. Ta is a transformation for trapezoidal fuzzy numbers.

Proof. Let us assume that there exists Ta�A� for a 2 �0; 1�. Then, obviously
Ta�A� 2 s and h�Ta�A�� � a.

On the other hand,

fTa�A��0� � fTa�A��a� � fA�0� � fA�aA� � 2

k
D:

By Proposition 3, IF�A� � IF�Ta�A�� and using De®nition 6, Ta is an in-
formation on s: �

De®nition 9. Let A � f�m1;m2; a; b�; aAg be a trapezoidal fuzzy number. We
de®ne the lowest limit of the transformation as

l�A� � max
aA

k � a � aA � 1
;

aA

k � b � aA � 1

� �
:

It can be proved immediately that l�A� is a number in the interval �0; 1� and
it is less or equal than the height of A.
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Proposition 5. A 2 s is transformable () a P l�A�:

Proof. A 2 s is transformable () 9Ta�A� and the existence of Ta�A� means
that the spreads of A are positive or null, as it is the only possible restriction to
build it. Therefore,

a� D
k P 0

b� D
k P 0

9=;() aP l�A�: �

Following this result, the transformation domain is H�A� � �l�A�; 1�, where
A 2 s. Since the lowest limit of the transformation is always less or equal than
the height of A, it is always possible to make a transformation for putting up
the height of a fuzzy number but, on the contrary, there is a minimum level
from which transformations are not possible. In Fig. 6 we have represented
graphically the behavior of Ta when the height is decreased and, therefore,
imprecision is also decreased. On the other hand, in Fig. 7 it is shown how an
increment of height produces an increment of imprecision. This result agrees
with the following assertion: ``Imprecision and uncertainty can be considered as
two antagonistic points of view about the same reality, which is human imper-
fection. . . and if the contents of a proposition is made more precise, then uncer-

Fig. 6. Transformation that decreases imprecision.

Fig. 7. Transformation that augments the certainty.
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tainty will have to be augmented'' [6], which is a way to enunciate the principle
of incompatibility between certainty and precision, established by Zadeh in
[17].

Considering that f �A� is a measure for the imprecision of the fuzzy number
A and that 1ÿ h�A� is a measure of its uncertainty, this principle can be
enunciated as:
· If f �A� decreases, then h�A� decreases.
· If h�A� increases, then f �A� increases.

Function IF ®xes the constant relationship between imprecision and un-
certainty and is associated with the concept we represent using a fuzzy number.
On the other hand, as transformations to put up the height are always possible,
we can always normalize (a � 1) the fuzzy numbers we are working with.
Normalization means a loss of uncertainty, i.e., the security on the validity of
the fuzzy representation. In Fig. 8 it is shown how the fuzzy number x kilo-
meters with certainty degree less than 1 is transformed into a bigger fuzzy
number with certainty 1.

Note. We can see how, contrary to the model of expanding imprecision over
the whole domain, our model assumes implicitly that imprecision must be
distributed depending on the nearness to the original concept.

Proposition 6 (Ta Properties). Let A 2 s and a; b 2 H�A�: Then the following
properties are verified:
1. Th�A��A� � A;
2. Ta�Tb�A�� �Ta�A�;
3. Th�A��Ta�A�� � A:

Proof. Let us consider A � f�m1;m2; a; b�; h�A�g, then
1. Since D�h�A�; h�A�� � 0, then Th�A��A� � A;
2. Tb�A� � f�m1;m2; a� D�h�A�; b�; b� D�h�A�; b��; bg;

Fig. 8. An increase of certainty produces an increase of imprecision.
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Ta�Tb�A�� � m1;m2; a
��

� D�h�A�; b� � D�b; a�
k

;

b� D�h�A�; b� � D�b; a�
k

�
; a

�
and, since D�h�A�; b� � D�b; a� � D�h�A�; a� then Ta�Tb�A�� �Ta�A�;
3. It trivially follows from (1) and (2).

4.2. The k parameter and its experimental computation

As we pointed out at the end of Section 3, k parameter is adjusted depending
on the domain scale taking into account that there is a pre-®xed base scale, for
which k parameter is set to 1. The idea is that identical fuzzy numbers, though
expressed in a di�erent scale, must provide exactly the same information
amount and that this information must be the same before and after a trans-
formation is applied.

In the next sub-sections we are going to illustrate with some examples the
use of k parameter in the case that the base scale is used (k � 1) and in the case
when it is not.

4.2.1. Fuzzy values in the same domain scale: k � 1
Let us suppose we are given the fuzzy number A � f�3; 4; 1; 1�; 0:5g for the

concept `I believe it is few kilometers far away' where the believe has been
quanti®ed by 0:5, and we want A to be normalized, that is, a � 1 for the
proposition become 'It is few kilometers far away'. Since the information
amount before and after the transformation must be the same,

IF�A� � IF�T�A��
and, by Proposition 3, D�0:5; 1� � �1ÿ 0:5�=�1� 0:5�. Therefore, the trans-
formation of A is

T�A� � 3; 4; 1

��
� 1

k
� �1ÿ 0:5�
�1� 0:5� ; 1�

1

k
� �1ÿ 0:5�
�1� 0:5�

�
; 1

�
� f�3; 4; 2; 2�; 1g

considering k � 1, since the transformation is from kilometers into kilometers.

4.2.2. Fuzzy values in di�erent domain scale
In the previous case, k � 1 as we were considering a ®xed scale, but what

would happen if we were given the same information in two di�erent scales? In
this case, k is set to the number of units of the base scale contained in a unit of
the scale we are using. For example, if the base scale is kilometers and the scale
in use is meters, k � 1=1000, i.e. the number of kilometers contained in a meter.
If the base scale is centimeters and the scale in use is meters, then k � 100.
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Let us see the information function behavior with an example. In this case,
we must establish a base scale as a reference, for example, kilometers. In this
situation, let us suppose we want to normalize the following fuzzy number
given in kilometers and meters,

Akm � f�3; 4; 1; 1�; 0:5g in kilometers;

Am � f�3000; 4000; 1000; 1000�; 0:5g in meters:

Akm transformation gives the result obtained above: T�Akm� � f�3; 4; 2; 2�; 1g.
For Am transformation, k parameter must be set to 1=1000 (the relation

between the scale we are using and the base scale) and the result is
T�Am� � f�3000; 4000; 2000; 2000�; 1g which is the same result obtained for
T�Akm� but represented in the corresponding scale.

If we consider now that Akm � f�3000; 4000; 1000; 1000�; 0:5g in kilometers,
k parameter will be 1 and the transformation will be
T�Akm� � f�3000; 4000; 1001; 1001�; 1g:

As we can see, the transformation function T is correct with respect to the
change to di�erent domain scales.

4.2.3. Experimental computation of the base scale
In Section 4.2.2, we have seen how, thanks to k parameter, we can use

di�erent domain scales for the fuzzy numbers we are handling. But there is
another key point when using transformations and the following question
arises. Should the increase/decrease be the same and not depend on the
meaning of the fuzzy number? or, in other words, should the increase be the
same irrespective of the fact that we are dealing with ages or with distance? Up
to here, we have considered that the user could change such increase/decrease
through the scale factor k. In this section we are going to see, in an experi-
mental way, how we can adjust the transformation model to each problem
domain.

Let us think, for example, that when dealing with ages, the user is prepared
to admit that approximately 40 years is any age in the interval �38; 42� (spread is
2) but when talking about distance in kilometers, approximately 7 kilometers is
any distance in the interval �6; 8� (spread 1).

Taking these comments into account, it seems to be reasonable that k pa-
rameter is not only dependent on the domain scale but also on the concept the
fuzzy number is representing. In this sense, k should have the form

k � k0 � k;
where k is the relation between the scale we are using and the base scale (as in
the previous section) and k0 is the correction factor that depends on the
meaning and that allows us to determine the reference scale. Let us see now
how k0 could be experimentally calculated considering that we are working in a
base scale, i.e. k � 1.
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Let us suppose we have the real value f�x; x; 0; 0�; ag with a < 1 (see
Fig. 9(a)).

We could ask the user to what point he is prepared to relax x as to accept it
as completely true. Let us suppose the user says that he will accept it as
completely true if we enlarge x at both sides with a spread c, as shown in
Fig. 9(b), becoming the initial real value the fuzzy numberf�x; x; c; c�; 1g. If it is so,

c � 0� D
k0

and D � 1ÿ a
1 � a

and, subsequently, value k0 is

k0 � 1ÿ a
c � a with c 6� 0:

For example, if we have the real value f�5; 5; 0; 0�; 0:9g and the user admits
it as completely true if we transform it into f�5; 5; 0:5; 0:5�; 1g, as shown in
Fig. 10, then the computed value for k0 is

k0 � 1ÿ 0:9

0:5� 0:9
� 0:1

0:45
� 1

4:5
� 0:22:

Fig. 9. Relaxation of x according to user's credibility.

Fig. 10. Relaxation of value 5 for being true.
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So then, whereas k depends only on the scale we are doing the transfor-
mation on, k0 permits the user to specify the changes magnitude depending
directly on the domain of the problem we are tackling.

As a conclusion of the experimental computation of k, we can say that:
1. The translation of certainty into imprecision is valid for the concrete prob-

lem we are tackling, as it has been elicitated experimentally by the user.
2. We can adjust the transformation to particular problems and domains.
3. It is obvious that the experiment for obtaining k0 should be repeated many

times using di�erent and separate domain values and di�erent certainty lev-
els. The idea is to obtain an average k0, that is, if we do n experiments and ki

0

is the value obtained in experiment i, then

k0 �
Xn

i�1

ki
0 �

1

n
:

5. Management of uncertain fuzzy data

As pointed out in the introduction, there are two main approaches to deal
with uncertain fuzzy numbers. From a semantical point of view and for our
purposes, it seems to be more reasonable to truncate at level a than to extend
the support set to the whole domain. Nevertheless, truncating has the incon-
venience that non-normalized fuzzy numbers must be handled. To be able to
work always with normalized fuzzy numbers, we use the transformation
function introduced in this paper setting a � 1. This function will convert an
uncertain imprecise value �A; a� to an A0 which is normalized and provide the
same information as the original A value truncated to an a level. All these
processes can be summarized as follows:
1. We start from a fuzzy number A and a certainty level a attached to it.
2. We truncate A at level a assuming that A height is its certainty value. We

build Aa.
3. To take advantage of normalized fuzzy number properties, we transform Aa

into AT (normalized version of Aa using our transformation function).
We are going to illustrate this process with an example.
Let A be a trapezoidal number expressed as A � f�m1;m2; a; b�; 1g with an

associated certainty level a. A truncated to level a is

Aa � m1�f ÿ a � �1ÿ a�;m2 � b � �1ÿ a�; a � a; b � a�; ag
and the transformation of Aa is

AT � m1

��
ÿ a � �1ÿ a�;m2 � b � �1ÿ a�; a � a� 1ÿ a

k � a ; b � a� 1ÿ a
k � a

�
; 1

�
:
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It can be proved that the direct expression for computing AT from A and a
is

AT � 1ÿ a
a

�

 S
�
� a

�

 A� 1ÿ a

a

��

 Supp�A�

���
;

where � and 
 are the fuzzy extensions of sum and product operators,
S the fuzzy number expressed by S � f�0; 0; 1=k; 1=k�; 1g and Supp�A�
the support set of A expressed by the fuzzy number Supp�A� �
f�m1 ÿ a;m2 � b; 0; 0�; 1g.

The advantage of this process is obvious. Uncertainty and imprecision are
included in the fuzzy number itself and there is no need to develop or use
di�erent mechanisms from those already introduced for normalized fuzzy
numbers.

5.1. An approximate reasoning interpretation

As we mentioned in the introduction, the problem of the co-existence of
both uncertainty and imprecision can be formulated by means of the compo-
sitional rule of inference. In fact, some approaches that solve this problem
make use of well-known implication functions on the certainty degree and the
rule consequent

The starting point of our approach is quite di�erent since we have trans-
formed A in such a way that the information provided by A truncated at the
certainty level is preserved. Anyway, we are going to prove that this approach
is very close to the approximate reasoning one. In fact, we are proving that for
the case of trapezoidal fuzzy numbers, the whole process of transformation
applied is an implication function in the sense of Trillas and Valverde [15]. To
do that, we are going to ®nd the expression which summarizes the whole
process of transformation of A with certainty a into AT. This expression is
calculated in the following property.

Property 1. Let A be a trapezoidal fuzzy number expressed as A � �m1;m2; a; b�
and let us suppose that the uncertainty level of A is a. Let A truncated to level
be Aa and the normalized version of Aa be AT. In these conditions, it is verified
that
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8v 2 R j lA�v� > 0;

lAT�v� �

1 a6 lA�v�;

min
a

a � a� D
k

� lA�v� �
D

a � a� D� D
k

;
b

b � a� D
k

� lA�v� �
D

b � a� D� D
k

( )
;

8>>><>>>:
where D � D�a; 1� � �1ÿ a�=a and k is the scale factor.

Proof. Proving this property is quite direct taking into account that the a-cut of
A has the following membership function

lAa�v� � a if lA�v�P a;
lA�v� otherwise:

�
So then, AT � f�m1a;m2a; a � a� �D=k�; b � a� �D=k��; 1g, where
m1a� m1 ÿ a:�1ÿ a�� m1 ÿ a� a � a and m2a� m2 � b � �1ÿ a�� m2 � bÿ b � a.

The graphical representation of these trapezoidal fuzzy numbers is shown in
Fig. 11.

From Fig. 11 we can directly obtain that lAT�v� � 1 if a6 lA�v�. Let us see
now the case where this condition is not held. In this situation, a > lA�v� > 0
and v 2 �m1 ÿ a;m1a� or v 2 �m2a;m2a � b�. Besides,

Fig. 11. Graphical representation of A, Aa and AT.
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lA�v� �
vÿ �m1 ÿ a�

a
if v 2 m1 ÿ a;m1a� �;

�m2 � b� ÿ v
b

if v 2 m2a;m2 � b� �:

8>><>>:
Finally,

lAT�v� �
vÿ �m1 ÿ �aÿ D=k��

a � a� D=k
if v 2 m1 ÿ �aÿ D=k�;m1a� �;

�m2 � b� D=k� ÿ v
b:a� D=k

if v 2 m2a;m2 � b� D=k� �:

8>><>>:
Making operations, we have

lAT�v� �

vÿ �m1 ÿ a� � a
a � �a � a� D=k� �

D=k
a � a� D=k

� a
a � a� D=k

� lA�v� �
D=k

a � a� D=k
if v 2 m1 ÿ �aÿ D=k�;m1a� �;

�m2 � bÿ v� � b
b � �b � a� D=k� �

D=k
b � a� D=k

� b
b � a� D=k

� lA�v� �
D=k

b � a� D=k
if v 2 m2a;m2 � b� D=k� �:

8>>>>>>>>>>><>>>>>>>>>>>:
When v 2 �m1 ÿ �aÿ D=k�;m1a� then,

a
a � a� D=k

� lA�v� �
D=k

a � a� D=k
6 b

b � a� D=k
� lA�v� �

D=k
b � a� D=k

and when v 2 �m2a;m2 � b� D=k� then,

b
b � a� D=k

� lA�v� �
D=k

b � a� D=k
6 a

a � a� D=k
� lA�v� �

D=k
a � a� D=k

:

Making the suitable operations we obtain the expression of the given
transformation function

lAT�v� �
1 if a6 lA�v�;

min
a � a � k � lA�v� ÿ a� 1

a � a2 � k ÿ a� 1
;
b � a � k � lA�v� ÿ a� 1

b � a2 � k ÿ a� 1

� �
:

8><>:
This result led us to de®ne as transformation function for the fuzzy number

A the function

8x; y 2 �0; 1�; I�x; y��
1 if x6 y;

min
a � x � y ÿ x� 1

a � x2 ÿ x� 1
;
b � x � y ÿ x� 1

b � x2 ÿ x� 1

� �
:

8<: �

The relationship of this result with the approximate reasoning is shown in
the following property.
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Property 2. The function I�x; y� previously defined is an implication function in
the sense of Trillas and Valverde [15].

Proof.

1. I is a decreasing function in x. That is 8x; x0 j x6 x0; I�x0; y�6 I�x; y�. In fact,
± if x; x06 y the result is immediate.
± if x6 y and x0 > y it is also immediate since I�x0; y�6 1.
± if x; x0 > y the expression is �a � y � xÿ x� 1�=�a � x2 ÿ x� 1� given that
x > y. In this case, the numerator increases with x more slowly than the
denominator and, therefore, the quotient is a decreasing function.

2. I is an increasing function in y. That is, 8y; y0 j y6 y0; I�x; y�6 I�x; y0�. This
result is obvious since both functions (numerator and denominator) are lin-
ear with respect to y with positive coe�cients. Therefore, the function will be
increasing in y.

3. I�0; y� � 1 8y; 06 y and I�0; y� � 1:
4. I�1; y� � y: Considering the following expression for x � 1, the result is di-

rectly obtained.

I�x; y� � max 0;min
a � y ÿ 1� 1

aÿ 1� 1
;
b � y ÿ 1� 1

bÿ 1� 1

� �� �
� y:

5. I�x; I�y; z�� � I�y; I�x; z�� (property of interchangeability).There are two
cases:
· y6 z. In this case the right side of the property becomes I�x; 1� � 1 by ap-

plying properties 1 and 4, since I�x; z�P I�1; z� � z. Consequently,
y6 z6 I�x; z�. On the other hand, the left side is also equal to 1, since
we have that: y6 z, I�y; z� � 1 and I�x; 1� � 1, which proves the equality.

· z < y. There are two possibilities:
± x P y > z. We are going to prove that: x6 I�y; z� and y6 I�x; z�, and
subsequently that I�x; I�y; z�� � I�y; I�x; z�� � 1. In fact, the following ex-
pressions are held: x � I�1; x�6 I�y; x�6 I�y; z� and y � I�1; y�6 I�x; y�
6 I�x; z�.
± y > z P x. According to I properties, I�x; z� � 1) I�y; I�x; z�� � 1. We
are going to prove that I�x; I�y; z�� � 1. To do that, we must prove that
x6 I�y; z�. Let us suppose the contrary: x > I�y; z�, then I�1; x� >
I�y; z�P I�y; x� and this lead us to the expression I�1; x� > I�y; x�; y6 1
which is in contradiction with the decreasing character of I :

So then, I is an implication function. �

6. Conclusions

The problem of imprecision and uncertainty management through fuzzy
numbers has been addressed. Fuzzy numbers are a useful tool for representing
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imprecise information but, in many cases, this imprecise information can be
given with an uncertainty degree In these cases, the fuzzy number includes
additional information about the con®dence of this information. In this paper
we have proposed a method that allows us to transform the whole information
(imprecision � uncertainty) into a new fuzzy number in such a way that:
· It maintains a principle of distribution of the imprecision based on a metric

that takes into account the distance to the original concept, that is, the closer
an element is to the concept the more is the increase of its membership to the
mentioned concept (based on Zadeh's principle).

· It permits to adjust the results to the users' point of view by using the scale
factor, i.e. we can adjust the transformation to particular problems and do-
mains.

· It is interpreted from the approximate reasoning point of view and, subse-
quently, it guarantees sound results.

· It is easy to implement and, therefore, to be included as a data preprocessing
module.

· The method, not only normalizes but equalizes. This is an important char-
acteristic for problems where an accepted level of uncertainty exists (not nec-
essarily 1).

· If b is set to 1, all the software developed for normalized fuzzy sets is re-us-
able and no new versions are necessary to treat uncertainty.
As future avenues for research we can mention:

1. To give a general expression for fuzzy numbers. In this paper we have only
considered the case of trapezoidal fuzzy numbers but the results could be
generalized for any kind of fuzzy number.

2. To use linguistic uncertainty instead of uncertainty levels.
3. To study how transformations a�ect the results obtained from arithmetic

operations, matching or ranking of fuzzy values.
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