Forward and backward
chaining

* Horn Form (restricted)

KB = conjunction of Horn clauses
— Horn clause =

+ proposition symbol; or

* (conjunction of symbols) = symbol
- Eg,.CA(B=>A)A(CAD=B)

* Modus Ponens (for Horn Form): complete for Horn KBs
a11""ana a1/\.../\an28

S

» Can be used with forward chaining or backward chaining.
* These algorithms are very natural and run in linear time

IAGA 2005/2006

217

Forward chaining

+ |dea: fire any rule whose premises are satisfied in the
KB,
— add its conclusion to the KB, until query is found

"
P =0Q
LANM = P P
BAL = M f>\
ANP = L M
AAB = L
A
B /

IAGA 2005/2006

218

Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Por(agenda)
unless inferred[p] do
inferred|p] ¢ true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|c] = 0 then do
if HEAD[¢] = ¢ then return true
Pusa(HEAD[c), agenda)
return false

» Forward chaining is sound and complete for
Horn KB

IAGA 2005/2006 219

Forward chaining example

220

IAGA 2005/2006

Forward chaining example

IAGA 2005/2006 221

Forward chaining example

222

IAGA 2005/2006

Forward chaining example

223

Forward chaining example

224

Forward chaining example

225

Forward chaining example

226

Forward chaining example

IAGA 2005/2006

227

Proof of completeness

FC derives every atomic sentence that is
entailed by KB

1. FC reaches a fixed point where no new atomic
sentences are derived

2. Consider the final state as a model m, assigning
true/false to symbols

3. Every clause in the original KB is true in m
an...Ana_b
4. Hence mis a model of KB

5. IfKB |= g, g is true in every model of KB,
including m

IAGA 2005/2006

228

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,
check if g is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal
stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed

IAGA 2005/2006 229

Backward chaining example

aQ

IAGA 2005/2006 230

Backward chaining example

231

Backward chaining example

232

Backward chaining example

233

Backward chaining example

Q

|

|
P
B

234

Backward chaining example

235

Backward chaining example

236

10

Backward chaining example

237

Backward chaining example

238

11

Backward chaining example

IAGA 2005/2006

239

Forward vs. backward
chaining

FC is data-driven, automatic, unconscious

processing,
— e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
— e.g., Where are my keys? How do | get into a PhD program?

Complexity of BC can be much less than linear in
size of KB

IAGA 2005/2006

240

12

Efficient propositional
inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms

« DPLL algorithm (Davis, Putnam, Logemann,
Loveland)

* Incomplete local search algorithms
— WalkSAT algorithm

IAGA 2005/2006

241

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is
satisfiable.

Improvements over truth table enumeration:
1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A v —B), (=B v —C), (C v A), A and B are pure,

C is impure.
Make a pure symbol literal true.

3. Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.’]

IAGA 2005/2006

242

13

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses «+ the set of clauses in the CNF representation of s
symbols < a list of the proposition symbols in s
return DPLL(clauses, symbols, [|)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value « FIND-PURE-SYMBOL(symbols, clauses, model)
if Pis non-null then return DPLL(clauses, symbols—P, [P = value|meodel|)
P, value — FIND-UNIT-CLAUSE(clauses, model)
if Pis non-null then return DPLL(clauses, symbols—P, [P = value|meodel|)
P+ FIRST(symbols); rest + REST (symbols)
return DPLL(clauses, rest, [P = lrue|model]) or
DPLL(clauses, rest, [P = false|model|)

IAGA 2005/2006

243

The WalkSAT algorithm

Incomplete, local search algorithm

Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses

Balance between greediness and randomness

IAGA 2005/2006

244

14

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model « a random assignment of true/false to the symbols in clauses
for i = 1 to maz-flips do

if model satisfies clauses then return model

clause +— a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Hard satisfiability problems
» Consider random 3-CNF sentences.
e.g.,
(-Dv-BvC)A(Bv-Av-C)a(-C
v -BVE)A(Ev-DvB)ABVEV
—C)
m = number of clauses
n = number of symbols
— Hard problems seem to cluster near m/n =
4.3 (critical point) »

IAGA 2005/2006

15

Hard satisfiability problems

0.8

06

Pr(satisfiable)

04

0 1 2 3 4 5 6 7 8

Clause/symbol ratio m/n

IAGA 2005/2006 247
Hard satisfiability problems
2([[) T T T T F T T T
1800 DPLL + ||+ -
1600 | WalksAT IJIT ; |
1400 \ .
w 1200 |‘|| \]
=] | \
£ 1000 | PJ \ .
b | \
600 { ¥ |
400 | ‘I x)'(t‘ 4
200 | J ,ﬁi@* %w“"“w._‘xv 3
o L T
0 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n
* Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50
248

IAGA 2005/2006

16

Inference-based agents in the
wumpus world

A wumpus-world agent using propositional logic:

_'P1,1
W, 4

Bx,y g (Px,y+1 v F)x,y—1 v I:)x+‘l,y
Sy & Wy VW, v W
WiivWi v v Wy,
=W, v =W,
=W, v =W,

.U

Vv I:’x—1 ,y)
Vv Wx—'l ,y)

x+1y

= 64 distinct proposition symbols, 155 sentences

IAGA 2005/2006 249
function PL-WUMPUS- AGENT(percept) returns an action
inputs: percept, a list, [stench, breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
x, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty
update x,y,orientation, visited based on action
if stench then TELL(KB, S,) else TELL(KB, - S,)
if breeze then TELL(KB, B, ,) else TELL(KB,— B, ;)
if glitter then action + grab
else if plan is nonempty then action < Pop(plan)
else if for some fringe square [i,7], Ask(KB, (- Pij A — Wi;)) is true or
for some fringe square [i], ASK(KB, (P;; v W;;)) is false then do
plan+ A*-GRAPH-SEARCH(ROUTE-PB([z,y], orientation, [4j], visited))
action <+ PoP(plan)
else action + a randomly chosen move
return action
250

IAGA 2005/2006

17

Expressiveness limitation of
propositional logic

« KB contains "physics" sentences for every single
square

» For every time t and every location [x,y],
Ly A FacingRightt A Forwardt = Lty

» Rapid proliferation of clauses

IAGA 2005/2006

251

Summary

» Logical agents apply inference to a knowledge base to derive
new information and make decisions
» Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundness: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences
* Wumpus world requires the ability to represent partial and
negated information, reason by cases, etc.
* Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn
clauses
» Propositional logic lacks expressive power

IAGA 2005/2006

252

18

