
1

IAGA 2005/2006 217

Forward and backward
chaining

• Horn Form (restricted)
KB = conjunction of Horn clauses

– Horn clause =
• proposition symbol; or
• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)

• Modus Ponens (for Horn Form): complete for Horn KBs
α1, … ,αn, α1 ∧ … ∧ αn ⇒ β

β

• Can be used with forward chaining or backward chaining.
• These algorithms are very natural and run in linear time

IAGA 2005/2006 218

Forward chaining
• Idea: fire any rule whose premises are satisfied in the

KB,
– add its conclusion to the KB, until query is found

2

IAGA 2005/2006 219

Forward chaining algorithm

• Forward chaining is sound and complete for
Horn KB

IAGA 2005/2006 220

Forward chaining example

3

IAGA 2005/2006 221

Forward chaining example

IAGA 2005/2006 222

Forward chaining example

4

IAGA 2005/2006 223

Forward chaining example

IAGA 2005/2006 224

Forward chaining example

5

IAGA 2005/2006 225

Forward chaining example

IAGA 2005/2006 226

Forward chaining example

6

IAGA 2005/2006 227

Forward chaining example

IAGA 2005/2006 228

Proof of completeness
• FC derives every atomic sentence that is

entailed by KB
1. FC reaches a fixed point where no new atomic

sentences are derived
2. Consider the final state as a model m, assigning

true/false to symbols
3. Every clause in the original KB is true in m

a1 ∧ … ∧ ak ⇒ b
4. Hence m is a model of KB
5. If KB╞ q, q is true in every model of KB,

including m

7

IAGA 2005/2006 229

Backward chaining
Idea: work backwards from the query q:

to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal
stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed

IAGA 2005/2006 230

Backward chaining example

8

IAGA 2005/2006 231

Backward chaining example

IAGA 2005/2006 232

Backward chaining example

9

IAGA 2005/2006 233

Backward chaining example

IAGA 2005/2006 234

Backward chaining example

10

IAGA 2005/2006 235

Backward chaining example

IAGA 2005/2006 236

Backward chaining example

11

IAGA 2005/2006 237

Backward chaining example

IAGA 2005/2006 238

Backward chaining example

12

IAGA 2005/2006 239

Backward chaining example

IAGA 2005/2006 240

Forward vs. backward
chaining

• FC is data-driven, automatic, unconscious
processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in
size of KB

13

IAGA 2005/2006 241

Efficient propositional
inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms
• DPLL algorithm (Davis, Putnam, Logemann,

Loveland)
• Incomplete local search algorithms

– WalkSAT algorithm

IAGA 2005/2006 242

The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is

satisfiable.

Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure,

C is impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.�

14

IAGA 2005/2006 243

The DPLL algorithm

IAGA 2005/2006 244

The WalkSAT algorithm
• Incomplete, local search algorithm
• Evaluation function: The min-conflict heuristic of

minimizing the number of unsatisfied clauses
• Balance between greediness and randomness

15

IAGA 2005/2006 245

The WalkSAT algorithm

IAGA 2005/2006 246

Hard satisfiability problems
• Consider random 3-CNF sentences.

e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C
∨ ¬B ∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨
¬C)

m = number of clauses
n = number of symbols

– Hard problems seem to cluster near m/n =
4.3 (critical point)

16

IAGA 2005/2006 247

Hard satisfiability problems

IAGA 2005/2006 248

Hard satisfiability problems

• Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50

17

IAGA 2005/2006 249

Inference-based agents in the
wumpus world

A wumpus-world agent using propositional logic:

¬P1,1
¬W1,1
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4
¬W1,1 ∨ ¬W1,2
¬W1,1 ∨ ¬W1,3
…�

⇒ 64 distinct proposition symbols, 155 sentences

IAGA 2005/2006 250

18

IAGA 2005/2006 251

• KB contains "physics" sentences for every single
square

• For every time t and every location [x,y],
Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

• Rapid proliferation of clauses

Expressiveness limitation of
propositional logic

tt

IAGA 2005/2006 252

Summary
• Logical agents apply inference to a knowledge base to derive

new information and make decisions
• Basic concepts of logic:

– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and
negated information, reason by cases, etc.

• Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn
clauses

• Propositional logic lacks expressive power

