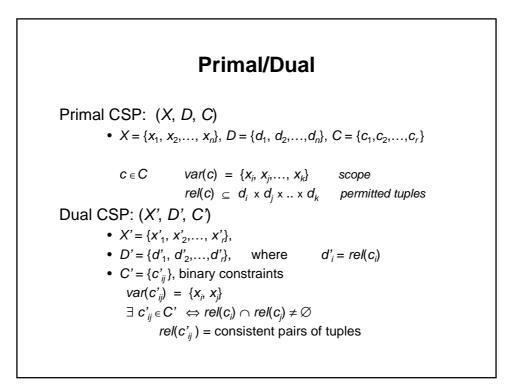


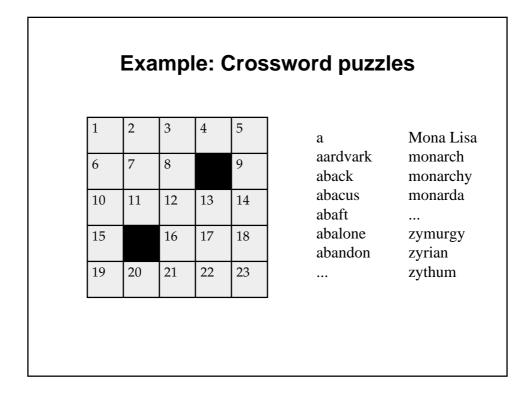
Primal/Dual

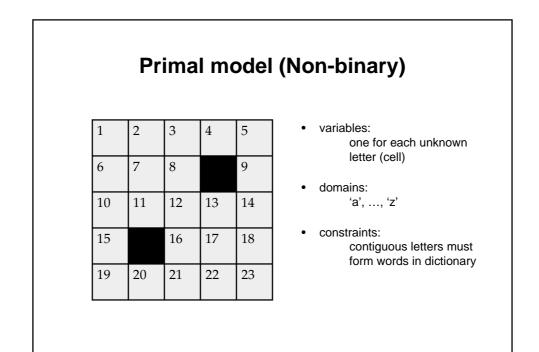
Primal CSP: (X, D, C)

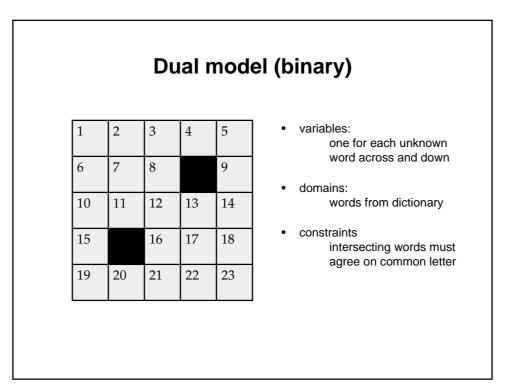
• $X = \{x_1, x_2, ..., x_n\}, D = \{d_1, d_2, ..., d_n\}, C = \{c_1, c_2, ..., c_r\}$

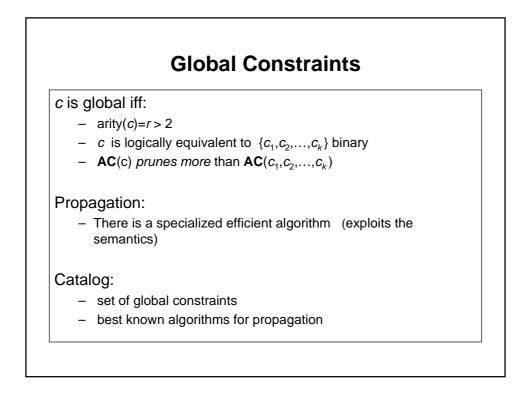
 $c \in C$ $var(c) = \{x_i, x_j, ..., x_k\}$ scope $rel(c) \subseteq d_i \times d_j \times ... \times d_k$ permitted tuples

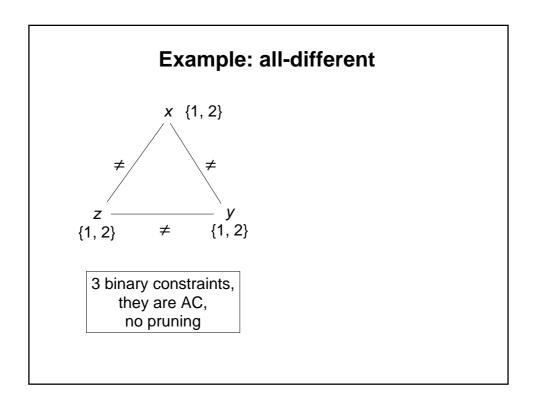


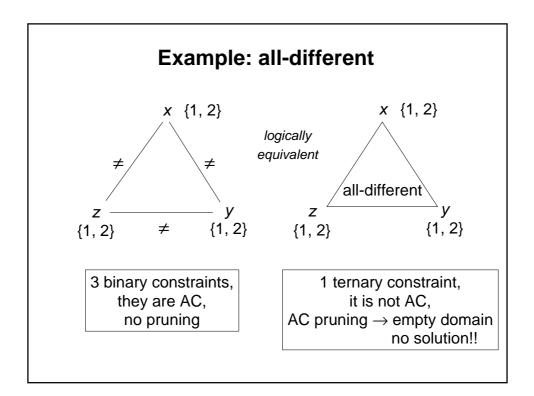












Example: all-different

- Enforcing arc-consistency:
 - n variables, d values
 - n(n-1)/2 binary constraints : $O(n^2 d^2)$
 - 1 *n*-ary constraint:
 - general purpose algorithm O(*d*ⁿ)
 - specialized algorithm O(n² d²)

Constraint Programmming

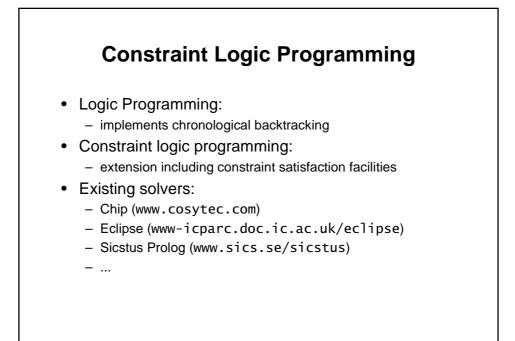
Declarative Programming: you declare

- Variables
- Domains
- Constraints

and ask the SOLVER to find a solution!!

SOLVER offers:

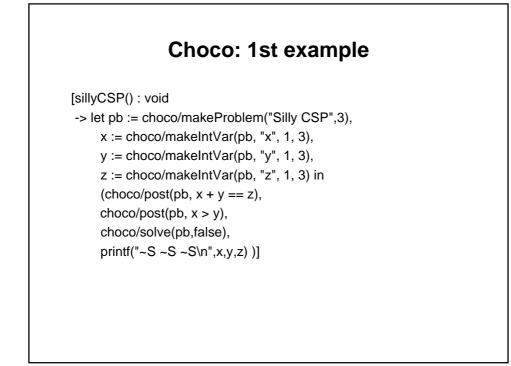
- Implementation for variables / domains / constraints
- Hybrid algorithm: backtracking + incomplete inference
- Global constraints + optimized AC propagation
- Empty domain detection
- Embedded heuristics





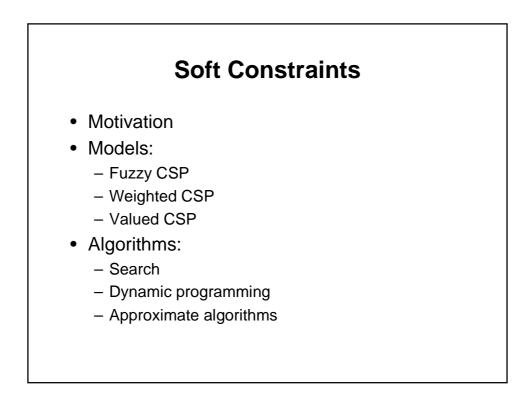
СНОСО

- Library for modeling and solving combinatorial problems
- Intended for academic purposes
- Plus:
 - Free software (GPL from FSF)
 - Simple
 - Efficient
 - Generic
- Minus:
 - Implemented in Claire (which is implemented in C++)
 - Not (completely) stable



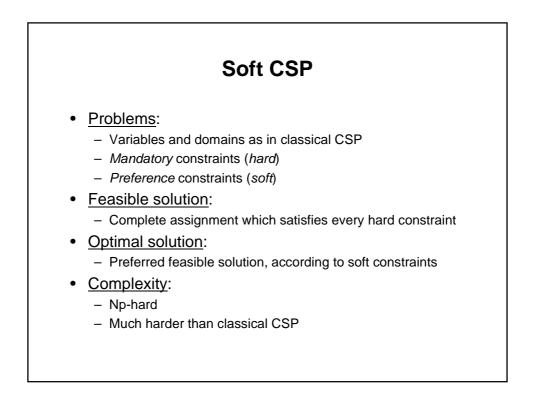
Choco: 2nd example

[queens(n:integer, all:boolean) -> let pb := choco/makeProblem(" n queens",n), queens := list{choco/makeIntVar(pb,"Q" /+ string!(i), 1, n) | i in (1 .. n) } in (for i in (1 .. n) for j in (i + 1 .. n) let k := j - i in (choco/post(pb, queens[i] !== queens[j]), choco/post(pb, queens[i] !== queens[j] + k), choco/post(pb, queens[j] !== queens[j] + k), choco/post(pb, queens[j] !== queens[i] + k)), choco/solve(pb,all))]



Motivation

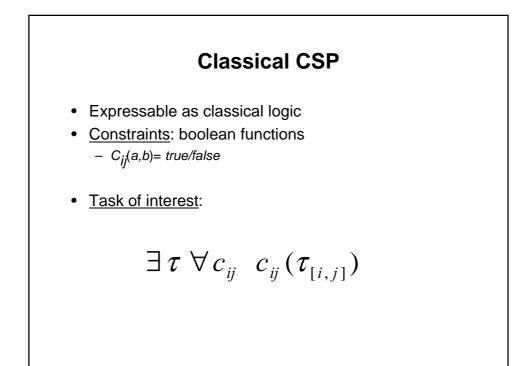
- Using the classical CSP framework:
 - Many problems have many solutions
 - Algorithms either give the first one they find or all of them
 - Typically, the user likes some solutions more than others
 - Many problems do not have any solution
 - Algorithms just report failure
 - Typically, the user can identify some non critical constraint

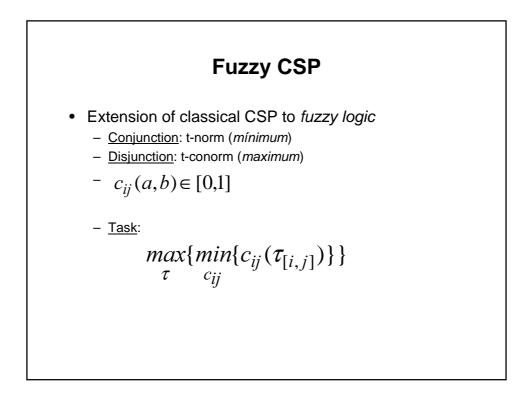


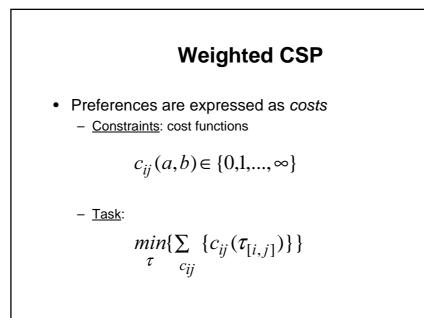
Soft Constraints Models

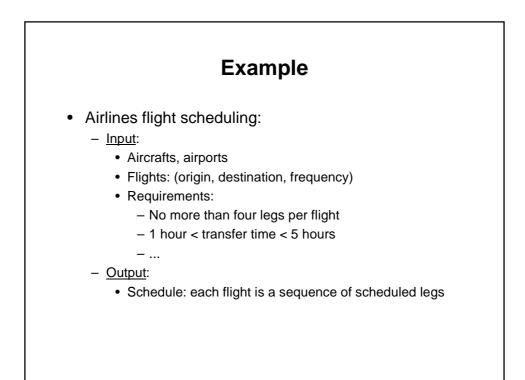
- Max-csp [freuder and wallace 92]
- Fuzzy CSP [dubois et al 93]
- Lexicographic CSP [fargier et al 93]
- Weighted CSP
- Probabilistic CSP [fargier and lang 93]
- Valued CSP [schiex et al 95]
- Semiring-based CSP [bistarelli et al 95]

	Notación	
• Variables:	i, j, k,	
• Domains:	Di, Dj,	
• Values:	a,b,	
• (Binary) const	raints: c _{ii}	
• <u>Tuples</u> :	τ	
Projection:	$ au_{[i,j]}$	







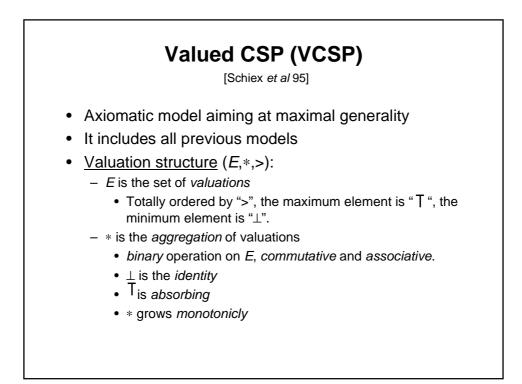


Example

<u>Classical CSP</u>:

- Consistent schedules

- Fuzzy CSP:
 - Schedules where every flight is reasonably good
 - Maximizes the quality of the worst flight
- Weighted CSP:
 - Schedules where, globally, flights are good
 - Maximizes the sum of qualities over flights
 - Some flights can be very inconvenient



Valued CSP

• (Soft) constraints:

$$- c_{ii}(a,b) \in E$$

• <u>Task</u>:

$$- \min_{\tau} \{ *_{c_{ij}} \{ c_{ij}(\tau_{[i,j]}) \} \}$$

