The AGENTO Manual

Mark C. Torrance
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
torrance@ai.mit.edu

October 25, 1991

This document describes an implementation of AOP, an interpreter for programs
written in a language called AGENTO0. AGENTO is a first stab at a programming
language for the paradigm of Agent-Oriented Programming. It is currently under
development at Stanford under the direction of Yoav Shoham. This implementa-
tion is the work of the author in collaboration with Paul A. Viola, also of MIT
(viola@ai.mit.edu).

1 Introduction

AOP, Agent Oriented Programming, is a programming paradigm proposed by Professor Yoav
Shoham of Stanford University. It imposes certain constraints on the nature of agents and of their
communication. AGENTO is a more restrictive language, in which programs in the spirit of AOP
can be written. Both AOP and AGENTO are described in [Shoham, 1990].

This document describes an implementation of an interpreter for agent programs written in the
AGENTO language. This implementation purports to be a complete implementation of the
AGENTO language as defined in Shoham’s paper. This implementation is still under develop-
ment, but the most recent released version should be fairly complete and accurately described by
this document.

2 Obtaining AGENTO

This implementation of AGENTO is written in Common Lisp, and should run under any Common
Lisp interpreter. It has been tested under AKCL and Allegro Common Lisp, on Sparcstations, Dec
Workstations, and Macintosh computers. The code for the interpreter and the simple Command
Line Interface should be portable to any Common Lisp implementation. There are additional
programs which provide a nice Graphical User Interface under Xwindows. This GUI is described
in the section Xwindows GUI.

The notation <a0> will refer to the directory in which your AGENTO files are stored. You should
set up such a directory in a convenient place, and put all of the AGENTO files there.

If you are a member of the Nobotics group at Stanford, the AGENTO files are available in the
directory “aop/lisp/a0. You don’t need to copy these; just run them from this directory. Hereafter,
you should use "aop/lisp/a0 wherever you see <a0>.

AGENTO is also available on the Andrew File System, a national network-transparent filesystem,
in the directory /afs/ir.stanford.edu/users/t/torrance/aop. Copy all files from this directory
into a directory (hereafter <a0>) on your own machine, and change the variable *aop-load-path*
in <a0>/1oad.lisp to point to the place where you put the <a0> directory. This pathname should
either be absolute for your machine, or relative to the *default-pathname-defaults* of Lisp as
you start it, which is the pathname of the directory you are in when you started Lisp.

Finally, AGENTO is available for anonymous ftp from trix.ai.mit.edu in the directory pub/aop.
Make the same changes described in the preceding paragraph to get it to run on your installation.

3 Running AGENTO

To run AGENTO, first start up Common Lisp. The command to do this will depend on your
system, but could be c1, akcl, acl, or clicking on an icon for Allegro Common Lisp on a Macintosh.

Next, load the file <a0>/1load by typing (load ‘‘load’’) to Lisp. If you were not in the <a0>
directory when you started Lisp, you should type the pathname of that directory to the load
command, as in (load ‘¢ aop/lisp/a0/load’’), which works on Nobotics lab machines.

4 The (aop) function

After you have loaded AOP, calling the (aop) function will start the interpreter’s read-eval-print
loop. The prompt will be <AGENT>, representing the fact that you are “in the context of” a
predefined agent named agent. This agent has no beliefs or commitment rules built in. It is useful
mainly as a place from which to interact with other agents running under the interpreter.

5 Defining an Agent

Each agent must have a different name. The program for an agent named agent-name is stored
in the file agent-name.lisp, and consists of a call to the defagent macro to define the agent
followed by ordinary lisp functions which implement private actions. This file should be stored in
the directory referenced as *aop-agent-path# in the file load.lisp. If you wish to load agents
from elsewhere, rebind this variable to point to the directory where you store your agents.

The defagent macro defines a new agent.

defagent name Ekey :timegrain :beliefs :commit-rules Macro
Defines an agent named name. See BNF at the end of this manual for the structure of the
arguments to defagent. The timegrain is not currently used by the interpreter, so just put a value
here as a placeholder. beliefs is a list of initial beliefs of the agent, and commitrules is a set of
commitment rules which provides the main program for the agent’s behavior.

A sample agent named joetriv has been provided in the agents directory. You can examine the
file joetriv.lisp to get an idea of the format of this information. The next section describes how
to load an agent such as joetriv into the environment.

6 Loading an Agent

To load an agent into the current environment, say an agent named joetriv, type load joetriv
to the <AGENT> prompt. The prompt will change to reflect the fact that you are now within the
context of the agent joetriv. This sets the global variable *current-agent* to the internal data
structure associated with joetriv, so that many of the commands understood by the AGENTO
main loop will function with respect to joetriv. For example, you could type state (now (alive
john)) to assert a fact into joetriv’s beliefs. Or you could type inform agent ((+ now (* 10
m)) (foo a b)) to send an inform message from joetriv to agent which says that the proposition
(foo a b) becomes true ten minutes from the time the message is sent.

7 Beliefs

An agent’s beliefs consist of a set of facts. Each fact is associated with a predicate and a fact-status
list. This list describes the truth-values of the fact over time. An example of a fact-status list
would be the following:

[.. U] [10:00:00 T] [Sun Nov 24 12:00:00 F]

This indicates that the agent believes the predicate of the fact in question became true at 10am
today, and will become false at 12 noon on Nov 24 of this year. If you ask this agent whether she
believes the fact at some time between these two, she will answer t; if you ask about some time
after this range, she will answer nil; if you ask about a time before this range, she will answer nil
both to queries about the fact and to queries about its negation. This is because the truth value
up until 10am today is “unknown”.

As described in Yoav’s paper, AGENTO agents believe any new fact they are told. Facts, here,
are really statements about the status of a proposition at a particular time. These are parsed as
statements of the form (TIME (PRED args)), internally called fact-patterns. Each typically will
give rise to a new fact-status record on the fact with the same proposition as was passed in the
message, time equal to TIME (which must be bound), and truth-value taken from the presence or

q or quit or exit
run

walk or stop

<return>

now

load <agent>

go <agent>

inform <agent> (TIME PROP)
request <agent> <act>
beliefs

cmtrules

incoming

bel? (TIME PROP)

state (TIME PROP)
clrbels
cmtrule [, , ,]

showmsgs
noshowmsgs

<any-lisp-form>

leave the AQP function

begin asynchronous mode

(run ticks continuously)

return to synchronous mode

on a line by itself,

runs one tick in synchronous mode

print the current time in 24-hour format
loads files <agent>.aop

and <agent>.1lsp

make <agent> the *current-agent*

xcurrent-agent informs <agent>
of <fact>

xcurrent-agent requests <agent>
to perform <act>

list all beliefs of *current-agent*

list all commitment rules of *current-agent*
list all incoming messages of *current-agent*
(to be processed at beginning of next tick)
tells whether *current-agent* believes PROP
is true at TIME

(now can be used as a TIME to indicate

the current time. Functions of now can also

be used, such as (+ now (* 2 m)) for

2 minutes later than the current time)

assert this fact as a belief of *current-agent*
remove all beliefs of *current-agent*

add a new commit-rule

turn on display of messages as they are sent
turn off display of messages as they are sent

let Lisp evaluate <form>

Figure 1: Commands for the command-line interface

absence of a not before the PRED. Some special statements are allowed in place of TIME here; see
Section 11 below for details.

8 Commitments

A commitment is just a particular kind of proposition which is stored in an agent’s beliefs database.
An agent can come to have a commitment either as a result of firing a commitment rule, triggered
by some incoming request message, by taking the action of committing to do some other action,
or by simply asserting the commitment into his beliefs. A commitment can be unrequested by the
agent to whom it is made. An agent can commit to herself; this is considered a “choice”.

Each tick, an agent performs all of her commitments which have matured. A commitment it is
unasserted from the beliefs database (i.e., asserted with truth-value FALSE), at the time the
commitment is performed. This gives the agent a record of the time at which she actually carried
out the commitment.

In the most recent version of the interpreter, commitments are performed when the current time
is equal to or past the time expressed in the action. This means that when a commitment rule
fires and installs a commitment, that commitment will get acted upon later that same tick if the
action refers to the current time or a time in the past. In order to make it possible to reason about
things to which an agent has been committed in the past, the commitment is actually asserted with
truth value FALSE one second later than the current time, so that commitments to immediate
action will remain true with some duration in the belief history. This is correct only when the time
between ticks is more than one second.

9 Capabilities

The AGENTO specification calls for a database of capabilities to be checked against automatically
each time an agent considers making a commitment. This current implementation of AGENTO
does not include any capability database or checking of such a database.

10 Messages

Agents can send each other REQUEST and INFORM messages. The syntax is as follows:

<AGENT> inform joetriv (mow (i_am_cool))

<AGENT> request joetriv (do (+ now (* 5 m)) (becool))

The “now” in the message refers to the moment when the message was sent, not the moment when
it was received.

Agents can also send messages from within private action functions. This facility may be used
to, among other things, send multiple messages as a result of a single commitment rule firing.
Functions to send messages from within private actions are described below in the section Private
Actions.

The next version of this interpreter will include support for a standardized message-passing format
in terms of files or UNIX sockets, so that agents running under this implementation can communi-
cate with agents running under other implementations or on other machines.

11 Time

AGENTO can be run in either synchronous or asynchronous mode. The guarantee made in
general of AGENTO programs is that they keep their commitments by the time they mature. In
this implementation, the agents always perform their commitments during the first tick which is
begun after those commitments mature. If the simulation is being run in discrete, user-prompted
tick cycles, as it will be when the user wants to interactively send messages and inspect agents from
the command-line interface, then it is up to the user to hit return often enough that the agents
meet their commitments in a timely manner. To run the simulator in an asynchronous mode, type
run to the prompt. An asterisk will appear before the prompt to indicate that ticks are being run.
To return to the synchronous mode, type q or quit to the prompt.

I have chosen to print real times to varying degrees of specificity, depending on how far the time
is from the current time. Thus, if the time is in the format HH:MM:SS, it is some time during the
current day, printed in 24-hour time format. If the time is within the next week, and in the same
month as the current day, the day of the week is given with the time for display purposes. If it is
not, but it is within the same year, then all but the year are shown. Otherwise, a full display of
DAY MONTH DATE HH:MM:SS YEAR is shown.

When using the Lisp syntax, users specify times by using Lisp functions. These functions will
operate on time in the internal (integer) format. So (+ 7time 30) is a time 30 seconds later than
the time to which ?time is bound. Several useful constants are defined to make it easier to specify
relative times. These include m for one minute, h for one hour, day, week, and yr. I do not yet
provide functions for specifying absolute times, but I plan to soon. For now, you can generate a
universal time integer by using the Lisp function (encode-universal-time args). Its syntax is
as follows:

ENCODE-UNIVERSAL-TIME [Function] Args: (second minute hour date month
year &optional (timezone -9))

The correct time zone to use on the West Coast of the United States is 7.

Users and agent programs can also use the word now to refer to the current time. Thus, state-
ments such as state ((+ now (¥ 2 m)) (i-am-cool)) are acceptable commands to the <AGENT>
prompt.

12 Private Actions

Private actions are merely Lisp function calls. Various functions are provided to make it easy to
write useful private actions. These functions are detailed here.

lisp-parse-query fact Function
Parses a fact, which may contain references to 'now’ or free variables, and returns the internal data
structure called a pattern. You should not need this, since the functions below have been modified
to call it themselves. At the time of execution, 'now’ will be replaced by the current time.

get-belief agent-name pattern Function
A pattern here is just a proposition which may have variables for some of its terms. This function
determines whether the pattern unifies with any of the beliefs of the agent. If it does, it returns
the variable bindings resulting from the first such unification (possibly nil). If it doesn’t, it returns
fail. An example of the use of this function is (get-belief ’joetriv ’(on ?x ?y)), which could
return ((x . a) (y . b)) indicating that a belief of the form (on a b) was matched in joetriv’s
beliefs database.

get-all-beliefs agent-name pattern Function
Returns a list of all binding lists resulting from successful unification of the pattern with the beliefs
of the agent. If no matches were made, it will return nil, the empty list. An example of the use of
this function is (get-all-beliefs ’joetriv (lisp-parse-query ’(on ?x ?y))), which might
return (((x . a) (y . b)) ((x . ¢) (y . d))) indicating that beliefs of the form (on a
b) and (on ¢ d) were both matched in joetriv’s beliefs database.

delete-belief-pattern ageni-name pattern Function
Completely deletes all beliefs matching the pattern from the agent’s beliefs database. Note that
this may drastically modify the belief structure; use it with discretion.

send-inform from-agent-name to-agent-name fact Function
Sends an inform message to the agent named to-agent-name concerning fact. Not that you do not

need to parse the fact first with lisp-parse-fact. An example of the use of this function is
(send-inform-message ’me ’you ’(now (on a b)))

which sends a message from me to you regarding the truth of the proposition (on a b) at the time
the command is executed.

send-request from-agent-name to-agent-name act Function
Sends a request message to the agent named to-agent-name to perform act. Note that you do not
need to parse the act first with lisp-parse-act. An example of the use of this function is

(send-request-message ’me ’you ’(do now (your-private-action)))

which sends a message from me to you requesting you to perform your private action.

bel? agent-name fact Function
This function returns T or NIL depending on whether the agent believes the fact. The fact should
be of the form (time (proposition)). Note that for facts not explicitly in the database at all
agents believe neither the fact nor its negation. Note that this function does not require you to
parse the fact first with lisp-parse-fact.

inform agent-name predicate time Function
This should really be called “insert-belief”. This function modifies the beliefs of the named agent
without sending an inform message. This modification takes place immediately, and may cause
unexpected behavior depending on when within the tick it is executed, and whether other rules or
commitments depend on the belief that was changed.

inform-fact agent-name fact Function
This function also modifies the beliefs of the named agent directly. Its only difference is that it
takes a fact, rather than separate predicate and time. Note that this function does not require you
to parse the fact first with lisp-parse-fact.

now Function
Returns the current time as an integer.

time-string time Function
Returns a string representing the time in a display format, relative to the current time. May be
useful for debugging.

13 Xwindows GUI

The latest addition to is a graphical user interface which runs under Xwindows. To use it, you
must be using Lisp with CLX loaded. If CLX is not already loaded into your Lisp image, load it
before loading AOP. To run the graphics, simply type g or graphics to the <AGENT> prompt. The
buttons are fairly self-explanatory.

14 Examples

For practice, try running through a few examples in AGENTO to get the hang of using the
interpreter and watching messages. This is an example of an interaction that exercises a subset of
the part of AGENTO which currently works.

<AGENT> load joetriv
Defining agent "JOETRIV"
Parsing file aop/joetriv.aop now

LOADED

<AGENT> inform joetriv (100 (on a b)) ; This means at time 100, (on a b)
JOETRIV will be informed next tick.

<JOETRIV> beliefs

<JOETRIV> ; (press return to run a tick)
<JOETRIV> beliefs

(0N A B) [.. U] [100 T]

<JOETRIV> state (200 (not (on a b)))

Belief added.

<JOETRIV> beliefs
(ox A B) [.. Ul [100 T] [200 F]

<JOETRIV> bel? (150 (on a b))
T

<JOETRIV> bel? (-500 (on a b))
NIL

<JOETRIV> bel? (-500 (not (on a b)))
NIL

<JOETRIV> agent

<AGENT> inform joetriv (mow (i_am_cool))
JOETRIV will be informed next tick.

<AGENT>

<AGENT> request joetriv (do (+ now m) (i_am_cool)) ; one minute from now
JOETRIV will be requested next tick.

<AGENT>

<AGENT> run

*<AGENT> ; * indicates asynchronous mode
<just under one minute passes>

This is the cool Joe Triv Agent.

q ; user types q to quit run-mode

<AGENT> q

<cl>

References

[Shoham, 1990] Y. Shoham. Agent Oriented Programming. Technical Report STAN-CS-90-1335,
Stanford University, 1990.

10

<beliefs>

<commitrules> ::

<commitrule>

<msgcond>
<msgconj>
<msgpattern>

<mntlcond>
<mntlconj>

<mntlpattern> ::

<action>

<fact>

<time>

<time-constant> ::

<predicate>
<arg>

<variable>

' (<fact>*) | NIL

’(<commitrule>*) | NIL

= (<msgcond> <mntlcond> <agent> <action>)

= <msgconj> | (OR <msgconj>*)
= <msgpattern> | (AND <msgpattern>x*)
= (<agent> INFORM <fact>) |

(<agent> REQUEST <action>) |
(NOT <msgpattern>) | NIL

= <mntlconj> | (OR <mntlconj>*)
= <mntlpattern> | (AND <mntlpattern>*)

(B <fact>) | (CMT <action>) | (NOT <mntlpattern>) | NIL

(DO <time> <privateaction>)
(INFORM <time> <agent> <fact>)
(REQUEST <time> <agent> <action>)
(UNREQUEST <time> <agent> <action>)
(REFRAIN <action>)

(IF <mntlcond> <action>)

(<time> (<predicate> <arg>*))

<integer> | now | <time-constant> |
(+ <time> <time) | (- <time> <time>) |
(* <integer> <time>) ; Time may be a <variable> when
; it appears in a commitment rule

=m | ; Minute (= 60 sec/min)
h | ; Hour (= 3600 sec/hour)
day | ; day (= sec/day)
yr ; year (= sec/year)

= <alphanumeric_string>
= <alphanumeric_string> | <variable>

?<alphanumeric_string>

Figure 2: BNF for Agent0 Programs

11

