2nd. Part

#Modeling
= Primality/Duality
» Global Constraints
Constraint programming
= examples in CHOCO
#Soft Constraints
= Models
= Algorithms

Modeling

Any CSP can be formulated in different
(equivalent) ways

The efficiency of the solving algorithms can
vary dramatically

No strong results are known

Active line of research

Alternative formulations:
= Primal/Dual
= Primitive/Global constraints

Primal/Dual

Primal CSP: (X, D, C)
* X={x, X,..., X,}, D=4{d,, d,...,d.}, C={¢,6,...C}
ceC var(c) = {X;, X;-.., X
refc) c d xd;x..xd
Dual CSP: (X, D’, C)
o X' ={x7, X5, X0},
« D’'={d}, d5,...,d"}, where d; = rel(c)
+ C’={c’;}, binary constraints
var(c;) = {x;, x}}
3 cjeC’ [var(c) Nvar(c) = @
rel(c’;) = consistent pairs of tuples

Example: Crossword puzzles

1 2 3 4 5
a monarch
5 |7 s 9 aardvark monarchy
aback monarda
10 [11 [12 |13 [14 abacus
abaft zymurgy
15 16 |17 [18 abalone zZyrian
abandon zythum
19 120 |21 2 2
2 3

1 2 3 4 5
T
10 |11 |12 |13 |14
15 16 |17 |18
19 120 |21 2 2

2 3

Primal model (Non-binary)

variables: cells
4 domains:
4 constraints: contiguous

letters must form words
in dictionary

Dual model (binary)

1 2 3 4 5
6 7 8 €
10 (11 |12 (13 |14
15 16 (17 |18
19 (20 |21 2 2
2 3

variables: words across
and down

domains: words from
dictionary

constraints: intersecting
words must agree on
common letter

Global Constraints

C is global iff:
= arity(c)=r> 2
= C is logically equivalent to {c,,c,...,¢ } binary
= AC(c) prunes more than AC(c,,G,,...,C;)

Propagation:
= There is a specialized efficient algorithm (exploits
the semantics)

Catalog:
= set of global constraints
. known algorith r ion

Example: all-different

x {1, 2}

o

Z
{1, 2} = {1, 2}

Example: all-different

o x {1,2} x {1,2}
logically
equivalent
all-different
y
{1, 2} - {1, 2} {1, 2} {1, 2}
3 binary constraints, 1 ternary constraint,
they are AC, it is not AC,
no pruning AC pruning — empty domain
no solution!!

Example: all-different

#Enforcing arc-consistency:
= n variables, d values
= n(n-1)/2 binary constraints : O(n2 d2)
= 1 n-ary constraint:

+ general purpose algorithm O(d")
+ specialized algorithm O(n2 d2)

Constraint Programmming
“Declarative Programming: you declare

+ Variables
+ Domains
+ Constraints

and ask the SOLVER to find a solution!!

SOLVER offers:

+ Implementation for variables / domains / constraints

+ Hybrid algorithm: backtracking + incomplete inference
+ Global constraints + optimized AC propagation

+ Empty domain detection

+ Embedded heuristics

Constraint Logic Programming

Logic Programming:

= implements chronological backtracking
Constraint logic programming:

= extension including constraint satisfaction facilities
Existing solvers:

= Chip (www.cosytec.com)

= Eclipse (www-icparc.doc.ic.ac.uk/eclipse)

= Sicstus Prolog (www.sics.se/sicstus)

Imperative Constraint
Programming

Library to be included in your (procedural)
program
Provides:
= Special objects:
+ Variables / Domains / Constraints (global)

= Special functions to find:
+ One solution / the next solution

Existing Solvers:
+ Ilog Solver (www.ilog.com)
+ Choco (www.choco-constraints.net)

CHOCO

Library for modeling and solving
combinatorial problems

Intended for academic purposes
Plus:

= Free software (GPL from FSF)

= Simple

» Efficient

= Generic
Minus:

= Implemented in Claire (which is implemented in
C++)

= Not (completely) stable

Choco: 1st example

[sillyCSP() : void
-> let pb := choco/makeProblem("Silly CSP",3),
X := choco/makelntVar(pb, "x", 1, 3),
y := choco/makelntVar(pb, "y", 1, 3),
:= choco/makelntVar(pb, "z", 1, 3) in
(choco/post(pb, x + y == 2),
choco/post(pb, x > vy),
choco/solve(pb,false),
printf("~S ~S ~S\n",x,y,2))]

Choco: 2nd example

[queens(n:integer, all:boolean)
-> let pb := choco/makeProblem(" n queens",n),

foriin(1..n)
forjin(i+1..n)
letk:=j-iin
(choco/post(pb, queens[i] '== queens[j]),
choco/post(pb, queens[i] == queens[j] + k),
choco/post(pb, queens[j] == queens[i] + k)),
choco/solve(pb,all))]

ueens := list{choco/makelntVar(pb,"Q" /+ string!(i), 1, n) | iin (1 ..

n)}

Soft Constraints (2nd. Part)

#Motivation (10")
4#Models (20")
#Algorithms (60"

Motivation

Using the classical CSP framework:

= Many problems have many solutions

+ Algorithms either give the first one they find or all of
them

+ Typically, the user likes some solutions more than others

= Many problems do not have any solution
+ Algorithms just report failure

+ Typically, the user can identify some non critical
constraint

Soft CSP
“# Problems:

= Variables and domains as in classical CSP
= Mandatory constraints (hard)
= Preference constraints (soft)

Feasible solution:

= Complete assignment which satisfies every hard
constraint

Optimal solution:
= Preferred feasible solution, according to soft
constraints
Complexity:
= Np-hard
= Much harder than classical CSP

Soft Constraints Models

#Max-csp [freuder and wallace 92]
#Fuzzy CSP [dubois et al 93]

Lexicographic CSP [fargier et al 93]
#Weighted CSP

#Probabilistic CSP [fargier and lang 93]
#Valued CSP [schiex et al 95]
#Semiring-based CSP [bistarelli et al 95]

10

Classical CSP

#Expressable as classical logic

#Constraints: boolean functions
n C(b)= true/false

#Task of interest:
At Ve, ¢, (1)

Fuzzy CSP

#Extension of classical CSP to fuzzy logic
= Conjunction: t-norm (minimum)
= Disjunction: t-conorm (maximum)

= (] [0]]

» Task:

mle{min{Ci ()}}

11

Weighted CSP

#Preferences are expressed as costs
» Constraints: cost functions

c.(t)] {0,1,..,x}

[Ta_sk:
min{y {¢(n}}

Example

Airlines flight scheduling:
= Input:

+ Aircrafts, airports
+ Flights: (origin, destination, frequency)
+ Requirements:
= From origin to destination on the corresponding date
...
+ Requests:
= No more than four legs per flight
= 1 hour < transfer time < 5 hours

= Output:

+ Schedule: each flight is a sequence of scheduled legs

12

Example

Classical CSP:
= Consistent schedules

Fuzzy CSP:
= Schedules where every request is reasonably good
+ Maximizes the quality of the worst request

Weighted CSP:

= Schedules where, globally, flights are good
+ Maximizes the sum of qualities over request
+ Some request can be very unsatisfied

Valued CSP (VCSP) [schiex et a1 95]

Axiomatic model aiming at maximal generality
It includes all previous models
Valuation structure (E,*,>):

s Eis the set of valuations

+ Totally ordered by “>", the maximum element is " T,
the minimum element is “.L".

v * is the aggregation of valuations
+ binary operation on E, commutative and associative.
o L is the identity
+ T is absorbing
o * grows monotonicly

13

Valued CSP

(Soft) constraints:

" Ci(t) eF

Task:

+ minfr{c,(}}

Valued CSP

Idempotent *

Weighted CSP
Probab. CSP

Fuzzy CSP

classical CSP

14

Solving Valued CSP
(solving Weighted CSP)

Binary Weighted CSPs

®P=(X.D,0)
= X={Xy,..., X,} variables
s D={D;,..., D,} finite domains
n C={C;,C, G} soft constraints
+ Gt D;xD; >Cost
+ C : D, >Cost
+ C, : Cost (it is a constant)

15

Valuation Structure

#Costs: Natural numbers in [0..K]
= 0: most preferred (0=1)
» k: least preferred (i.e, unacceptable) (k=T)

#Aggregation:

a ®b=min{T, a+b}

Weighted CSP

#Solution: complete assignment with cost
less than T

#Goal: find solution with minimum cost
4 Complexity: NP-hard
#Classical CSP = WCSP (T=1)

16

WCSP: Example

X={xy z}

D={v w}

c={C, C, G
¢ G Gy}

WCSP: Example

X={xy z}

D={v w}

c={C, C, G
¢ ¢, C}

17

WCSP: Example

T=4
X={xy z} C, =0
D={v w} X
c={C, Cyz C, vi(2
Cy C, C,} w\ (@ z
2 1 v
L 1 w
vi(o 1
1
w\ (0
Valuation: y

20102120 0=T
Not a solution

WCSP: Example

X={xy z}

D={v w}

c={C, C, C
¢ ¢, C}

18

WCSP: Example

X={xy z}

D={v w}

c={C, C, G
¢ ¢ C}

Valuation:
019012000 =2
(optimal) solution

Algorithms

#Search
= Local search
= Systematic search
#Inference
= Complete inference
= Incomplete inference

#Hybrid approaches

19

Local search (metaheuristics)

Simulated annealing

Tabu search

Variable neighborhood search

Greedy rand. adapt. search (GRASP)
Evolutionary Computation

Ant colony optimization

Excellent survey: Blum & Roli, ACM
computing surveys, 35(3), 2003

Systematic search

Depth-first tree search:
= Internal node: partial assignment
= Leaf: total assignment

At each node:

= Upper bound (UB):
cost of the current best solution

= Lower bound (LB):
underestimation of minimum cost
among leaves below current node

Pruning: UB <= LB

20

N

2\10A”

x /vOAvO
N

>o

»O

> \OAVO
/0 AYO

>o

te] 1¢

N

2\10A”

x /OAVO
N

>o

»O

N \oAvo
o/voAvo

>o

7 zﬂ.voﬂwvl
AN
f

>

z\qOAvO

x /vOAvO
N

> \OAVO

»

>

»O

> 2
T @
<«
LRy

> 2

x /vOAvO
S

N >
\OAM

>o

»O

> \‘AVO

x /vOAvO
S

N >
\OAM

>

24

1l
O

G-

> 2

»

\OAVO

>

26

(e

»

\OAVO
= -

>o

1l
O

G-

> 2

O

1l
QO

28

O

1l
O

G-

> 2

O

1l
QO

29

O

1l
(=)

O

Il
QO

G-

> 2

30

G o~

31

1l
O

1l
=)

32

1l
O

G o~

> 2

1l
QO

33

Search Complexity

#Time: O(exp(n)), (num. of variables)

= The whole search-tree may be
traversed

= Too pessimistic
= No tight bounds exist

#Space: Polynomial on n
= If search is depth-first

Incomplete Inference:
Soft Local Consistency

4 Local property enforceable in
polynomial time that makes the
problem more explicit
= Node Consistency
= Arc Consistency
= Directional AC
= Full DAC

34

» For all variable i

Node Consistency (NC™)

oVa, C,® G (a)<T
wda, G@)=0

» For all variable i

Node Consistency (NC™)

oVa, C,® G (a)<T
w3da, G(@)=0

35

Node Consistency (NC™)

» For all variable i
oVa, C,® G (a)<T
wda, G@)=0

Node Consistency (NC™)

» For all variable i
oVa, C,® G (a)<T
w3da, G(@)=0

v Complexity:
O(nd)

36

Arc Consistency (AC")

NC*
I For all Cj
oVaib
Cfa,b)=0

v bis a support

Arc Consistency (AC")

NC*
I For all C;
oVaib
Cfa,b)=0

v bis a support

37

Arc Consistency (AC")

NC*
I For all Cj
oVaib
Cfa,b)=0

v bis a support

X
4
w

%

T=4
c, =1

e

y

v

w

Arc Consistency (AC")

NC*
I For all C;
oVaib
Cfa,b)=0

v bis a support

X
v
w

w

T=4
c, =1

il

y

v

w

38

NC*
I For all Cj
oVaib
Cfa,b)=0

v bis a support

Arc Consistency (AC")

NC*
I For all C;
oVaib
Cfa,b)=0

v bis a support

v complexity:
O(n2d?3)

Arc Consistency (AC")

Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support

Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support

Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support

Directional AC (DAC™)

NC* X<y<z
I For all C; (/<))
oVaab

Cla,b) @ G(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z
I For all C; (/<))
oVaab

Clab) @ G(b) = 0

v bis a full-support

Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support

NC*
I For all C; (/<))
oVaib
Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DAC™)

X<y<Zz

NC*
I For all C; (/<))
oVaib
Cfa,b) ® C(b) = 0

v bis a full-support

v complexity:
O(ed ?)

Directional AC (DACY)

X<y<Zz

|

Full DAC (FDAC®)

NC* X<y<Zz

For all C; (i<))
oVaib

Cfa,b) ® G(b) = 0
(full support)

For all C; (i>))
oVaidbp,
Clab) =0
(support)

|

Full DAC (FDAC")

NC* X<y<z

For all C; (i<))
owVaib

Cfa,b) ® G(b) = 0
(full support)

For all C; (i>))
oVaiab
Clab) =0
(support)

46

Full DAC (FDAC®)

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) =0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

Full DAC (FDAC")

NC*
I For all C; (i<))
oVaib
Clab) ® G(b) = 0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

47

Full DAC (FDAC")

NC*
I For all G; (i<))
oVaib
Clab) ® C(b) = 0
(full support)

» Forall G; (i>))

X<y<z

(full support)

oVaib
Cfa,b) =0 W
(support) ;
Full DAC (FDAC™)
{
NC* X<y<z T=4
I For all G; (i<J) c, =1
oVaiab X
Cfa,b) ® C(b) =0 v @
w\©

» Forall G; (i>))
oVaib
Clab)=0
(support)

48

Full DAC (FDAC®)

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) =0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

Full DAC (FDAC")

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) = 0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

49

Full DAC (FDAC®)

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) =0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

Full DAC (FDAC")

NC*
I For all C; (i<))
oVaib
Clab) ® G(b) = 0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

v

w

@
©
y

T=4
C, =2

@
©

v

w

50

NC*
I For all C; (i<))
oVaib
Cfab) ® ¢(b) =0
(full support)

» Forall G; (i>))
oVaib
Cfab)=0
(support)
v complexity:

O(end 3)

Full DAC (FDAC®)

X<y<z 4

T=
C@

1®V
@) w

!

2

%

w

©
©
y

Hierarchy

AC* O(n 2d 3)

NC* O(nd)

e s

DAC* O(ed 2)

Bt

FDAC* O(end 3)

51

Hybrid: search+local consist.

4 WCSPs are solved with search:

= Lower Bound = Upperbound => Backtrack
#Each node is a WCSP subproblem

= T : Upper Bound (best known solution)

= C, : Lower Bound

Algorithm: maintain local consistency
during search
= MNC, MAC, MDAC, MFDAC

Experiments

#Qverconstrained Random CSPs

52

CPU time

25

20+

15}

107+

Sparse Loose

PFC—RDAC -
MAC* ----x---
MNC* ——

MDAC* =

MFDAC* s = : ,**/:_E]
5 Y
0 e .
10 15 20 25 30
n. of variables
CPU time
80 —
20l Sparse Tight
60 B MNC* o
50+ MAC* -
40l PFC-RDAG--s- /
MDAC* = J

301 MFEDAC* s /
20} y A
10t P

0= st s S e SR el

1

i
0 12 14 16 18

n. of variables

53

CPU time

60
50|
40+
30/
20|
10

0

Dense Loose

MDAC* -
MFDAG* s
MAC* -
PFC—RDAC =
MNC* ——

10 12 14 16 18 20

n. of variables

CPU time

70
60-
50+
40-
30~
20
10+
0

Densé Tight |

MNC* ——

PFC-RDAC =
MDAC* -

MFDAC* ——=——

10

17 12 13 14 15

n. of variables

54

Complete Inference:
Bucket Elimination

Backtracking-free approach

Sequence of problem reductions that
preserve the best solution

Bucket Elimination (BE) [Dechter 99]
= Variables are eliminated one at a time
= When no variable remains, the problem is

trivially solved

This approach has been rediscovered once

and again [Bertele and Brioschi 72]

Bucket Elimination (BE)

#Two primitive operators:
= Sum of functions (/+g)
= Elimination of a variable ¢/:(f)

Sx,x)=x+x,, g(x,,x)=x,x,

@e.g.: (f+2)(x,X%,,X;) =X, + X, + X, X,

elim, (f)(x,) = Iré})n{f(a,xz)}

55

BE Basic Step: Variable
Elimination

%

oS

BE Basic Step: Variable
Elimination

Select a variable

)

S

56

BE Basic Step: Variable
Elimination

Compute its bucket
Bucket: set of &
functions that (%)

mention the variable

@

BE Basic Step: Variable
Elimination

Compute new
function
g < elim(Ef)

f EBucket

57

BE Basic Step: Variable
Elimination

Remove variable (x,)
and functions in ﬁ‘

Bucket @ﬁa
Complexity of Variable
Elimination

® () —(%)
Rot
(0)—(%)
Eliminating x;: l e e o
= time: O(exp(dg))

= space: O(exp(dg,)) @
e
(%)

58

BE: complexity

#time: O(exp(w*))
#space: O(exp(w*))
#wWw* <n

#these bounds are tight

#the space complexity renders BE
infeasible as a general method

Hybrid: search + complete
inference

59

Search Basic Step: Variable
Branching

Search Basic Step: Variable
Branching

-Select a variable @

60

Search Basic Step: Variable

Branching
ﬂa
(%)
e

X, < a X,<—c
X, < b

(%) (%) (%)
(%] (%] (%]
W— W— (%) ‘9

Hybrid: search + complete
inference

Idea:
= Select a variable
= If it is not too costly, then eliminate it
= Else let search take care of it
Two examples:
= BE-BB(k) [Larrosa and Dechter, 2001]
= SBE(k) [Dechter and El Fattah 2000, Kask et
al 2001]
k is a control parameter
= k small, more search
= klarge, more variable elimination

61

BE-BB(K)

At each node:
X; < select a future variable
if dg(x;) < k then eliminate x;
else branch on the values of x;

Property:
BE-BB(-1) is BB
BE-BB(w*) is BE

BE-BB(2): example

/

v

62

BE-BB(2): example

/

v

BE-BB(2): example

<D

\/

63

BE-BB(2): example

/

v

BE-BB(2): example

R

\/

64

- BE-BB(2): example

o

Y/

- BE-BB(2): example

/Q l \

- BE-BB(2): example

/Q l \

- BE-BB(2): example

- BE-BB(2): example

.ﬁf i@}/@ ;/d}@

- BE-BB(2): example

ng g/@ %/@

@) @,

- BE-BB(2): example

057@ Qg/@ g%;

@,

- BE-BB(2): example

ng Q?O Q?Q

@) @,

BE-BB(2): example

il

OQ OQ

v
.

BE-BB(2): example

S

69

BE-BB(2): example

S

BE-BB(k): complexity

#Space: O(exp(k))

#Time: O(exp(k+2(k)))
» Z(k): number of branched variables

» Z(k): it can be computed out of the k-
restricted induced graph G*(k,0)

70

Empirical Evaluation (time
bounds)

- Random Graphs (50 nodes, 200 edges, average degree 8, w*~23)

60

o] _—— Branch and bound

40

Bucket
30 - «— elimination

k#2(K)

20 4

10 4

A o B o @ Q8 P 8 L

Empirical Evaluation (time

bounds)
60 -
50 - —+~ dg=4
40 dg=6
—~—dg=8
~
;5 30 —=—dg=10
20 | ——dg=12
by —dg=14
103 - dg=16
0 rTr T rrrr 111111 1rr1r 1 1T T T 17T 1 T 1T 1T T T T T 17T dg=18
Bde Ra > pPPppg

k

71

Empirical Evaluation (CPU

time)

k n=30, r=5, n=35, r=5, n=20, r=>5, n=40, r=2,

dg=6 dg=6 ag=7 dg=4
-1 49.0 107.5 45.3 84.9
0 6.1 27.5 38.8 63.2
1 25 11.2 31.1 26.5
2 1.6 43 15.9 6.8
3 .9 37 8.8 6.0
4 5 21 11.5 8.7
5 2.6 6.2 46.3 29.6
6 3.2 9.6 89.8 131.3

72

Super-Bucket Elimination,
SBE(k)

#Eliminate sets of variables such that:

» individual eliminations are too costly
in space (namely, each variable in the
set has degree larger than k)

= the join degree is lower than k

SBE(2): example

73

SBE(2): example

'SBE(2): example

74

'SBE(2): example

{

inthe set S

Super bucket: set of functions mentioning variables

75

SBE(2): example

SBE(K

Each super-bucket elimination is a set of COP
instances that can be solved with BB!!

#e.qg.:

S, x5,x,), (x5, %4, X5), h(X,, X5, X5),

elim,;(f +g+h)(x,,x5)
\

D, <D, optimization problems

76

SBE(K)

Repeat:
S <« {x;}, future variable
while | Ng| > kdo
S < S U {x;}, future variable
endwhile

eliminate S from the super-bucket (Branch
and Bound)

Property:
SBE(0) is BB
SBE(w*) is BE

SBE(2): example

77

SBE(2): example

SBE(2): example

{SBE(Z): example

{SBE(Z): example

SBE(2): example

SBE(2): example

80

SBE(K)

#Complexity:
= space: O(exp(k))

= time: O(exp(w,*))

3

k-augmented induced width

Empirical Evaluation (time
bounds)

N - Random Graphs (50 nodes, 200 edges, average degree 8, w*=~23)

60
co «— Branchand bound

S

% 40 A

3 Bucket

2 55 elimination

i —

§ 20

= 10 -

Empirical Evaluation (time
~ bounds)

60

dg=2
50 e —dg=4
dg=6
40 - 9
——dg=8

30 4

—=—dg=10

» —dg=12
\\ — dg=1 4
10 4 ‘ . dg=1 6

dg=18

kkaaygmeantied imddcead] widthih
Ve
;

Summary

#Soft constraints:
= augment the CSP framework
= find best solution

#Valued CSP:
= general axiomatic framework

#Solving techniques:
= generalization of CSP techniques

That's all !

L
#Slides available next week at:

= Www.lIsi.upc.es/~larrosa

= Www.iila.csic.es/~pedro

83

