2nd. Part

* Modeling
— Primality/Duality
— Global Constraints
» Constraint programming
— examples in CHOCO
» Soft Constraints
— Models
— Algorithms

Modeling

* Any CSP can be formulated in different (equivalent)
ways

» The efficiency of the solving algorithms can vary
dramatically

* No strong results are known

» Active line of research

« Alternative formulations:
— Primal/Dual
— Primitive/Global constraints




Primal/Dual

Primal CSP: (X, D, C)
o X={Xy, Xp..., X}, D ={d;, d,,...,d.}, C ={c;,Cy,...,C, }

coC var(c) = {X; Xj..., X} scope
rel(c) 0 d; xd; x..xd,  permitted tuples

Primal/Dual

Primal CSP: (X, D, C)
© X={Xy, Xp..., X}, D ={d;, dy,...,d.}, C ={c;,Cp,...,C, }

coC var(c) = {X; Xj..., X} scope
rel(c) 0 d; xd;x..xd,  permitted tuples
Dual CSP: (X', D', C)

« D={d,,d,,....d}, where d’; = rel(c)
» C'={c;}, binary constraints
var(c’) = {x;, x}
Oc; 0C = rel(c) nrel(c) # 0
rel(c’; ) = consistent pairs of tuples




Example: Crossword puzzles

19

20 |21 |22

23

1 2 3 4 5 .
a MonalLisa
6 - 3 5 aardvark monarch
aback monarchy
10 |11 |12 |13 |14 abacus monarda
abaft
15 16 |17 |18 abalone zymurgy
abandon zyrian
19 |20 |21 |22 |23 zythum
Primal model (Non-binary)
1 2 3 4 5 variables:
one for each unknown
letter (cell)
domains:
10 |11 |12 |13 |14 ‘a, ...,z
18 constraints:

contiguous letters must
form words in dictionary




Dual model (binary)

1 2 3 4 5 * variables:
one for each unknown

word across and down
e domains:

10 (11 12 (13 |14 words from dictionary

15 16 [17 |18 * constraints
intersecting words must
agree on common letter

19 120 |21 |22 |23

Global Constraints

c is global iff:
— arity(c)=r>2
— c islogically equivalentto {c,,c,,...,c,} binary
— AC(c) prunes more than AC(c,,C,,...,C,)

Propagation:

— There is a specialized efficient algorithm (exploits the
semantics)

Catalog:
— set of global constraints
— best known algorithms for propagation




Example: all-different

x {1, 2}

y4 y
{1, 2} 7 {1, 2}

3 binary constraints,
they are AC,
no pruning

Example: all-different

x {1, 2} x {1, 2}
logically
+ £ equivalent
all-different
z y z y
{1, 2} 7 {1,2} 1,2} {1, 2}

3 binary constraints,
they are AC,
no pruning

1 ternary constraint,
it is not AC,
AC pruning — empty domain
no solution!!




Example: all-different

» Enforcing arc-consistency:
— nvariables, d values
— n(n-1)/2 binary constraints : O(n? d?)
— 1 n-ary constraint:
» general purpose algorithm O(d")
* specialized algorithm O(n? d?)

Constraint Programmming

Declarative Programming: you declare
e Variables
e Domains
e Constraints
and ask the SOLVER to find a solution!!

SOLVER offers:
* Implementation for variables / domains / constraints
« Hybrid algorithm: backtracking + incomplete inference
¢ Global constraints + optimized AC propagation
« Empty domain detection
* Embedded heuristics




Constraint Logic Programming

» Logic Programming:
— implements chronological backtracking
» Constraint logic programming:
— extension including constraint satisfaction facilities
» EXxisting solvers:
— Chip (www.cosytec.com)
— Eclipse (www-1icparc.doc.ic.ac.uk/eclipse)
— Sicstus Prolog (www.sics.se/sicstus)

Imperative Constraint Programming

Library to be included in your (procedural) program

Provides:
— Special objects:
« Variables / Domains / Constraints (global)
— Special functions to find:
¢ One solution / the next solution

» Existing Solvers:
* llog Solver (www.1i10g.com)
» Choco (www.choco-constraints.net)




CHOCO

Library for modeling and solving combinatorial
problems

Intended for academic purposes

Plus:

— Free software (GPL from FSF)

— Simple

— Efficient

— Generic

Minus:

— Implemented in Claire (which is implemented in C++)
— Not (completely) stable

Choco: 1st example

[sillyCSP() : void
-> |et pb := choco/makeProblem("Silly CSP",3),

X := choco/makelntVar(pb, "x", 1, 3),
y := choco/makelntVar(pb, "y", 1, 3),
z := choco/makelntVar(pb, "z", 1, 3) in
(choco/post(pb, x +y == z),
choco/post(pb, x >y),
choco/solve(pb,false),

printf("~S ~S ~S\n",x,y,2) )]




Choco: 2nd example

[queens(n:integer, all:boolean)

-> |et pb := choco/makeProblem(" n queens",n),
queens := list{choco/makelntVar(pb,"Q" /+ string!(i), 1, n) | iin (1 ..n) }
in
(foriin (1..n)

forjin(i+1..n)
letk:=j-iin
( choco/post(pb, queens]i] == queens[j]),
choco/post(pb, queens]i] !== queens][j] + k),
choco/post(pb, queens]j] == queens]i] + k) ),
choco/solve(pb,all) )]

Soft Constraints

* Motivation

* Models:
— Fuzzy CSP
— Weighted CSP
— Valued CSP
» Algorithms:
— Search
— Dynamic programming
— Approximate algorithms




Motivation

» Using the classical CSP framework:

— Many problems have many solutions
» Algorithms either give the first one they find or all of them
» Typically, the user likes some solutions more than others

— Many problems do not have any solution
* Algorithms just report failure

* Typically, the user can identify some non critical
constraint

Soft CSP

Problems:

— Variables and domains as in classical CSP

— Mandatory constraints (hard)

— Preference constraints (soft)

Feasible solution:

— Complete assignment which satisfies every hard constraint
Optimal solution:

— Preferred feasible solution, according to soft constraints
Complexity:

— Np-hard

— Much harder than classical CSP




Soft Constraints Models

Max-csp [freuder and wallace 92]

Fuzzy CSP [dubois et al 93]
Lexicographic CSP [fargier et al 93]
Weighted CSP

Probabilistic CSP [fargier and lang 93]
Valued CSP [schiex et al 95]
Semiring-based CSP [bistarelli et al 95]

Notacion
Variables: L, K, ...
Domains: Di, Dj, ...
Values: a,b,...
(Binary) constraints:
Tuples: T

Projection: Tij




Classical CSP

» Expressable as classical logic

e Constraints: boolean functions
- Cij(a,b): true/false

* Task of interest:

CrOc,; ¢, (T 5)

Fuzzy CSP

» Extension of classical CSP to fuzzy logic
— Conjunction: t-norm (minimum)
— Disjunction: t-conorm (maximum)

- ¢;(a,b)0[0]]

— Task:

max{min{c; (T}; 1)}}
T Cij




Weighted CSP

* Preferences are expressed as costs
— Constraints: cost functions

Cij (Cl,b) D{O,:I.,,OO}

mins {e (@, )}}
cij

Example

* Airlines flight scheduling:
— Input:
« Aircrafts, airports
 Flights: (origin, destination, frequency)
* Requirements:
— No more than four legs per flight
— 1 hour < transfer time < 5 hours

— Output:
» Schedule: each flight is a sequence of scheduled legs




Example

» Classical CSP:
— Consistent schedules

* Fuzzy CSP:

— Schedules where every flight is reasonably good
» Maximizes the quality of the worst flight

* Weighted CSP:
— Schedules where, globally, flights are good
» Maximizes the sum of qualities over flights
» Some flights can be very inconvenient

Valued CSP (VCSP)

[Schiex et al 95]

* Axiomatic model aiming at maximal generality
 Itincludes all previous models

» Valuation structure (E,[]>):
— E is the set of valuations

« Totally ordered by “>”, the maximum elementis “ T “, the
minimum element is “[1".

— [is the aggregation of valuations
* binary operation on E, commutative and associative.
e [is the identity
. Tis absorbing
« [dgrows monotonicly




Valued CSP

» (Soft) constraints:

c;j(a,b)UE
* Task:

- min{ K¢, (17; ;1)}}
T Cij

Soft CSP Solving

* Preliminaries

» Exact algorithms:

— Branch and Bound
Partial Forward Checking
Reversible Dacs
Russian Doll Search
Bucket Elimination

» Approximate algorithms:
— Local search approaches
— Interval approximation

tree search




Valued CSP

Idempotent []

classical CSP

Weighted CSP
Probab. CSP

Fuzzy CSP

Solving Valued CSP

» Classical CSP:
— First part of this tutorial
— Forward checking, k-consistency, MAC, ...

* ldempotent CSP:
— Algorithms and properties from classical CSP extend easily

* Non idempotent CSP:
— Algorithms and properties from classical CSP do not extend
so easily
— Last part of this tutorial
— For simplicity, we will consider Max-csp




