
AGENT- COMMUNICATION LANGUAGES:

FIPA

1 INTRODUCTION

2 THE KNOWLEDGE SHARING INITIATIVE:
KQML/KIF

3 THE FIPA AGENT COMMUNICATION LANGUAGE

4 SEMANTICS

5 EVALUATION

6 APPLICATION

7 REFERENCES AND LINKS

Mario Gómez
IIIA-CSIC

mario@iiia.csic.es



1 INTRODUCTION

1.1 Agent architectures

• Individual agents
• Mediated architectures: based on client-server architecture
• Markets and swarms: emergent behaviour

• MAS (Multi Agent Systems), with an emphasis on
- agent-to-agent communication
- cooperation and collaboration
- team and coalition formation
- information sharing among the team
- joint beliefs, goals and plans

1.2 Social ability, communication and cooperation:

• Social ability in agents is the ability to interact with other agents (and possibly
humans) via some kind of agent-communication language, and perhaps cooperates
with others.

• Communication is important because:
- Communication is a requirement for cooperation.

- Societies can do things that no individuals can. Some goals need cooperation.
- Diversity introduces heterogeneity.
- Autonomy encourages disregard for other agents’ internal structure

• Communicating agents need to understand a “common language”:
- understanding of its vocabulary
- knowing how to effectively use the vocabulary to perform task and achieve goals.

1.3 The intentional stance

- Dennet’s ladder of personhood, six conditions:
- rationality

- intentionality

- stance

- reciprocity
- communication
- consciousness



- The first three are mutually interdependent and are used for defining a basic
intentional system

- Intentionality refers to the system’s intentions as rationally following from its
beliefs about the world and from its high level preferences

- The intentional stance refers to modelling a system as an intentional system, i.e.

as having beliefs, intentions and so forth. Prediction from intentional stance
assumes rationality

- The intentional stance is an abstraction tool, which provide us with a convenient and
familiar way of describing, explaining and predicting the behaviour of agents, without
having to understand how the mechanism actually works.

- It gives us the potential to specify systems that include representations of other
systems (reciprocity). Such nested representations are essential for agents that must
cooperate with other agents.

• Reasoning agents  (agents as KBS, symbolic AI paradigm)
- Contains an explicitly represented, symbolic model of the world
- Makes decisions(i.e. about what actions to perform) via symbolic reasoning

1.4 Agent Oriented Programming (AOP)

• Much of the interest in agents from AI community has arisen from Shohan’s notion of
AOP [Shohan, 1993]
- New programming paradigm, based on a societal view of computation
- Key idea is that of directly programming agents in terms of intentional notions

like belief, commitment, and intention.
- Motivation: in the same way we use the intentional instance to describe humans, it

might be useful to use the intentional instance to program machines.

1.5 Agent theory: Speech Act Theory and BDI theories

• Speech acts theories are pragmatic theories of language: how utterances are used to
achieve goals and intentions [Austin, 1962].

• Speech acts may be understood in terms of an intentional-level description of an
agent: references to beliefs, desires, intentions (BDI) and other modalities.

• BDI architectures describe the internal structure of an agent by the mental states of
beliefs, goals and intentions.

• Communication is a means to
- reveal to others what our BDI state is and
- attempt to effect the BDI state of others.

• Recursivity: an agent has beliefs about the world, about other agents, about the beliefs
of other agents, about the beliefs another agent has about it, …



• Speakers do not just utter true or false sentences, they perform speech acts: requests,
suggestions, promises, threats, etc.

• Different types of speech act [Searle, 1969]:
- representatives: such as informing, e.g. ‘it’s raining’
- directives: attempts to get the hearer to do something, e.g. ‘please make the tea’

- commisives: which commit the speaker to doing something, e.g. ‘I promise to…’
- expressives: whereby a speaker expresses a mental state, e.g. ‘thank you!’
- declarations: such as declaring war or christening.

• In general, a speech act can be seen to have two components:
- a performative verb, e.g. request, inform, etc.
- propositional content:, e.g. “the door is closed”

• Examples of different speech acts with the same content but different performatives:
- content = “the door is closed”
- performative = request speech act =  ‘please close the door’
- performative = inform speech act = ‘the door is closed!’
- performative = inquire speech act = ‘is the door closed?’

1.6 Communication levels

• Transport level: messages are transported using some lower-level transport protocol
(SMTP, TCP/IP, http, etc.).

• Message level: an ACL defines the types of messages (and their meaning) that agents
may exchange.

• Conversation level: interaction protocols (negotiation, auction, etc.), define task-
oriented, shared sequences of messages.

• Higher-levels: conceptualisation of an agent’s goals and strategies drives the agent’s
communicative (a non-communicative) behaviour.

1.7 AGENT0 and PLACA

• The first AOP language

- Implemented as an extension to LISP
• Components of an agent

- a set of capabilities (things the agent can do)
- a set of initial beliefs
- a set of initial commitments (things the agent will do); and
- a set of commitment rules.

• Each commitment rule contains
- a message condition

- a mental condition; and
- an action.



• On each ‘agent cycle’…
- the message condition is matched against the messages the agent has received
- the mental condition is matched against the beliefs of the agent
- if the rule fires, then the action gets added to the agents commitment set

• Actions may be

- private: corresponding to an internally executed subroutine, or
- communicative, i.e., sending messages.

• Messages
- ‘requests’ to commit to action
- ‘unrequests’ to refrain from actions
- ‘informs’, which pass on information

• Example of commitment rule
COMMIT (
(agent, REQUEST, DO (time, action)), ;;; msg condition
(B,

[now, Friend agent] AND
CAN (self, action) AND
NOT [time, CMT (self, anyaction)]), ;;; mental condition

Self,
DO (time, action))

• PLACA [Thomas, 1995] is a more refined implementation intended to address one
sever drawback of AGENT0: the inability of agents to plan and communicate
requests for action via high-level goals.

1.7.1 Concurrent METATEM

• Is a multi-agent language in which each agent is programmed by giving it a temporal

logic specification of the behaviour it should exhibit [Fisher, 1994].
• Temporal logic is classical logic augmented by modal operators for describing how

the truth of propositions changes over time.
• Modal operators: � always  � sometime in the future  � sometime in the past  �

tomorrow(in the next state)
• METATEM is a framework for directly executing temporal logic specifications.
• Gabbay’s separation theorem: any arbitrary logic formula can be rewritten in a

logically equivalent past ⇒ future form.

• This past ⇒ future form can be used as execution rules. A METATEM program is a

set of such rules
• Execution proceeds by a process of continually matching rules against a “history”,

and firing those rules whose antecedents are satisfied.
• The instantiated future-time consequents become commitments that must be satisfied.
• Concurrent METATEM provides an operational framework through which societies

of METATEM processes can operate and communicate



• Example: Snow White has some sweets (resources), which she will give to the
dwarves (resource consumers).
- She will always eventually give to a dwarf that asks.
- She will only give to a dwarf at a time.

Snow-White (ask)[give]:
      � ask (x) ⇒ � give (x)

give (x) ∧ give (y) ⇒ (x = y)

eager (give)[ask]: greedy (give)[ask]:
   Start ⇒ ask (eager) Start ⇒ � ask (greedy)

� give (eager) ⇒ ask (eager)

courteous (give)[ask]: shy (give)[ask]:
((¬ask (courteous) S give (eager)) ∧  start ⇒ � ask(shy)

(¬ask (courteous) S give (greedy))) ⇒ � ask (x) ⇒ ¬ ask (shy)

ask (courteous)  � give (shy) ⇒ � ask(shy)

2 THE KNOWLEDGE SHARING EFFORT (KSE)

2.1 Introduction:

• Initiated by DARPA circa 1990
• Developing techniques, methodologies and software tools for knowledge sharing and

knowledge reuse.
• KQML/KIF is probably the best-known ACL, currently undergoing standardisation.

This is  comprised of two parts:
- the knowledge query and manipulation language (KQML); and
- the knowledge interchange format (KIF).

• Large effort at defining common ontologies –software tools like Ontolingua for
this purpose.

• KQML is an ‘outer’ language that defines various acceptable performatives:
- ask-if (‘is it true that…’)
- perform (‘please perform the following action’)
- tell (‘it is true that…’)

- reply (‘the answer is …’)
• KIF is a language for expressing message content.



• KIF is actually an ASCII representation of (extended) first-order logic, that looks like
LISP

2.2 KQML

• Specification of the KQML Agent-Communication Language plus example agent

policies and architectures, DARPA, External Interfaces Working Group, 1993.
• A proposal for a new KQML Specification, Yannis Labrou and Tim Finin, 1997.
• There are also many dialects and “extended” versions of KQML
• High-level. Message oriented, communication language and protocol for information

exchange independent of content syntax and ontology.

• KQML is independent of
- the transport mechanism (TCP/IP, email, CORBA, etc.)
- the content language (KIF, SQL, STEP, Prolog, etc.)
- the ontology assumed by the content

• Includes primitive message types of particular interest to building interesting agent
architectures (e.g., for mediators, sharing intentions, etc.)

• Originally defined as a language with a particular syntax which is based on Lisp
(Common Lisp Polish-prefix notation), because:
- is readable by humans

- simply for programs to parse, and
- transportable by many inter-application messaging platforms

• Unlike Lisp function invocations, parameters in performatives are indexed by
keywords and therefor independent.

• Alternate syntaxes have been used (e.g., SMTP, MIME, http, etc.)
• Proposals for a meta-syntax that can support different syntactic dialects.

2.3 KQML Semantics

• Semantic model underlying KQML is a simple, uniform context for agents to view
each others’ capabilities.

•  Each agent appears, on the outside, as if it manages a knowledge base, so it is called
virtual knowledge base (VKB), therefore communication is with regard to the VKB

• Classify the VKB statements can be classify into two categories:
- beliefs: information about itself and its external environment, including the VKBs

of other agents,
- goals: states of its external environment that the agent will act to achieve

Transport � Language � Policy (conversation protocol) � Architecture



• Agents talk about the contents of their VKBs using KQML. But the encoding of
statements in VKBs can use a variety of representation languages.

• The only restriction on such a representation is that it be sentential., so that
expressions using that representation can be viewed as entries in a VKB, and that
sentences have an encoding as ASCII string can be embedded in KQML messages.

2.4 KQML Messages

• Represents a single speech act or performative
ask, tell, reply, subscribe, achieve, monitor, …

• With an associated semantics and protocol
tell(I, j, Biφ) = fp[BiBiφ ∧ …

• And a list of attribute/value pairs
:content, :language, :from, :in-reply-to

(tell :sender bhkAgent
:receiver fininBot
:in-reply-to id7.24.97.45391
:ontology ecbk12
:language Prolog
:content “price(ISBN3429459, 24.95)”)

2.5 Reserved Performatives(1997)



2.6 Reserved Parameter Keywords(1997)

:sender the actual sender of the performative
:receiver the actual receiver of the performative
:from the origin of the performative in :content when forward is used
:to the final destination of the performative in :content when forward

is used
:in-reply-to the expected label in a response to a previous message (same as the

:reply-with value of the previous message)
:reply-with the expected label in a response to the current message
:language the name of the representation language of the :contenti parameter
:ontology the name of the ontology used in the :content parameter
:content the information about which the performative expresses an attitude

2.7 KIF

• Extended version of first order predicate logic
• Simple list-based linear ASCII syntax. E.g.,

(forall ?x (=> (P ?x) (Q ?x)))
(exists ?person (mother mary ?person))
(=> (apple ?x)(red ?x))
(<<= (father ?x ?y) (and (child ?x ?y) (male ?x))

• KIF includes an axiomatic specification of large function and relation vocabulary and
a vocabulary for numbers, sets and lists

• Distinguishes between implications and rules
- Implication => is a connective
- Rules are directed (forward =>>  or  backward <<=)
- Rules involve derivation

• KIF (but not ANSI KIF) allows non-monotonic rules via “circumscribing
abnormality” using the consis predicate:
- (consis P) is true if we are unable to derive (not P)

• Functions and relations are sets of lists in the universe of discourse.
- They can be arguments to other functions & relations
- They can be “applied” to arguments

• KIF can express knowledge about knowledge by allowing expressions to be treated as

objects in the universe of discourse
- KIF expressions are lists an can be referred to using the quote operator



2.8 Example of a KQML/KIF dialog

A to B: (ask-if (> (size chip1) (size chip2)))
B to A: (reply true)
B to A: (inform (= (size chip1) 20))
B to A: (inform (= (size chip2) 18))

3 THE FIPA ACL

3.1 Introduction to FIPA

• FIPA is the Foundation for Intelligent Physical Agents
• FIPA’s purpose is to promote the success of emerging agent-based applications,

services and equipment.
• FIPAS’s goal is pursued by making available internationally agreed specifications

that maximize interoperability across agent-based applications, services and
equipment. The centrepiece of FIPA’s work program is an ACL.

• FIPAS’s works is built around annual rounds of FIPA specification deliverables:
• FIPA produces two kinds of specification:

- normative specifications that mandate the external behaviour of an agent and
ensure interoperability with other GIPA-specified subsystems;

- informative specifications of applications for guidance to industry
• FIPA specifies the interfaces of the different components in the environment with

which an agent can interact, i.e. humans, other agents, non-agent software and the

physical world.

AAA
Other 
Agents

Agent Interaction

Hardware

Software

A

Information
Fusion

Information
Processing

Environment

Humans

Figure 1 — Outline View of Agent Interaction



• FIPA97 laid the groundwork and focused on
- Agent management (common components, agent lifecycle, platforms)
- Agent communication (message format, semantics, interaction protocols)
- Agent/Software interaction

- Test Applications: Personal Travel Assistance, Personal Assistant, Audio/Video
Entertainment & Broadcasting, and Network Management & provisioning

• FIPA 98 extended FIPA97, dealing with
- Human-agent interaction
- Agent mobility
- Agent security
- Ontology services

• FIPA 99 is work in progress:
- TC1: Agent Management
- TC2: Agent Communication Language
- TC3: Agent/Software Interaction

- TC4-TC7: Specification of Applications

3.2 The FIPA Agent Platform (Agent Management System)

• An Agent Platform provides an infrastructure in which agents can be deployed. An
agent must be registered on a platform in order to interact with other agents on that
platform or indeed other platforms.

Internal Platform Message Transport

Agent

Directory
Facilitator

Agent
Management

System

Software

Agent Platform

ACC

Figure 2 — Agent management reference model



• An AP consists of three capability sets ACC, AMS and default Directory Facilitator.
- The AMS (Agent Management System) provides services like lifecycle

management (creation, deletion, pausing, …), name registration, name lookup,
and authentification

- The DF (Directory Facilitator) provides yellow pages services which describe the

attributes and capabilities of agents in the platform
- The ACC (Agent Communication Channel) accepts and delivers message

between agents on different platforms (+store and forward, +firewalls)

3.3 The FIPA Agent Communication Language

• Based on speech acts

• Messages are communicative acts (CAs) described in both a narrative form and a
formal semantics based on modal logic

• Syntax is similar to KQML
• Specification provides a normative description of high-level interaction protocols

(conversations)

3.4 The FIPA Agent/Software Integration

• Applies to any non-agentised software with which agents need to "connect".
• Such software includes legacy software, conventional database systems, middleware

for all manners of interaction including hardware drivers.
• It suggests ways by which Agents may connect to software via "wrappers" including

specifications of the wrapper ontology and the software dynamic registration
mechanism.

• For this purpose, an Agent Resource Broker (ARB) service is defined which allows
advertisement of non-agent services in the agent domain and management of their use
by other agents.

3.5 FIPA Communicative acts by category

• Information exchange (requesting and passing)
• Negotiation
• Task delegation



Communicative act Information
passing

Requesting
information

Negotiation Action
performing

Error
handling

Accept-proposal �

Agree �

Cancel �

Cfp �

Confirm �

Disconfirm �

Failure �

Inform �

Inform-if (macro act) �

Inform-ref (macro act) �

Not-understood �

Propose �

Query-if �

Query-ref �

Refuse �

Reject-proposal �

Request �

Request-when �

Request-whenever �

Subscribe �

3.6 Message structure

(inform
    :sender agent1
    :receiver hpl-auction-server
    :content
      (price (bid good02) 150)
    :in-reply-to round-4
    :reply-with bid04
    :language sl
    :ontology hpl-auction
)

Begin message structure

Communicative act type

Message parameter

ACL message

Message content expression

Parameter expression



3.7 Message parameters

Message
Parameter:

Meaning:

:sender Denotes the identity of the sender of the message, i.e. the name of
the agent of the communicative act.

:receiver Denotes the identity of the intended recipient of the message.

Note that the recipient may be a single agent name, or a tuple of
agent names

:content Denotes the content of the message; equivalently denotes the
object of the action.

:reply-with Introduces an expression which will be used by the agent
responding to this message to identify the original message. Can
be used to follow a conversation thread in a situation where
multiple dialogues occur simultaneously.

E.g. if agent i sends to agent j a message which contains
:reply-with query1,

agent j will respond with a message containing
:in-reply-to query1.

:in-reply-to Denotes an expression that references an earlier action to which
this message is a reply.

:envelope Denotes an expression that provides useful information about the
message as seen by the message transport service. The content of

this parameter is not defined in the specification, but may include
time sent, time received, route, etc

:language Denotes the encoding scheme of the content of the action.
:ontology Denotes the ontology which is used to give a meaning to the

symbols in the content expression.
:reply-by Denotes a time and/or date expression which indicates a

guideline on the latest time by which the sending agent would

like a reply.
:protocol Introduces an identifier which denotes the protocol which the

sending agent is employing.
:conversation
-id

Introduces an expression which is used to identify an ongoing
sequence of communicative acts which together form a
conversation. A conversation may be used by an agent to manage
its communication strategies and activities. In addition the
conversation may provide additional context for the interpretation

of the meaning of a message.



3.8 FIPA interaction protocols (IP)

• Interaction protocols define structured conversations
• Based on CAs
• Basis for dialogues between agents
• Set of pre-defined IPs
• Own IPs can be defined

3.8.1 Query protocol

not-understood failure
reason

refuse
reason

inform

query or
query-ref

3.8.2 Request protocol

not-understood refuse
reason

failure
reason

inform
Done(action)

inform
(iota x (result action) x)

agree

request
action



3.8.3 Contract-net protocol

not-understood refuse
reason

Deadline for proposals

reject-proposal
reason

failure
reason

inform
Done(action)

the manager cancels the
contract due to a change
of situation

cancel
reason

accept-proposal
proposal

propose
preconditions2

cfp
action
preconditions1

4 Ontologies and FIPA

OKBC

Agent

Ontology
Server

OQL

Ontology
Server

Ontology Agent

(Ontolingua) (DB of ODL definitions)

http

Ontology
Server

            ( XML )

FIPA
components

DFAgent

Ont ology designer

OA-2

Non-FIPA
componen ts

ACL Channel

Figure 1 - Reference Model



• The Ontoloy Agents provide ontology related services to FIPA agents
- Helps a FIPA agent in selecting a shared (sub) ontology for communication
- Create and update an ontology
- Translate expressions between different ontologies
- Respond to query for relationhis between different terms of between ontologies

- Discovery of public ontologies in order to access them
• FIPA specifies fipa-meta-ontology as the ontology used to talk about ontologies
• This is largely based on the OKBC model

5 ACL SEMANTICS

5.1 Introduction: agents theory

• Agent theory is needed to give a semantics to the architectures, languages and tools
• Without such a semantics. It is never clear exactly what is happening, or why it

works.
• In agent-based systems, we have a bag of concepts and tools, which are intuitively

easy to understand (by means of metaphor and analogy), but we need theory to reach
any kind of profund understanding of these tools.

• Agent theorists start with the (strong) view of agents as intentional systems.
- Attemps to produce a coherent account of how the components of an agent’s

cognitive state hold together: the theory of intention by Cohen & Levesque

5.2 Theories of attitudes

• First, we need to identify a tractable subset of attitudes, and a model of how they
interact to generate system behaviour.

• Two categories (Bratman)
- Information attitudes: belief, knowledge
- Pro-attitudes: desire, intention, obligation, commitment, choice…

• Two aspects of logical formalism for intentional notions:
- language of formulation (syntactic)
- semantic model

• Two fundamental approaches to the syntactic problem
- use a modal language

- use a meta-language

5.3 Possible world semantics

• Logic of knowledge and belief is known as epistemic or doxastic logic



• Hintikka, 1962 � idea of applying the possible world semantics to intentional
notions, using the Kripke structure as his logical tool.

• The language of possible worlds is a normal modal logic
- �   necessity: a proposition which is true in all worlds

- ◊   possibility:  a proposition that is true in at least on world

• Epistemic logic was developed by replacing the necessity operator with the (K)

operator for knowledge.
• The worlds that an agent belief as possible as called epistemic alternative
• Semantics are defined in terms of a model or a frame M = (W, R, π)

- W is a set of possible worlds;
- R is a binary relation on W, called the accesibility relation;
- π is an assignment function which determines for each world w ∈ W, the truth

values of the atomic propositions in w
• Accessibility relation: if (w, w’) ∈ R, then if an agent was actually in world w, as far

as it was concerned, it might be in world w’

• Semantics of formulae are given relative to worlds:
φ is true in world w iff φ is true in all worlds w’ such that (w, w’) ∈ R

  (M, w) |= Kiφ iff ∇w’∈ W. if (w, w’) ∈ Ri then (M, w’) |= φ

• Axioms:
K |= K(φ => ψ) => (Kφ => Kψ)

T (reflexive) Kφ => φ

D (serial) Kφ => ¬K¬φ

4 (transitive) Kφ => KKφ

5 (euclidean) ¬K¬φ => K¬K¬φ

NEC: if |= φ then Kφ

• Imposing different restrictions on the accesibility relation, we obtain different
systems of modal propositional logic:
- KTD45 (S5) is the logic of idealised knowledge

- KD45 (weak-S5) is the logic of idealised belief

• Interpretation of axioms

K: An agent’s knowledge is closed under implication, that is, it knows all the
consequences of its beliefs
T: The knowledge axiom: what is known is true
D The consistency axiom: if you know φ, you can’t also know ¬φ

4 Positive introspection: if you know φ, you know you know φ

5 Negative introspection: you are aware of what you don’t know
• K + NEC = Logical omniscience = An agent believes all valid formulae and knows all

the logical consequences. This is an undesirable property !



• Despite  this disadvantages, possible world semantics has been commonly used by the
practitioners and still appears to be the most appropriate model for describing and
reasoning about belief and knowledge.

5.4 Cohen & Levesque Theory of Rational Agency

• Intention = Choice + Commitment
• Intentions concerned with future
• Integration of Agent Theory and Semantics of Communication Primitives
• (BEL x p)

- P follows from x’s beliefs
• (GOAL x p)

• (BMB x y z) =
(BEL x p) ∧

(BEL x (BEL y p)) ∧

(BEL x (BEL y (BEL x p)))
• Internal commitment (persistent goal)

(P-GOAL x p q) =
(BEL x ¬p) ∧

(GOAL x (LATER p)) ∧

[KNOW x (PRIOR [(BEL x p] ∨ (BEL x ¬p) ∨ (BEL x ¬q)

¬[GOAL x (LATER p)])]

• Intention
(INTEND x a q) =

(P-GOAL x [DONE x (BEL x (HAPPENS a))?;a] q)

5.5 FIPA ACL Semantics

• Management and facilitation primitives (register, broker, recruit, etc.) are not part of
the ACL

• Primitives can be defined compositionally from “core” primitives
• Use of a powerful language to define agents’ states: Semantic Language (SL)
• Semantics based on mental attitudes
• The meaning of primitives is given in terms of

- Feasibility Preconditions (FPs): define the conditions of a CA that ought to be
true before an agent may plan to execute the CA

- Rational Effect (RE): the effect that an agent hopes to bring about by performing
an action (but with no guarantee that the effect will be achieved)

• Semantics are normative, agents which claim to conform to the FIPA specification
ACL must behave in accordance with the definitions herein.



5.6 Model of communicative acts

• Model that underlies the semantics of the FIPA ACL
• It is not a proposed architecture or a structural model of the agent design
• An agent plans to meet its goals ultimately by communicating with other agents. The

agent will select acts based on the relevance of the acts’ expected outcome or rational

effect to its goals. However, it cannot assume that the rational effect will necessarily
result form sending the messages.

Agent i Agent j

Message delivery / transportation service

Convert to transport form Convert from transport form

Goal G

Intent I

Msg M

Message M
Speech act

Figure 2 Message passing between two agents

5.7 The SL Language

• Used to define the semantics of FIPA ACL
• Logical propositions are expressed in a logic of mental attitudes and actions
• The logical framework is a first order modal language with identity (similar to C&L,

see [Sadek 91a]).
• SL provides formalisation for three primitive mental states: belief, uncertainty and

choice (or, to some extent, goal); intention is defined as a persistent goal.

- Bip “i (implicitly) believes (that) p”
- Uip “i is uncertain about p but thinks that p is more likely than ¬p”

- Cip “i desires that p currently holds”
• To talk about complex plans, events (or actions) can be combined to form action

expressions

- a1; a2 is a sequence in which a2 follows a1

- a1 | a2 is a non deterministic choice, in which either a1 happens or a2, but not both
• Operators to enable reasoning about actions

- Feasible( a, p ) means that a can take place and if it does p will be true just after
that

- Done( a, p ) means that a has just taken place and p was true just before that



- Agent( i, a ) means that i denotes the only agent performing, or that will be
performing, the actions which appear in action expression a.

- Single( a ) means that a denotes an action expression that is not a sequence. Any
individual action is Single. The composite act a ; b is not Single. The

composite act a | b is Single iff both a and b are Single.

• Persitent goal and intention are defined from belief, choice and events:
- An agent i has p as a persistent goal, if i has p as a goal and is self-committed

toward this goal until i comes to believe that the goal is achieved or to believe that
it is unachievable. PGip  “i has p as a persistent goal”

- Intention  is defined as a persistent goal imposing the agent to act. Iip n “i has the
intention to bring about p”.

5.8 Underlying Semantic Model

• Property 3: If an agent has the intention that a communicative act be performed, it
necessarily has the intention to bring about the rational effect of the act.

|= Ii Done(a) => Ii RE
• Property 4: When an agent, it should believe that the agent performing the act has

the intention to achieve the rational efect of the act. This is called the intentional
effect.

|= Bi  ( Done(a) ∧ Agent (j,a) => Ii RE(a)

5.9 Primitive communicative acts

• The assertive Inform: the sender informs the receiver that a given proposition is true

Formal model:
<i, inform(j, φ)>

FP: Biφ ∧ ¬BI (Bifjφ ∨ Uifjφ)

RE: Bjφ

Example: Agent i informs agent j that (it is true that) it is raining today:
(inform

:sender i
:receiver j
:content “weather (today, raining)”
:language Prolog
:ontology weather42)

• The directive Request: the sender requests the receiver to perform some action. One
important class of uses if the request act is to request the receiver to perform another
communicative act.
Formal model:

<i, request ( j, a )>



FP:  FP(a) [i\j] ∧ Bi Agent( j, a ) ∧ Bi ¬PGj Done(a)

RE:  Done(a)
Example: Agent i requests j to open a file

(inform
:sender i
:receiver j
:content “open \”db.txt\” for input”
:language vb)

• Confirming an uncertain proposition: Confirm
Formal model:

<i, confirm( j, φ )>

FP: Biφ ∧ BiUjφ

RE: Bjφ

Example: Agent i confirms to agent j that it is, in fact, true that it is snowing today.
(confirm

:sender i
:receiver j
:content “weather (today, snowing)”
:language Prolog)

• Disconfirming an uncertain proposition: Disconfirm
Formal model:

<i, disconfirm( j, φ )>

FP: Bi¬φ ∧ Bi (Ujφ ∧ Bjφ)

RE: Bjφ

Example: Agent i, believing that agent j thinks that a shark is a mammal, attemps to
change j’s belief:
(disconfirm

:sender i
:receiver j
:content (mammal shark))

5.10 Composite Communicative Acts

• Communicative acts defined by composition using the disjunction operator “|”
• The inform-if act: a macro action for the agent of the action to inform the recipient

wheter or not a proposition is true.
Formal model:

<i, inform-if( j, φ)> ≡ <i, inform( j, φ)> | <i, inform( j, ¬φ)>

FP: Bifiφ ∧ ¬Bi (Bifjφ ∧ Uifjφ)

RE: Bifjφ

Example: Agent i requests j to inform whether Lannion is in Normandy.



(request
    :sender i
    :receiver j
    :content
      (inform-if :sender j
                 :receiver i
                 :content "in( lannion, normandy )"
                 :language Prolog)
    :language sl)

Agent j replies that it is not.
(inform :sender j
        :receiver i
        :content "\+ in( lannion, normandy )"
        :language Prolog)

• The query-if act: the action of asking another agent wether or not a given
proposition is true

Formal model:
<i, query-if( j, φ) ≡  <i, request( j, <j, inform-if( i, φ)> )>

FP:  ¬Bifiφ ∧ ¬Uifiφ ∧ Bi ¬PGj Done( <j, inform (i, φ)> )

RE:  Done( <j, inform( i, φ)>  | <j, Inform i, ¬φ)> )

Example: agent i asks agent j if is registered with domain server d1
(query-if

    :sender i
    :receiver j
    :content
       (registered (server d1) (agent j))
    :reply-with r09
    …)

Agent j replies that it is not:
(inform

    :sender j
    :receiver i
    :content (not (registered (server d1) (agent j)))
    :in-reply-to r09)

6 EVALUATION OF ACLs AND SEMANTIC APPROACHES

6.1 Introduction

• Different ACLs: Different semantic approaches
- KQML semantics (Labrou, 1996)
- FIPA ACL (FIPA ACL specification, 1997, 1999)
- ACL semantics (Cohen & Levesque)



6.2 How do KQML and ACL differ?

• Different semantics: mapping of KQML performatives to FIPA performatives and
viceversa is a futile exercise

• Different treatment of the “administration primitives”; in FIPA ACL register,
unregister, etc. are treated as requests for action with reserved (natural language)
meaning

• No “facilitation primitives”, e.g., broke, recommend, recruit, etc., in  FIPA ACL
• Reserved content language: a very murky issue …

- Some FIPA messages (e.g., request) use SL as their content language. An agent
that observe such messages have to “understand” some SK; how much depends

on the particular message

6.3 Which ACL should I use? Which one is better?

(Finin & Labrou, Autonomous Agents 2000, Tutorial on ACLs: past, present and future)
• The “sad truth” is that programmers do not care about semantics and their details.
• As long as the agent dos not implement modalities (belief, intention, etc.) the

semantic differences are irrelevant to the developer

• The similar syntax guarantees that a developer will not have to alter the code that
receives, parses and send messages

• The code that processes the primitives should change depending on whether the code
observes the proper semantics.

• FIPA ACL is more powerful with composing new primitives. This is due to the
power of the SL language as a content language to describe agents’ states.

• KQML’s weakness is it religious on-commitment to a content language.
• Both have shortcomings; there are features that developers would like to see in an

ACL.

6.4 Shortcomings of currents ACLs

• Intentional level description; which mental attitudes, what definitions?
• Problems with mental attitudes: from theory to practice
• Can all desirable communication primitives be modeled as speech acts? Should they?
• How can we test an agent’s compliance with the ACL?
• Ease of extending an ACL

6.5 Are there any other ACLs?

• KQML and FIPA ACL are the only fully specified ACLs
• There exists many variants of KQML that do not qualify KQML as a fully specified

ACL



• FIPA ACL only exists in paper; its specification has not been challenged yet,partly
due to the lack of applications using it

• Two important KQML variants exist; both challenge some fundamental KQML
concepts:
• KQML + KIF, from Stanford (Genesereth)

• Work by Cohen, Levesque and Smith

6.6 Alternatives to ACLs

• There are many alternatives to using ACLs for communicating and sharing
information.

• From oldest to newest:

- Natural language:
- Database languages (SQL)
- Domain dependant (EDI)
- Distributed object systems (CORBA)
- OKBC
- Service languages (e-speak, BizTalk)
- Web languages (XML, RDF, DAML)

• One size won’t fit all, so we need to appreciate the strengths and weaknesses.
• We can also consider mixing, matching and morphing

7 FIPA APPLICATIONS. THE PERSONAL ASSISTANT

7.1 FIPA Applications

• User Assistant Applications:
• Information Retrieval Applications

• Entertainment Applications
• Service Management Applications
• Business Management Applications
• Manufacturing Management Applications
• Service Robotics Applications

• Cooperative Tasks Management Applications
• Research Applications

7.2 Overview of the Personal Assistant

• A personal assistant (PA) is a software agent that acts semi-autonomously for and on
behalf of a user, modelling the interests of the user and providing services to the user
or other people and PAs as and when required.



• These services include managing a user's diary, filtering and sorting e-mail, managing
the user's activities, locating and delivering (multimedia) information, and planning
entertainment and travel.

• It is like a secretary, it accomplishes routine support tasks to allow the user to
concentrate on the real job, it is unobtrusive but ready when needed, rich in

knowledge about user and work.
• Some of the services may be provided by other agents (e.g. the PTA) or systems, the

Personal Assistant acts as an interface between the user and these systems.
• In the FIPA'97 test application, a Personal Assistant offers the user a unified,

intelligent interface to the management of his personal meeting schedule. The PA is
capable of setting up meetings with several participants, possibly involving travel for
some of them. In this way FIPA is opening up a road for adding interoperability and
agent capabilities to the already established domain of Personal Information
Management

7.3 Reference Model

Figure 3 — Personal Assistant Reference Model



• The reference model includes the following interfaces/protocols of interaction that are
candidates for standardisation.

- User-Agent Dialogue
- Multi-Modal User-Agent Interface
- Agent-Agent Communication Interfaces  & Protocols for A-A Interaction
- Agent-Software Interfaces  & A-S Communication Protocols
- Agent-Functions Interfaces

• Concrete examples of the PA’s functions/services needed

- Directory Services
- Meeting Scheduling Services

- Information Management Services
- Travel Planning Service

• The chosen scenario is that of arranging meetings among several participants, located
across companies and using different calendar management systems.

• The selected service is an integration of meeting scheduling and travel assistance. The

user asks the agent to set up a meeting with several participants. Because the meeting

may involve travelling for some of the participants, travel planning forms part of the
meeting scheduling.

7.4 System Architecture

User nUser n

Personal

agent

(User n)

Personal

agent

(User n)

Personal

assistant

(User 1)

Personal

assistant

(User 1)

Travel
Broker
Agent 1

Travel
Broker
Agent 1

Personal

assistant

(User 2)

Personal

assistant

(User 2)

User 1User 1

User 2User 2

Travel
Broker
Agent 2

Travel
Broker
Agent 2

Figure 4 — Agent Interactions in Personal Assistant Application Scenario



Personal

agent

(User 1)

Personal

agent

(User 1)

E-mailE-mail

NewsNews

Calendar
/ diary

(CAPI)

Calendar
/ diary

(Calendar
API)

Address
book

Address
book Telephone

/ fax

(TAPI)

Telephone
/ fax

(TAPI)

Figure 5 — Integration of External Software

7.5 FIPA technologies used

8 Agent Management
- This application makes use of the Directory Facilitator and, as such, requires

agents to register and deregister with the DF.
- Optional attributes: search

• Agent Communication Language
- CAs: cfp, accept-proposal, reject-proposal, not-

understood, propose, refuse, inform, failure, perform

- Interaction protocols: FIPA-Cotract-Net and FIPA-Request
• Human-Agent Interaction (informative)

GUI,
Voice

ACL ACLPersonal
Assistant

User
Interface

Agent

Figure 6 — Agent-Human Interaction via User Interface Agent

• Contents of Interaction (informative)
a) U -> PA : give task to arrange meeting (including reporting requirements)
b) PA -> U: progress status of task, at least success or failure (with reasons)
c) U -> PA: permission to commit to meeting
d) PA->U: request for permission to commit
e) PA -> U: inform commitment made

f) U -> PA: degree of delegation authority



• Agent / Software Integration
- diary or calendar management system
- address book

- email/FAX
- TAPI
- Personal Travel Assistance

7.6 The PA Content Language

- The primary requirement if the content language is the representation of meetings,
trips, the actions of scheduling the meeting (as carried out by the initiator’s PA),
and the action of participating in the meeting(as carried out by the human
participants). Due to its simplicity , standard s-expression syntax is chosen.

- The syntax is expressed in standard EBNF format as summarised in [FIPA
Document fipa7612.doc].

- Expressions in the content language appear in the ACL message format syntax as
value expressions of the ":content" parameter in  the ACL message syntax,
specifically as in: :content "(" PA-content-message Proposition ")" .

PA-content-message = "(" PA-Action ")".
PA-Action = PA-Meet | PA-Travel | PA-Schedule .
PA-Meet = "(PA-Meet" ObjectId PA-Meeting Result

Status Agent StartTime Duration Deadline
")" .

PA-Travel = "(PA-Travel" ObjectId PA-Trip Status Agent
StartTime Duration Deadline ")" .

PA-Schedule = "(PA-Schedule" ObjectId PA-Object Result
Status Agent StartTime Duration Deadline
")" .

PA-Object = PA-Meeting | PA-Trip .
PA-Meeting = "(PA-Meeting" ObjectId Initiator

vCalendarObject Protocol ")" .



7.7 Interaction protocols

• Negotiating Meeting Details (normative):the accept-proporal is used only if all bids
(have a time frame in common.

not-understood refuse
"participant not available"
This may be determined by external
cooperation with user

Deadline

reject-proposal
one bidder refused, or
no common timeframe

preconditions3 At this time the meeting is or is not
scheduled.

failure
reason

inform
Done(participate(participant, PA-Meeting))

perform
participate(participant, PA-Meeting)
the meeting takes place

accept-proposal
timeframe common to all bids
The PA may inform user of this
acceptance

bid
A timeframe within timeframe1

cfp
participate(participant, PA-Meeting)
timeframe1

Figure 7 — FIPA-ContractNet (applied to meeting negotiation)

• Scheduling a meeting (informative): an Order protocol can be used in order to
initiate negotiation of a meeting

not-understood

failure
"Participant x unavailable"

inform
Done(PA-Schedule(PA-Meeting))

inform
result(PA-Schedule(PA-Meeting))
The meeting details, i.e. location and time

perform
PA-Schedule(PA-Meeting)
This invokes contract net with participant PAs

request
PA-Schedule(PA-Meeting)

Figure 8 — PA-Order (applied to meeting scheduling) (informative)



• Confirmation with user (informative): the FIPA-RequestWhen protocol can be
used by the PA to confirm the availability of the user at a suggested meeting time.

not-understood refuse
unavailable
possibly with reason why unavailable
so PA can record this fact

time or timeframe
Actually, in the case of timeframe
the PA will have to specify the exact
time the meeting will be held

failure
reason

inform
Done(participate(PA-Meeting))

perform
participate(PA-Meeting)

agree
time or subset of timeframe

do-when
participate(PA-Meeting)
time or timeframe

Figure 9 — FIPA-RequestWhen (applied to meeting scheduling) (informative)

7.8 Example

• Suppose John Doe wants to schedule an hour long meeting with some colleagues
during some time on a given day. Then John Doe’s PA will send the following
message to the personal agents of the desired participants:

(cfp
    :sender UA-Donald
    :receiver UA-Wiet
    :content ((PA-Meet
                  :ObjectID WietMeet123
                  :Agent Hans Mustermann
                  :PA-Meeting (BEGIN:VCALENDAR
VERSION: 1.0
BEGIN:VEVENT
UID: 123
SUMMARY: FIPA Demo
ATTENDEE:Hans Mustermann
ATTENDEE;ROLE=ORGANIZER:John Doe
LOCATION:Siemens MchP 53.512
CATEGORIES: X-FIPA-Test
DESCRIPTION: This is just a test meeting. Please do not attend it.
SEQUENCE: 0
PRIORITY: 0
DTSTART: X-FIPA-UnderNegotiation
DTEND: X-FIPA-UnderNegotiation
STATUS: UNDER NEGOTIATION
X-FIPA-ORGANIZER: John Doe
END:VEVENT
END:VCALENDAR
                               )



               )
             (InTimeIntervals(WietMeet123.PA-
Meeting.DTSTART,[[1200,1800]]) ∧
DTEND = DTSTART + 60 )
              )
    :ontology FIPA-PA
    :conversation-id UA-Donald345
    :protocol FIPA-ContractNet
    :reply-with Response123
    :reply-by 101097T1300
)

7.9 FIPA platforms

- Mecca (Siemens)
- Jade (CSELT)   http://drogo.cselt.stet.it/ufv/jade/JADEFeatures.html
- FIPA-OS (Nortel)
- FIPA-Smart  http://labs.bt.com/projects/agents/zeus/
- CoABS (GITI)



8 REFERENCES AND LINKS
9 M. Woolridge, 2000,  Multi-Agent Systems, Seminario UPC

10 Agent Communication Languages. Past, Present and Future, Autonomous Agents

2000, Tutorial 9

11 FIPA 97 specifications
- Part 1: Agent Management
- Part 2: Agent Communication Language

- Part 5: Personal Assistant
• FIPA 98 specifications

- Part 12: Ontology Service
- Part 13: Developers Guide

• A. Haddadi. Communication and Cooperation in Agent Systems. A Pragmatic
Theory. Lecture Notes in Artificial Intelligence

• M. R. Genesereth & S.P. Ketchpel. Software Agents. Communications of the ACM,

July 1994/Vol 37, No. 7

• Knowledge Interchange Format. Draft proposed American National Standard

• DRAFT Specification of the KQML Agent-Communication Language.

• General information on software agents
http://agents.umbc.edu

• The FIPA home
http://www.fipa.org

• Information on  KQML, KIF and ontologies
http://www.agents.umbc.edu/kqml
http://wwwagents.cs.umbc.edu/kif

• Information on Agent Communication Languages
http://www.agents.umbc.edu/acl/


