Razonamiento

con

Restricciones

Tutorial CAEPIA 2003

Javier Larrosa Dep. LSI, UPC, Barcelona

Pedro Meseguer IIIA, CSIC, Bellaterra

Esquema Global

1. Introducción

- Definiciones
- Ejemplos

2. Métodos de Resolución

- Búsqueda
- Inferencia
- Métodos híbridos

3. Modelización

- Primal / dual
- Restricciones globales
- Programación con restricciones

4. Restricciones Blandas

- Modelos
- Algoritmos

Satisfacción de Restricciones

Definición: red de restricciones P = (X, D, C)

$$X = \{X_1, X_2, \dots, X_n\}$$
 variables

$$D = \{ D_1, D_2, ..., D_n \}$$
 dominios

$$C = \{ C_1, C_2, \dots, C_e \}$$
 restricciones

Dada una restricción C_i ,

$$var(C_i) = \{X_{i1},..., X_{ik}\}$$
 relaciona k variables (restricción k -aria)

$$rel(C_i) \subseteq D_{i1} \times D_{i2} \times ... \times D_{ik}$$
 tuplas de valores permitidos

CSP: problema de resolver la red de restricciones

Solución: asignación de valores a variables satisfaciendo todas las restricciones

Complejidad: NP-completo

algoritmos exponenciales (caso peor)

Interés de los CSP

Relevancia:

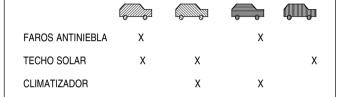
- · Problemas reales como CSPs:
 - Car sequencing problem
 - Asignación de recursos (scheduling)
 - Diseño de bloques (BIBDs)
- Para la IA:
 - Restricciones: formal general de representación del conocimiento
 - Satisfacción de restricciones: razonamiento automático
 - Ejemplos:
 - » SAT
 - » razonamiento temporal
 - » razonamiento basado en modelos

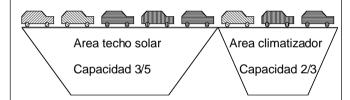
Especialización:

- tipo de dominios:
 - discretos / continuos
 - finitos / infinitos
- tipo de restricciones:
 - binarias / n-arias

Car sequencing problem

Cadena de montaje de coches





Formulación:

- variables: *n* coches a producir
- dominios: modelos de coche
- restricciones: capacidad de las áreas

Características:

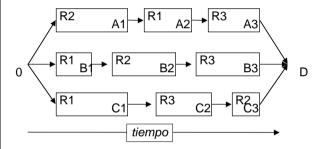
• CSP no binario, discreto y finito

Asignación de recursos

Job-shop scheduling

- *n* jobs, cada uno con *m* operaciones,
- m recursos, cada operación necesita un recurso de forma exclusiva durante un tiempo
- precedencia entre las operaciones de cada job,

¿Se pueden realizar los *n* jobs en tiempo D?



Formulación:

- variables: operaciones
- dominios: tiempos de inicio de cada operacion
- restricciones:
 - precedencia entre las operaciones de un job
 - exclusividad de cada recurso en el tiempo

Características:

• CSP binario, discreto y finito (acotado por D)

Restricciones binarias

CSP binario:

$$X = \{X_1, X_2, \ldots, X_n\}$$
 variables

$$D = \{ D_1, D_2, \dots, D_n \}$$
 dominios discretos y finitos

 $C = \{ C_{ij} \}$ restricciones binarias

$$var(C_{ii}) = \{X_i, X_i\}$$

 $rel(C_{ij}) = \{valores permitidos para X_i \ y \ X_j\} = R_{ij}$

$$n = |X|$$
; $d = \max_i |D_i|$; $e = |C|$

Solución: asignación de valores a variables satisfaciendo todas las restricciones.

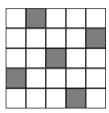
Generalidad: todo problema n-ario se puede reformular como binario [Rossi et al, 90]

Ejemplos:

- Coloreado de grafos
- Satisfacibilidad booleana (SAT)
- N-reinas, crucigramas, criptoaritmética

N-reinas

Definición: posicionar n reinas en un tablero de ajedrez $n \times n$, de forma que no se ataquen.



$$n = 5$$

Formulación: 1 reina por fila

- \bullet <u>variables</u>: reinas, X_i reina en la fila i-ésima
- dominios: columnas posibles {1, 2, ..., n}
- restricciones: no colocar dos reinas en
 - la misma columna
 - la misma diagonal

$$R_{ij} = \{(a,b)|\ a\neq b \ \land |i-j|\neq |a-b|\}$$

Características:

- CSP binario, discreto y finito
- existe un método de solución constructivo

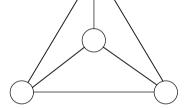
Coloreado de grafos

Definición: Dado un grafo,

- n nodos
- *m* colores,

asignar un color a cada nodo de forma que no haya dos nodos adyacentes con el mismo color.

Colores



Formulación:

- variables: nodos
- <u>dominios</u>: colores posibles
- <u>restricciones</u>: ≠ nodos adyacentes

Características:

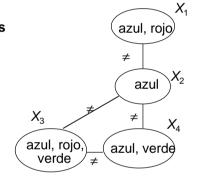
• CSP binario, discreto y finito

Grafo de restricciones

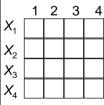
Grafo de restricciones:

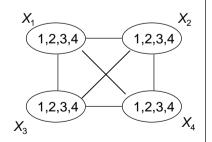
- $\{X_i\}$ nodos
- $\{D_i\}$ dominios en los nodos
- $\{C_{ii}\}$ arcos etiquetados

Coloreado de mapas



4-reinas





Esquema Global

1. Introducción

- Definiciones
- Ejemplos

2. Métodos de Resolución

- Búsqueda
- Inferencia
- Métodos híbridos

3. Modelización

- Primal / dual
- Restricciones globales
- Programación con restricciones

4. Restricciones Blandas

- Modelos
- Algoritmos

Métodos de resolución: Búsqueda

Búsqueda:

- Explora el espacio de estados del problema (configuraciones posibles)
- Termina cuando:
 - Encuentra una solución
 - Demuestra que no hay solución
 - Agota los recursos computacionales

Búsqueda sistemática (BS):

- Visita todos los estados que podrían ser solución
- Algoritmos completos:
 - Si hay solución, la encuentran
 - Si no hay, demuestran que no existe
- Complejidad exponencial (caso peor)

Búsqueda local (BL):

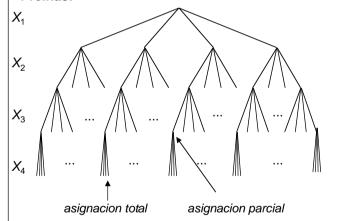
- Visita estados de forma heurística:
 - No garantiza visitar todos los estados
 - Puede repetir visitas al mismo estado
- Algoritmos incompletos:
 - Puede haber solución y no encontrarla
- Complejidad: acotada por los recursos

Búsqueda sistemática: árbol de búsqueda

Espacio de estados: representable por un árbol

- raíz: asignación vacía
- a cada nivel asociamos una variable
- sucesores: valores de la variable del nivel
- rama: define una asignación

4-reinas:



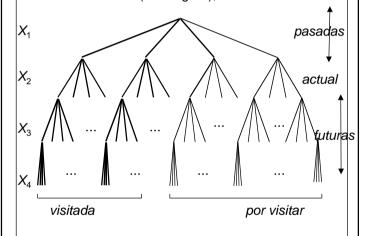
Arbol de búsqueda:

- contiene todos los estados
- recorrido exhaustivo → método completo

Recorrido del árbol de búsqueda

Recorrido primero en profundidad: preorden

- en cada nivel se asigna una nueva variable
 - variable actual
- variables
 - pasadas (asignadas), P
 - futuras (sin asignar), F



Si nodo actual inconsistente:

- subárbol sucesor no contiene soluciones
- no se visita → se poda

Backtracking

Búsqueda: primero en profundidad (DFS)

En cada nodo: consistencia entre variables asignadas

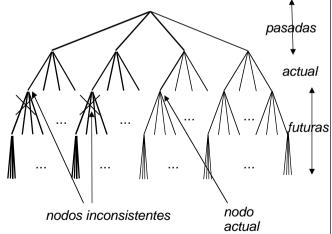
consistencia(*P,actual*): si consistente, continua DFS,

sino, backtracking

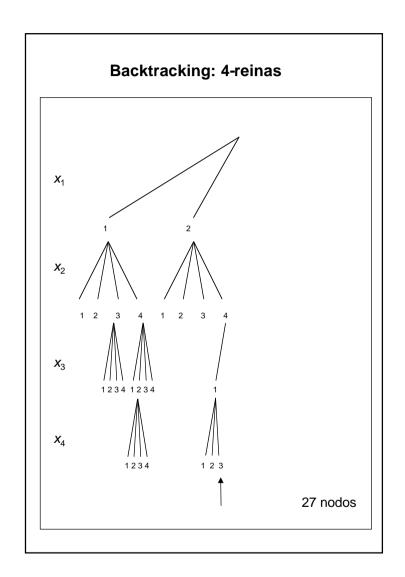
consistencia(P,actual): es suficiente comprobar que

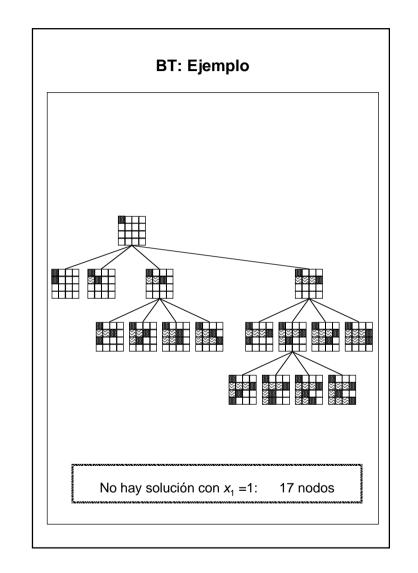
actual es consistente con P

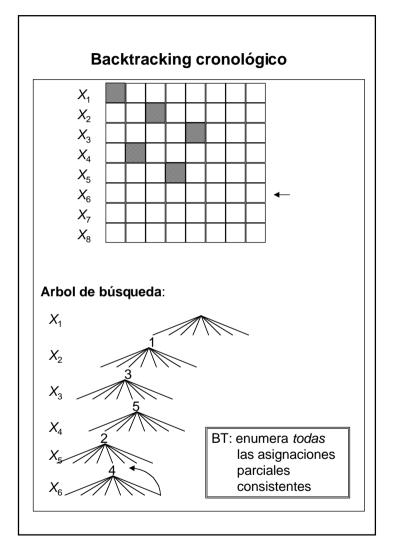
complejidad: espacial O(n), temporal $O(d^n)$

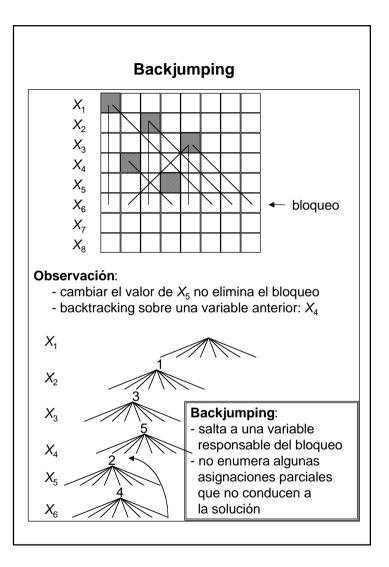


BT: Código









Backjumping dirigido por conflictos

Conjunto conflicto de X_i :

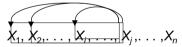
- var pasadas incompatibles con algun valor de X_i

<i>X</i> ₁								
X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8}	1	1						
X_3	1	2	1	2				
X_4	1							
X_5	1	4	2					
X_6	1	3	2	4	3	1	2	3
X_7								
X_8								

- {} conjunto conflicto
- {1, 2}
- {1}
- {1, 2, 4}
- {1, 2, 3, 4}

Proceso:

- backjumping (X_j) = max conjunto conflicto (X_j)



- tras backjump de X_j a X_i , conjunto conflicto (X_i) = conjunto conflicto (X_i) \cup {conjunto conflicto (X_j) - X_i }
- se transpasan a X_i los conflictos de X_j con variables anteriores a X_i

Búsqueda local

Esquema:

- Optimización función objetivo: min F(s)
- Proceso iterativo:

$$s \rightarrow s' \rightarrow s'' \rightarrow s''' \rightarrow \dots$$

· Estrategia greedy:

$$F(s) \ge F(s'') \ge F(s''') \ge F(s'''')$$
 hasta solución o agotar recursos

- Problema: mínimos locales
 - permitir que F(s) < F(s')
 - movimientos aleatorios, reinicios, etc.

Elementos:

• Función objetivo F(s): asocia a cada estado s

un coste F(s)

• Vecindad *N*(s): estados a los que puede

ir desde s, en la siguiente

iteración

• Criterio selección: dado F(s) y N(s), elegir el

siguiente estado s'

Complejidad: acotada por los recursos

Búsqueda local y CSP

Estado s: asignación con todas las variables

Vecindad N(s):

- s' que difieren de s en valores de i variables
- normalmente $1 \le i \le 2$

Función objetivo:

- F(s) = 0, si s es solución
- F(s) > 0, en otro caso

Algoritmo Breakout: [Morris 92]

- cada restricción tiene un peso
- F(s) = suma pesos restricciones no satisfechas
- si una restricción no se satisface, su peso se incrementa

Algoritmo GSAT: [Selman et al, 92]

- busca un modelo en una fórmula proposicional
- cambia la variable que
 - mejora más o empeora menos
 - aleatoriedad, memoria, etc.

Esquema Global

1. Introducción

- Definiciones
- Ejemplos

2. Métodos de Resolución

- Búsqueda
- Inferencia
- Métodos híbridos

3. Modelización

- Primal / dual
- Restricciones globales
- Programación con restricciones

4. Restricciones Blandas

- Modelos
- Algoritmos

Métodos de resolución: Inferencia

Inferencia:

- •Deduce nuevas restricciones implícitas
- •P genera un P' = P + restricciones implícitas
- •**P**' es equivalente a **P**, SOL(P) = SOL(P')

Completa:

- consistencia global
- sintetiza una única restricción global tuplas permitidas = soluciones
- resuelve completamente el problema
- coste exponencial

Incompleta:

- consistencia local
- P' es más fácil de resolver que P

| espacio estados **P**| > | espacio de estados **P**'

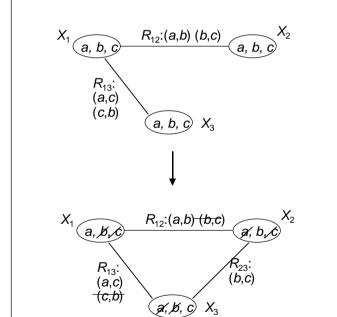
- no resuelve completamente el problema,
 - necesita búsqueda
 - puede detectar si no hay solución
- coste polinómico
- uso: antes o durante la búsqueda

Propagación de restricciones

Restricciones:

- explícitas: definición del problema
- implícitas: inducidas por la acción de las explícitas

Propagación: descubre ciertas restricciones implícitas



Operaciones con restricciones: Proyección y Join

Proyección:

- c restricción, proyección c sobre var(c) $\{x\}$: c'
 - $var(c') = var(c) \{x\}$
 - rel(c'): formado por las tuplas de rel(c),
 eliminando la componente de x

x	У	z
а	b	b
b	а	С
C	b	а
С	b	b

X	У	Z	
a	b	b	\Box
b	a b	С	$ \mathcal{A}$
C	<u>b</u>	<u>a</u>	M
C	b	b	

Join:

- c, c'restricciones, join(c,c') = c" tal que
 var (c") = var(c) ∪ var(c')
 - t tupla de valores sobre $var(c^n)$, $t \in rel(c^n)$ ssi $t[var(c)] \in rel(c^n)$ y $t[var(c^n)] \in rel(c^n)$

а а

х	У
а	а
b	а
b	b
С	С

Inferencia Completa

Sintetizar una restricción n-aria, global:

- que sustituya a las restricciones iniciales
- sus tuplas son las soluciones del CSP

Es fácil: join de todas las restricciones iniciales

$$join(C_1, C_2, \ldots, C_e)$$

Complejidad:

- espacial $O(d^n)$, temporal $O(d^n)$
- es MUY costoso!!
- es MAS de lo necesario para encontrar todas las soluciones del CSP !!

consistencia adaptativa [Dechter, Pearl, 87]

Consistencia Adaptativa

Problema **P**, variable X, C_X : restricciones sobre X

IDEA:

- Sustituir C_X por \underline{c}
- \underline{c} resume el efecto de C_X sobre P
- $\underline{c}\,$ no menciona X

entonces X se puede eliminar

eliminación de variable

PROCESO: orden estático de variables

problemas
$$P \rightarrow P' \rightarrow P'' \rightarrow \dots \rightarrow P^{(n-1)}$$

variables

1

SOLUCION:

- S⁽ⁿ⁻¹ solución de **P**⁽ⁿ⁻¹
- $S^{(n-2)}$ solución de $P^{(n-2)}$ a partir de $S^{(n-1)}$

- S solución de P a partir de S'

Eliminación de Variable

Para eliminar var X:

• Join todas las restricciones $C_x \rightarrow c$

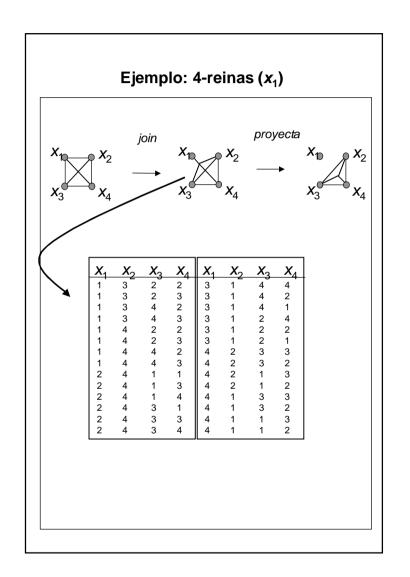
• Sustituir C_x por c

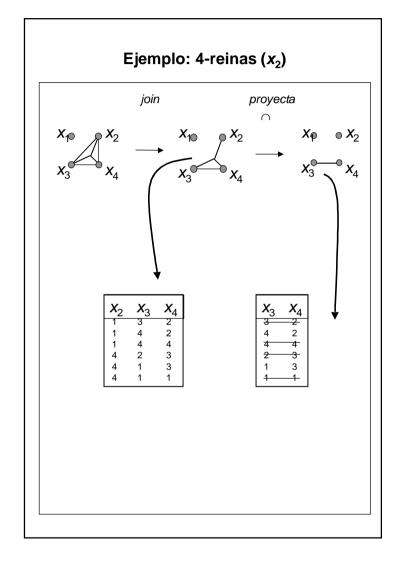
- *x c*
- Proyectar la variable x fuera $c \rightarrow \underline{c}$
- Sustituir c por c
- Si existe c' $var(c') = var(\underline{c}), \underline{c} \leftarrow \underline{c} \cap c'$

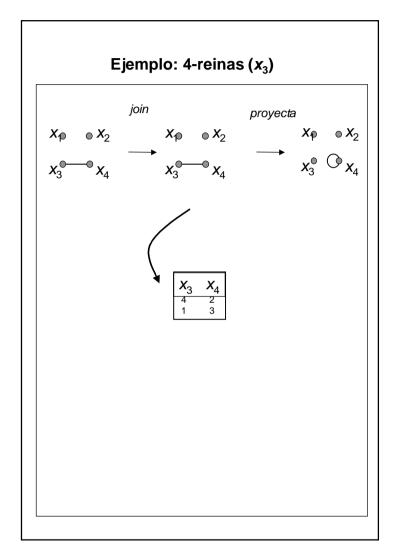
Para obtener la solución:

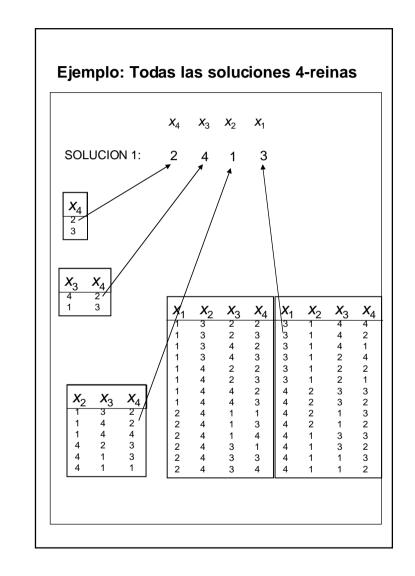
- Variables se procesan en orden inverso
- Se asigna a X un valor consistente con variables anteriores, y con restricciones intermedias totalmente asignadas

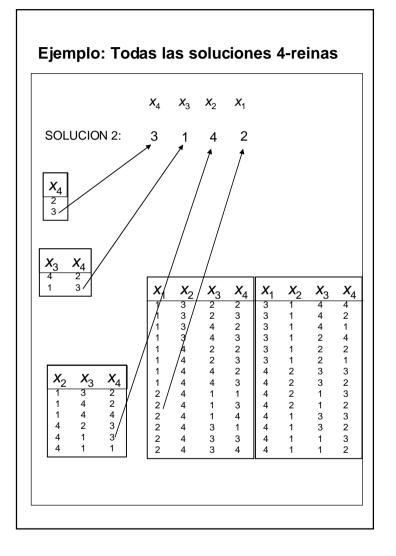
Complejidad: espacial $O(nd^{w^*})$, temporal $O(n(2d)^{w^*+1})$ w^* : anchura inducida del grafo por el orden de vars (máxima aridad de las restricciones intermedias)











Inferencia incompleta: Consistencia local

Subredes de 1, 2, 3 ... variables de P

Determinar si son consistentes:

- SI, pero hay valores que no aparecen en ninguna solución de la subred, se eliminan de P
- NO, --> P no tiene solución

Niveles de inferencia:

- Subredes de 1 variable: Nodo consistencia
- Subredes de 2 variables: Arco consistencia
- Subredes de 3 variables: Camino consistencia
-
- Subredes de k variables: k-consistencia
- Si un dominio queda vacio: NO hay solución

Consistencia de nodos

- Variable x_i es nodo consistente (NC) ssi todo valor de D_i está permitido por R_i
- Pes NC ssi todas sus variables son NC

Algoritmo NC:

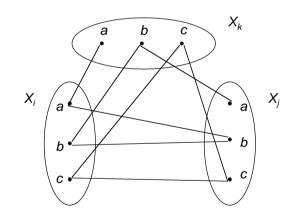
Equivalente a: $D_i := D_i \cap R_i$ *i*: 1,..., *n*

Consistencia de arcos

Una restricción C_{ij} es **arco consistente direccional** (de i a j) ssi para todo valor $a \in D_i$ existe $b \in D_j$ tal que $(a, b) \in R_{ii}$

Una restricción C_{ij} es **arco consistente** si es arco consistente direccional en los dos sentidos

Un problema es **arco consistente** ssi todas sus restricciones lo son.

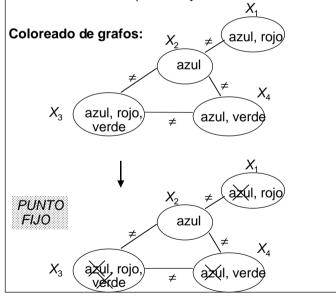


Filtrado por consistencia de arcos

Idea: si para $a \in D_i$ no existe $b \in D_j$ t.q. $(a, b) \in R_{ij}$, se puede eliminar a de D_i porque a no estará en ninguna solución.

Filtrado de dominios por consistencia de arcos:

- se eliminan valores arco inconsistentes
- se itera hasta que no hay cambios



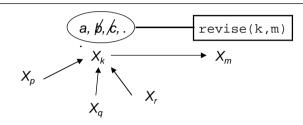
Función revise(i,j)

Función revise(i,j):

- convierte R_{ii} en arco consistente direccional
- puede eliminar valores del dominio D_i
- se ha de iterar sobre las otras restricciones

Complejidad: O(d²)

AC-3: Algoritmo consistencia de arcos



revise(k,m) borra b y c de D_k

¿Qué arcos hay que revisitar? Aquellos que han dejado de ser arco consistentes por el borrado de *b* y *c*.

(k,_): no, si era AC, lo sigue siendo tras el borrado (_,k): si, puede dejar de ser AC por el borrado

```
procedimiento AC-3 (G)
    Q := {(i,j)|(i,j)∈ arcos(G), i≠j}
    mientras Q≠Ø hacer
    selecciona y borra un arco (k,m) de Q
    si revise(k,m) entonces
    Q:=Q∪{(i,k)|(i,k)∈ arcos(G),i≠k,i≠m}
```

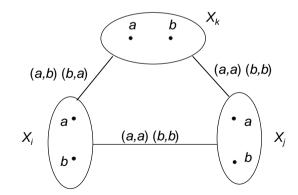
Complejidad: O(ed³)

Consistencia de caminos

Un par de valores ((i, a) (j, b)), tal que (a, b)∈ R_{ij}, es camino consistente ssi para todo X_k, i≠k, j≠k, existe c∈ D_k tal que,

$$(a, c) \in R_{ik}$$
 y $(c, b) \in R_{kj}$

- Un par de variables (X_i, X_j) es camino consistente ssi todo par de valores (a, b)∈ R_{ij} es camino consistente.
- Un problema *P* es **camino consistente** ssi todo par de variables es camino consistente.



Ejemplo X_k X_{i} X_{i} X_k X_{i} X_i R_{ii} = restricción vacía no hay solución!!

PC-2

```
Funcion revise3(i,j,k):
    • convierte C_{ii} en camino consistente con x_k
    • puede eliminar pares de valores permitidos
funcion revise3 (i,j,k variable): bool;
  cambio := FALSO;
  para cada (a,b)∈R<sub>ii</sub> hacer
     si \neg \exists c \in D_k tq.(a,c) \in R_{ik}(b,c) \in R_{jk}entonces
      R_{ij} := R_{ij} - \{(a,b)\};
   cambio := CIERTO;
  retorna cambio;
                              Complejidad: O(d<sup>3</sup>)
PC-2: revise3 sobre todos los triangulos posibles
procedimiento PC-2 (X,D,C)
  Q := \{(i,j,k) | 1 \le i < j \le n, 1 \le k \le n, k \ne i, k \ne j\};
  mientras Q≠Ø hacer
    selecciona y borra (i,j,k) de Q;
     si revise(i,j,k) entonces
       Q:=Q \cup \{(1,i,j)(1,j,i) | 1 \le 1 \le n, 1 \ne j, 1 \ne j\}
                               Complejidad: O(n^3d^5)
```

K-Consistencia

K-Consistencia:

- dado un subconjunto de k-1 variables asignadas $\{X_1, X_2, \dots, X_{k-1}\}$ consistente;
- para cualquier X_k existe $d \in D_k$ tal que $\{X_1, X_2, \dots, X_k\}$ es consistente.

K-Consistencia: generalización

1-consistencia: consistencia de nodos

2-consistencia: consistencia de arcos

3-consistencia: consistencia de caminos

. . . .

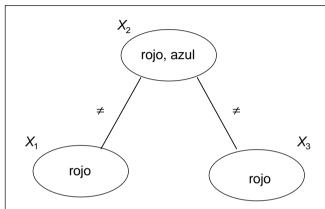
K-Consistencia fuerte:

J-consistente, para $1 \le J \le K$

Algoritmos para K-consistencia fuerte:

- Freuder 82, Cooper 89
- Complejidad: O(exp K)

K-consistencia: Ejemplo

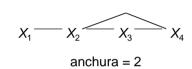


- K-consistencia no implica K-consistencia fuerte
- Ejemplo:
 - Es 3-consistente: para cualquier par de dos variables con valores consistentes, existe un valor consistente para la tercera
 - No es 2-consistente: arco X2 X1

Problemas libres de backtracking

Orden de variables: $\{X_1, X_2, \dots, X_n\}$

Anchura de un nodo: # arcos a nodos anteriores Anchura de una ordenación: $\max_i \{ \text{anchura } X_i \}$ Anchura de un grafo: min anchura ordenaciones



TEOREMA: Dado un orden de variables con anchura K, el problema se puede resolver sin backtracking si el nivel de consistencia fuerte es mayor que K. [Freuder 82]

Algoritmos:

 K-consistencia: O(exp k).
 Añade arcos extras, aumenta la anchura
 No añade arcos para anchura 1
 Los árboles tienen anchura 1
 Estructura de árbol = libre de backtracking, tras consistencia de arcos

Esquema Global

1. Introducción

- Definiciones
- Ejemplos

2. Métodos de Resolución

- Búsqueda
- Inferencia
- Métodos híbridos ◆

3. Modelización

- Primal / dual
- Restricciones globales
- Programación con restricciones

4. Restricciones Blandas

- Modelos
- Algoritmos

Métodos de resolución: Algoritmos híbridos

Algoritmo Híbrido = búsqueda + inferencia

Búsqueda sistemática + inferencia incompleta:

- Algoritmos de anticipación
- Forward Checking
- Maintaining Arc Consistency

Búsqueda sistemática + inferencia completa:

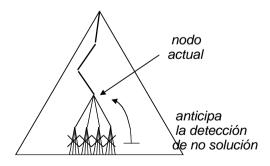
Variable Elimination Search

Búsqueda sistemática + inferencia incompleta

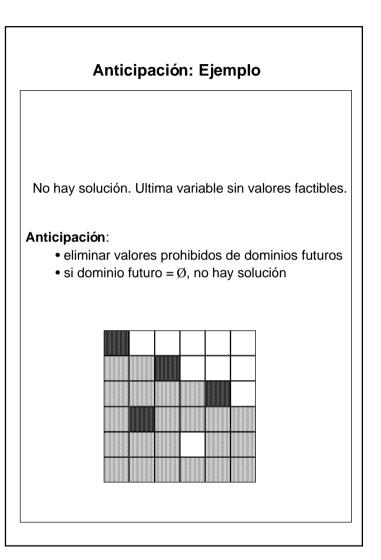
Búsqueda: BT (DFS) ANTICIPACION

Inferencia incompleta:

- en cada nodo, consistencia local:
 - se descuben tuplas prohibidas
 - disminuye el tamaño del espacio
 - aumenta la eficiencia de la búsqueda
- si dominio futuro = Ø
 - no hay solución en esa rama
 - backtracking
- compromiso:
 - podemos evitar visitar #nodos exponencial
 - coste polinómico de inferencia en cada nodo



Anticipación: Ejemplo 6-reinas: ¿Hay solución en los descendientes de este nodo?



Esquema de anticipación

1. Búsqueda:

- 1. Variable actual X_i $D_i = \{a, b, c\}$
- 2. Asignación $X_i \leftarrow a \Leftrightarrow D_i = \{a\}$

2. (Consistencia entre pasadas)

- **3. Tras asignar** (⇔ reducción de dominio)
 - · consistencia local
 - parte / todo el problema
 - nivel de consistencia
 - si dominio futuro = Ø
 - no hay solución en esa rama
 - backtracking
 - sino, se continúa (punto 1)

Compromiso coste / beneficio

- coste, beneficio ↑ con
 - tamaño parte localmente consistente
 - nivel de consistencia
- compromiso óptimo:
 - depende del problema
 - en general, consistencia de arcos

Forward Checking

Forward Checking:

[Haralick, Elliot, 80]

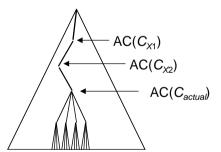
- búsqueda en profundidad
- en cada nodo, arco consistencia sobre las restricciones parcialmente asignadas

Caso binario:

- se eliminan de los dominios futuros los valores incompatibles con el recién asignado
- C_{Xi} : restricciones que involucran a x_i

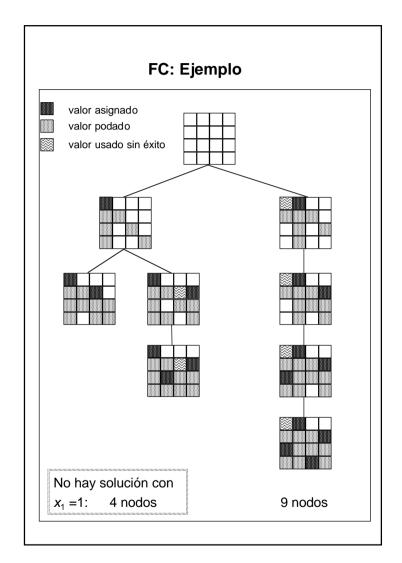
Proceso:

- en cada nodo AC(C_{actual})
- se acumula la poda en la rama actual



FC: Código

```
funcion FC (i,Past,[D<sub>i</sub>,...,D<sub>n</sub>]): booleano;
  para cada a \in D_i hacer
     x_i := a_i
     si i = n entonces retorna CIERTO;
     sino
       C' := \{C_{ij} | C_{ij} \in C, i < j\};
       NewD:=AC(\{x_{i},...,x_{n}\},[\{a\},D_{i+1},...,D_{n}\},C')
       si NewD no contiene Ø entonces
          si FC(i+1,Past \cup \{x_i\},NewD) entonces
             retorna CIERTO;
  retorna FALSO;
```



Maintaining arc consistency

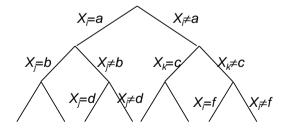
MAC:

[Sabin, Freuder, 94]

- búsqueda en profundidad
- en cada nodo, arco consistencia sobre todas las restricciones

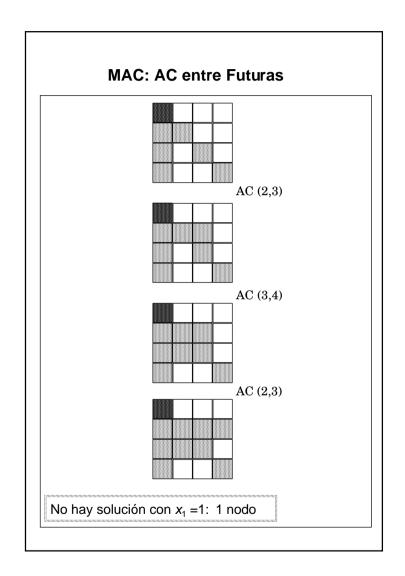
Arbol de búsqueda:

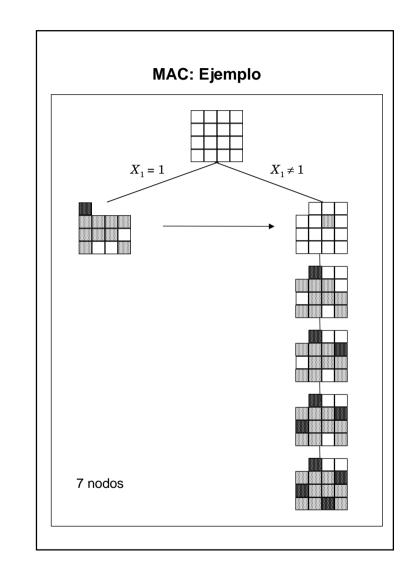
- binario
- en cada nivel
 - una variable x_i
 - dos opciones: a, ¬a
- se puede cambiar de variable sin agotar valores
- en cada nodo, AC del subproblema actual



MAC: Código

```
funcion MAC (i, [D<sub>1</sub>,...,D<sub>n</sub>]): booleano;
  para j:=i+1,...,n hacer D';:=D;;
  para cada a∈D, hacer
                               /* x<sub>i</sub>:=a *) /
     D';:={a};
     si i = n entonces retorna CIERTO
       NewD:=AC(X,[D<sub>1</sub>,..,D<sub>i-1</sub>,D'<sub>i</sub>,..,D'<sub>n</sub>],C)
       si NewD no contiene Ø entonces
          si MAC(i+1,NewD) entonces
      L L retorna CIERTO;
                               /* x<sub>i</sub>:≠a *) /
       D_{i} := D_{i} - \{a\};
       D'_{i} := D_{i}i
       NewD:=AC(X, [D_1,...,D_{i-1},D'_i,...,D'_n],C)
        si NewD contiene Ø exit bucle
        sino
        para j:=i+1,..,n hacer D';:=NewD[j];
  retorna FALSO;
```





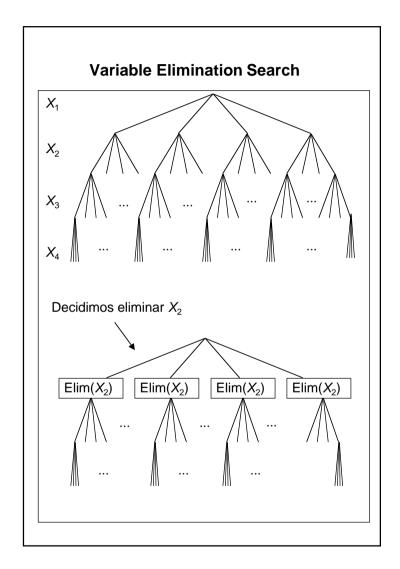
Búsqueda sistemática + inferencia completa

Búsqueda sistemática + inferencia completa:

- DECISIÓN: a cada nueva variable x aplicamos
 - búsqueda o
 - eliminación
- si búsqueda,
 - árbol, backtracking
 - tras asignación x, nuevo grafo
- si eliminación
 - generamos un nuevo problema

Compromiso:

- coste de eliminación: exp(w*) anchura grafo
- coste búsqueda: exp(#variables búsqueda)



Variable Elimination Search

VES: orden estático de variables

Variable actual: x

Búsqueda:

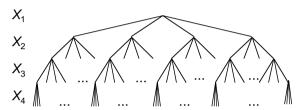
- tras asignar x, anticipación
- x queda fijada en esa rama
- modifica la topología del grafo

Eliminación:

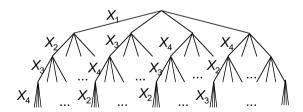
- coste: d^{w^*} w^* anchura de x
- si w* pequeña, eliminación es competitiva

Ordenación de variables

Ordenación estática de variables: cada nivel del árbol de búsqueda se asocia con una variable



- No es necesaria para que el árbol de búsqueda sea exhaustivo.
- Es necesario que cada nodo se asocie con una variable para la generación de sucesores.



• Diferentes variables en el mismo nivel: ordenación dinámica de variables

Heurística: selección de variable

En nodo q ¿qué variable asignar a continuación?

- 1. Hay solución en *sucesores*(*q*): cualquier variable es adecuada
- 2. No hay solución en *sucesores*(*q*):

 asignar la variable que antes

 descubre que no hay solución

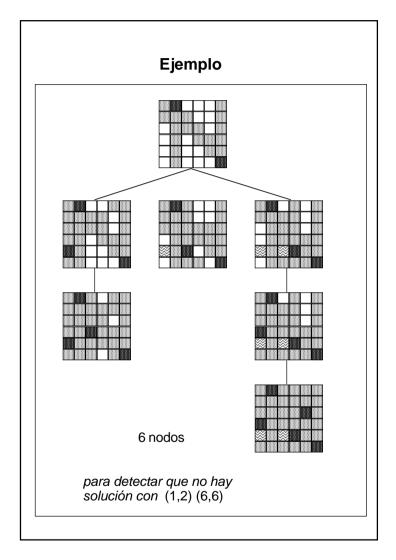
En general, ¿qué situación es más frecuente?

- Salvo problemas triviales, situación 2
- *Mayor* esfuerzo del algoritmo: salir de subproblemas sin solución

Suponemos situación 2: asignar primero aquella variable que, aparentemente, antes nos conduce a un fallo (principio *fail-first*)

Heurística dominios mínimos: asignar primero la variable con menor número de valores factibles

Ejemplo: 6 reinas 4 nodos para detectar que no hay solución con (1,2) (6,6)



Heurística: selección de valor

En nodo q ¿qué valor asignar a continuación?

- Hay solución en sucesores(q):
 un valor que mantenga la
 resolubilidad del nodo sucesor
- 2. No hay solución en *sucesores*(*q*): cualquier valor es adecuado

Suponemos situación 1: asignar primero aquél valor que, aparentemente, antes nos conduce al éxito (principio success-first)

Heurística anticipación valores: asignar primero el valor que es consistente con mayor número de valores factibles del resto de variables

Coste heurísticas

Compromiso coste / beneficio:

- coste: suma de costes de cálculo en cada nodo
- beneficio en todo el árbol
- sale a cuenta si coste < beneficio

Dominios mínimos y anticipación:

- Dominios mínimos: calcula #valores factibles
- Alg. anticipación: calculan los valores factibles
- obtiene dominios mínimos sin coste adicional

Evaluación de las heurísticas:

- Evaluación empírica
- Esfuerzo computacional:
 - constraint checks
 - tiempo CPU

Resultados empíricos, 20 reinas, 1ª solución

BT 25.428.842 cc FC 2.398.022 cc FC+dom min 4.144 cc