
2nd. Part

• Modeling
– Primality/Duality

– Global Constraints

• Constraint programming
– examples in CHOCO

• Soft Constraints
– Models

– Algorithms

Modeling

• Any CSP can be formulated in different (equivalent)
ways

• The efficiency of the solving algorithms can vary
dramatically

• No strong results are known
• Active line of research
• Alternative formulations:

– Primal/Dual

– Primitive/Global constraints

Primal/Dual

Primal CSP: (X, D, C)
• X = {x1, x2,…, xn}, D = {d1, d2,…,dn}, C = {c1,c2,…,cr }

 c ∈C var(c) = {xi, xj,…, xk} scope

 rel(c) ⊆ di x dj x .. x dk permitted tuples

Primal/Dual

Primal CSP: (X, D, C)
• X = {x1, x2,…, xn}, D = {d1, d2,…,dn}, C = {c1,c2,…,cr }

 c ∈C var(c) = {xi, xj,…, xk} scope

 rel(c) ⊆ di x dj x .. x dk permitted tuples

Dual CSP: (X’, D’, C’)
• X’ = {x’1, x’2,…, x’r},

• D’ = {d’1, d’2,…,d’r}, where d’i = rel(ci)

• C’ = {c’ij }, binary constraints

 var(c’ij) = {xi, xj}

 ∃ c’ij ∈C’ ⇔ rel(ci) ∩ rel(cj) ≠ ∅
 rel(c’ij) = consistent pairs of tuples

Example: Crossword puzzles

1 2 3

6

4

7

5

8

10

9

20

11

22

12

21

13

17

14

181615

2319

a
aardvark
aback
abacus
abaft
abalone
abandon
...

Mona Lisa
monarch
monarchy
monarda
...
zymurgy
zyrian
zythum

Primal model (Non-binary)

1 2 3

6

4

7

5

8

10

9

20

11

22

12

21

13

17

14

181615

2319

• variables:
one for each unknown
letter (cell)

• domains:
‘a’, …, ‘z’

• constraints:
contiguous letters must
form words in dictionary

Dual model (binary)

1 2 3

6

4

7

5

8

10

9

20

11

22

12

21

13

17

14

181615

2319

• variables:
one for each unknown
word across and down

• domains:
words from dictionary

• constraints
intersecting words must
agree on common letter

Global Constraints

c is global iff:
– arity(c)=r > 2
– c is logically equivalent to {c1,c2,…,ck } binary

– AC(c) prunes more than AC(c1,c2,…,ck)

Propagation:
– There is a specialized efficient algorithm (exploits the

semantics)

Catalog:
– set of global constraints

– best known algorithms for propagation

Example: all-different

x {1, 2}

y
{1, 2}

z
{1, 2}

≠ ≠

≠

3 binary constraints,
they are AC,
no pruning

Example: all-different

x {1, 2}

y
{1, 2}

z
{1, 2}

≠ ≠

≠

3 binary constraints,
they are AC,
no pruning

x {1, 2}

y
{1, 2}

z
{1, 2}

all-different

1 ternary constraint,
it is not AC,

AC pruning → empty domain
 no solution!!

logically
equivalent

Example: all-different

• Enforcing arc-consistency:
– n variables, d values

– n(n-1)/2 binary constraints : O(n2 d2)

– 1 n-ary constraint:

• general purpose algorithm O(dn)
• specialized algorithm O(n2 d2)

Constraint Programmming
 Declarative Programming: you declare

• Variables

• Domains
• Constraints

 and ask the SOLVER to find a solution!!

 SOLVER offers:
• Implementation for variables / domains / constraints
• Hybrid algorithm: backtracking + incomplete inference

• Global constraints + optimized AC propagation

• Empty domain detection

• Embedded heuristics

Constraint Logic Programming

• Logic Programming:
– implements chronological backtracking

• Constraint logic programming:
– extension including constraint satisfaction facilities

• Existing solvers:
– Chip (ZZZ�FRV\WHF�FRP)

– Eclipse (ZZZ�LFSDUF�GRF�LF�DF�XN�HFOLSVH)

– Sicstus Prolog (ZZZ�VLFV�VH�VLFVWXV)

– ...

Imperative Constraint Programming

Library to be included in your (procedural) program
Provides:

– Special objects:

• Variables / Domains / Constraints (global)

– Special functions to find:

• One solution / the next solution

• Existing Solvers:
• Ilog Solver (ZZZ�LORJ�FRP)

• Choco (ZZZ�FKRFR�FRQVWUDLQWV�QHW)

CHOCO

• Library for modeling and solving combinatorial
problems

• Intended for academic purposes
• Plus:

– Free software (GPL from FSF)
– Simple

– Efficient

– Generic

• Minus:
– Implemented in Claire (which is implemented in C++)
– Not (completely) stable

Choco: 1st example

[sillyCSP() : void

 -> let pb := choco/makeProblem("Silly CSP",3),
 x := choco/makeIntVar(pb, "x", 1, 3),

 y := choco/makeIntVar(pb, "y", 1, 3),

 z := choco/makeIntVar(pb, "z", 1, 3) in

 (choco/post(pb, x + y == z),
 choco/post(pb, x > y),

 choco/solve(pb,false),

 printf("~S ~S ~S\n",x,y,z))]

Choco: 2nd example

[queens(n:integer, all:boolean)

 -> let pb := choco/makeProblem(" n queens",n),
 queens := list{choco/makeIntVar(pb,"Q" /+ string!(i), 1, n) | i in (1 .. n) }

in

 (for i in (1 .. n)
 for j in (i + 1 .. n)
 let k := j - i in

 (choco/post(pb, queens[i] !== queens[j]),
 choco/post(pb, queens[i] !== queens[j] + k),
 choco/post(pb, queens[j] !== queens[i] + k)),
 choco/solve(pb,all))]

Soft Constraints

• Motivation
• Models:

– Fuzzy CSP
– Weighted CSP
– Valued CSP

• Algorithms:
– Search
– Dynamic programming
– Approximate algorithms

Motivation

• Using the classical CSP framework:

– Many problems have many solutions

• Algorithms either give the first one they find or all of them

• Typically, the user likes some solutions more than others

– Many problems do not have any solution

• Algorithms just report failure

• Typically, the user can identify some non critical
constraint

Soft CSP

• Problems:
– Variables and domains as in classical CSP

– Mandatory constraints (hard)

– Preference constraints (soft)

• Feasible solution:
– Complete assignment which satisfies every hard constraint

• Optimal solution:
– Preferred feasible solution, according to soft constraints

• Complexity:
– Np-hard
– Much harder than classical CSP

Soft Constraints Models

• Max-csp [freuder and wallace 92]
• Fuzzy CSP [dubois et al 93]
• Lexicographic CSP [fargier et al 93]
• Weighted CSP
• Probabilistic CSP [fargier and lang 93]
• Valued CSP [schiex et al 95]
• Semiring-based CSP [bistarelli et al 95]

Notación

• Variables: i, j, k, ...
• Domains: Di, Dj, ...
• Values: a,b,...
• (Binary) constraints: cij

• Tuples: τ
• Projection: τ[i,j]

Classical CSP

• Expressable as classical logic
• Constraints: boolean functions

– Cij(a,b)= true/false

• Task of interest:

)(],[MLLMLM FF ττ ∀∃

Fuzzy CSP

• Extension of classical CSP to fuzzy logic
– Conjunction: t-norm (mínimum)

– Disjunction: t-conorm (maximum)

–

– Task:

]1,0[),(∈EDFLM

)}}({{],[MLLM
LMF

FPLQPD[τ
τ

Weighted CSP

• Preferences are expressed as costs
– Constraints: cost functions

– Task:

},...,1,0{),(∞∈EDFLM

)}}({{],[MLLM

LMF

FPLQ τ
τ

∑

Example

• Airlines flight scheduling:
– Input:

• Aircrafts, airports

• Flights: (origin, destination, frequency)

• Requirements:
– No more than four legs per flight

– 1 hour < transfer time < 5 hours

– ...

– Output:

• Schedule: each flight is a sequence of scheduled legs

Example

• Classical CSP:
– Consistent schedules

• Fuzzy CSP:
– Schedules where every flight is reasonably good

• Maximizes the quality of the worst flight

• Weighted CSP:
– Schedules where, globally, flights are good

• Maximizes the sum of qualities over flights

• Some flights can be very inconvenient

Valued CSP (VCSP)
 [Schiex et al 95]

• Axiomatic model aiming at maximal generality
• It includes all previous models
• Valuation structure (E,∗,>):

– E is the set of valuations

• Totally ordered by “>”, the maximum element is “ “, the
minimum element is “⊥”.

– ∗ is the aggregation of valuations
• binary operation on E, commutative and associative.

• ⊥ is the identity
• is absorbing

• ∗ grows monotonicly

Valued CSP

• (Soft) constraints:

–

• Task:

–

(EDFLM ∈),(

)}}({{],[MLLM
LMF
FPLQ τ

τ
∗

Soft CSP Solving

• Preliminaries

• Exact algorithms:
– Branch and Bound

– Partial Forward Checking
– Reversible Dacs

– Russian Doll Search

– Bucket Elimination

• Approximate algorithms:
– Local search approaches

– Interval approximation

tree search

Valued CSP

classical CSP

Weighted CSP
Probab. CSP
...

Idempotent ∗

Fuzzy CSP
...

Solving Valued CSP

• Classical CSP:
– First part of this tutorial

– Forward checking, k-consistency, MAC, ...

• Idempotent CSP:
– Algorithms and properties from classical CSP extend easily

• Non idempotent CSP:
– Algorithms and properties from classical CSP do not extend

so easily

– Last part of this tutorial

– For simplicity, we will consider Max-csp

