2nd. Part

#Modeling
= Primality/Duality
» Global Constraints
# Constraint programming
= examples in CHOCO
#Soft Constraints
= Models
= Algorithms

Modeling

# Any CSP can be formulated in different
(equivalent) ways

# The efficiency of the solving algorithms can
vary dramatically

# No strong results are known

# Active line of research

# Alternative formulations:
= Primal/Dual
= Primitive/Global constraints




Primal/Dual

Primal CSP: (X, D, C)
* X={x, X,..., X,}, D=4{d,, d,...,d.}, C={¢,6,...C}
ceC var(c) = {X;, X;-.., X
refc) c d xd;x..xd
Dual CSP: (X, D’, C)
o X' ={x7, X5, X0},
« D’'={d}, d5,...,d"}, where d; = rel(c)
+ C’={c’;}, binary constraints
var(c;) = {x;, x}}
3 cjeC’ [ var(c) Nvar(c) = @
rel(c’; ) = consistent pairs of tuples

Example: Crossword puzzles

1 2 3 4 5
a monarch
5 |7 s 9 aardvark monarchy
aback monarda
10 [11 [12 |13 [14 abacus
abaft zymurgy
15 16 |17 [18 abalone zZyrian
abandon zythum
19 120 |21 2 2
2 3




1 2 3 4 5
T
10 |11 |12 |13 |14
15 16 |17 |18
19 120 |21 2 2

2 3

Primal model (Non-binary)

# variables: cells
4 domains:
4 constraints: contiguous

letters must form words
in dictionary

Dual model (binary)

1 2 3 4 5
6 7 8 €
10 (11 |12 (13 |14
15 16 (17 |18
19 (20 |21 2 2
2 3

# variables: words across
and down

# domains: words from
dictionary

# constraints: intersecting
words must agree on
common letter




Global Constraints

C is global iff:
= arity(c)=r> 2
= C is logically equivalent to {c,,c,...,¢ } binary
= AC(c) prunes more than AC(c,,G,,...,C;)

Propagation:
= There is a specialized efficient algorithm (exploits
the semantics)

Catalog:
= set of global constraints
. known algorith r ion

Example: all-different

x {1, 2}

o

Z
{1, 2} = {1, 2}




Example: all-different

o x {1,2} x {1,2}
logically
equivalent
all-different
y
{1, 2} - {1, 2} {1, 2} {1, 2}
3 binary constraints, 1 ternary constraint,
they are AC, it is not AC,
no pruning AC pruning — empty domain
no solution!!

Example: all-different

#Enforcing arc-consistency:
= n variables, d values
= n(n-1)/2 binary constraints : O(n2 d2)
= 1 n-ary constraint:

+ general purpose algorithm O(d")
+ specialized algorithm O(n2 d2)




Constraint Programmming
“Declarative Programming: you declare

+ Variables
+ Domains
+ Constraints

and ask the SOLVER to find a solution!!

SOLVER offers:

+ Implementation for variables / domains / constraints

+ Hybrid algorithm: backtracking + incomplete inference
+ Global constraints + optimized AC propagation

+ Empty domain detection

+ Embedded heuristics

Constraint Logic Programming

# Logic Programming:

= implements chronological backtracking
# Constraint logic programming:

= extension including constraint satisfaction facilities
# Existing solvers:

= Chip (www.cosytec.com)

= Eclipse (www-icparc.doc.ic.ac.uk/eclipse)

= Sicstus Prolog (www.sics.se/sicstus)




Imperative Constraint
Programming

Library to be included in your (procedural)
program
Provides:
= Special objects:
+ Variables / Domains / Constraints (global)

= Special functions to find:
+ One solution / the next solution

# Existing Solvers:
+ Ilog Solver (www.ilog.com)
+ Choco (www.choco-constraints.net)

CHOCO

# Library for modeling and solving
combinatorial problems

# Intended for academic purposes
# Plus:

= Free software (GPL from FSF)

= Simple

» Efficient

= Generic
# Minus:

= Implemented in Claire (which is implemented in
C++)

= Not (completely) stable




Choco: 1st example

[sillyCSP() : void
-> let pb := choco/makeProblem("Silly CSP",3),
X := choco/makelntVar(pb, "x", 1, 3),
y := choco/makelntVar(pb, "y", 1, 3),
:= choco/makelntVar(pb, "z", 1, 3) in
(choco/post(pb, x + y == 2),
choco/post(pb, x > vy),
choco/solve(pb,false),
printf("~S ~S ~S\n",x,y,2) )]

Choco: 2nd example

[queens(n:integer, all:boolean)
-> let pb := choco/makeProblem(" n queens",n),

foriin(1..n)
forjin(i+1..n)
letk:=j-iin
( choco/post(pb, queens[i] '== queens[j]),
choco/post(pb, queens[i] == queens[j] + k),
choco/post(pb, queens[j] == queens[i] + k) ),
choco/solve(pb,all) )]

ueens := list{choco/makelntVar(pb,"Q" /+ string!(i), 1, n) | iin (1 ..

n)}




Soft Constraints (2nd. Part)

#Motivation (10")
4#Models (20")
#Algorithms (60"

Motivation

# Using the classical CSP framework:

= Many problems have many solutions

+ Algorithms either give the first one they find or all of
them

+ Typically, the user likes some solutions more than others

= Many problems do not have any solution
+ Algorithms just report failure

+ Typically, the user can identify some non critical
constraint




Soft CSP
“# Problems:

= Variables and domains as in classical CSP
= Mandatory constraints (hard)
= Preference constraints (soft)

# Feasible solution:

= Complete assignment which satisfies every hard
constraint

# Optimal solution:
= Preferred feasible solution, according to soft
constraints
# Complexity:
= Np-hard
= Much harder than classical CSP

Soft Constraints Models

#Max-csp [freuder and wallace 92]
#Fuzzy CSP [dubois et al 93]

# Lexicographic CSP [fargier et al 93]
#Weighted CSP

#Probabilistic CSP [fargier and lang 93]
#Valued CSP [schiex et al 95]
#Semiring-based CSP [bistarelli et al 95]
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Classical CSP

#Expressable as classical logic

#Constraints: boolean functions
n C(b)= true/false

#Task of interest:
At Ve, ¢, (1)

Fuzzy CSP

#Extension of classical CSP to fuzzy logic
= Conjunction: t-norm (minimum)
= Disjunction: t-conorm (maximum)

= (] [0]]

» Task:

mle{min{Ci ()}}

11



Weighted CSP

#Preferences are expressed as costs
» Constraints: cost functions

c.(t)] {0,1,..,x}

[ Ta_sk:
min{y {¢(n}}

Example

# Airlines flight scheduling:
= Input:

+ Aircrafts, airports
+ Flights: (origin, destination, frequency)
+ Requirements:
= From origin to destination on the corresponding date
...
+ Requests:
= No more than four legs per flight
= 1 hour < transfer time < 5 hours

= Output:

+ Schedule: each flight is a sequence of scheduled legs

12



Example

# Classical CSP:
= Consistent schedules

# Fuzzy CSP:
= Schedules where every request is reasonably good
+ Maximizes the quality of the worst request

# Weighted CSP:

= Schedules where, globally, flights are good
+ Maximizes the sum of qualities over request
+ Some request can be very unsatisfied

Valued CSP (VCSP) [schiex et a1 95]

# Axiomatic model aiming at maximal generality
# It includes all previous models
# Valuation structure (E,*,>):

s Eis the set of valuations

+ Totally ordered by “>", the maximum element is " T,
the minimum element is “.L".

v * is the aggregation of valuations
+ binary operation on E, commutative and associative.
o L is the identity
+ T is absorbing
o * grows monotonicly

13



Valued CSP

# (Soft) constraints:

" Ci(t) eF

# Task:

+ minfr{c,(}}

Valued CSP

Idempotent *

Weighted CSP
Probab. CSP

Fuzzy CSP

classical CSP

14



Solving Valued CSP
(solving Weighted CSP)

Binary Weighted CSPs

®P=(X.D,0)
= X={Xy,..., X,} variables
s D={D;,..., D,} finite domains
n C={C;,C, G} soft constraints
+ Gt D;xD; >Cost
+ C : D, >Cost
+ C, : Cost (it is a constant)

15



Valuation Structure

#Costs: Natural numbers in [0..K]
= 0: most preferred (0=1)
» k: least preferred (i.e, unacceptable) (k=T)

#Aggregation:

a ®b=min{T, a+b}

Weighted CSP

#Solution: complete assignment with cost
less than T

#Goal: find solution with minimum cost
4 Complexity: NP-hard
#Classical CSP = WCSP (T=1)

16



WCSP: Example

X={xy z}

D={v w}

c={C, C, G
¢ G Gy}

WCSP: Example

X={xy z}

D={v w}

c={C, C, G
¢ ¢, C}

17



WCSP: Example

T=4
X={xy z} C, =0
D={v w} X
c={C, Cyz C, vi(2
Cy C, C,} w\ (@ z
2 1 v
L 1 w
vi(o 1
1
w\ (0
Valuation: y

20102120 0=T
Not a solution

WCSP: Example

X={xy z}

D={v w}

c={C, C, C
¢ ¢, C}

18



WCSP: Example

X={xy z}

D={v w}

c={C, C, G
¢ ¢ C}

Valuation:
019012000 =2
(optimal) solution

Algorithms

#Search
= Local search
= Systematic search
#Inference
= Complete inference
= Incomplete inference

#Hybrid approaches

19



Local search (metaheuristics)

# Simulated annealing

# Tabu search

# Variable neighborhood search

# Greedy rand. adapt. search (GRASP)
# Evolutionary Computation

# Ant colony optimization

# Excellent survey: Blum & Roli, ACM
computing surveys, 35(3), 2003

Systematic search

# Depth-first tree search:
= Internal node: partial assignment
= Leaf: total assignment

# At each node:

= Upper bound (UB):
cost of the current best solution

= Lower bound (LB):
underestimation of minimum cost
among leaves below current node

# Pruning: UB <= LB

20
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Search Complexity

#Time: O(exp(n)), (num. of variables)

= The whole search-tree may be
traversed

= Too pessimistic
= No tight bounds exist

#Space: Polynomial on n
= If search is depth-first

Incomplete Inference:
Soft Local Consistency

4 Local property enforceable in
polynomial time that makes the
problem more explicit
= Node Consistency
= Arc Consistency
= Directional AC
= Full DAC

34



» For all variable i

Node Consistency (NC™)

oVa, C,® G (a)<T
wda, G@)=0

» For all variable i

Node Consistency (NC™)

oVa, C,® G (a)<T
w3da, G(@)=0

35



Node Consistency (NC™)

» For all variable i
oVa, C,® G (a)<T
wda, G@)=0

Node Consistency (NC™)

» For all variable i
oVa, C,® G (a)<T
w3da, G(@)=0

v Complexity:
O(nd)

36



Arc Consistency (AC")

NC*
I For all Cj
oVaib
Cfa,b)=0

v bis a support

Arc Consistency (AC")

NC*
I For all C;
oVaib
Cfa,b)=0

v bis a support

37



Arc Consistency (AC")

NC*
I For all Cj
oVaib
Cfa,b)=0

v bis a support

X
4
w

%

T=4
c, =1

e

y

v

w

Arc Consistency (AC")

NC*
I For all C;
oVaib
Cfa,b)=0

v bis a support

X
v
w

w

T=4
c, =1

il

y

v

w
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NC*
I For all Cj
oVaib
Cfa,b)=0

v bis a support

Arc Consistency (AC")

NC*
I For all C;
oVaib
Cfa,b)=0

v bis a support

v complexity:
O(n2d?3)

Arc Consistency (AC")




Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support




Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support




Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support




Directional AC (DAC™)

NC* X<y<z
I For all C; (/<))
oVaab

Cla,b) @ G(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z
I For all C; (/<))
oVaab

Clab) @ G(b) = 0

v bis a full-support




Directional AC (DAC™)

NC* X<y<z T=4
I For all C; (/<))
oVaab

Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DACY)

NC* X<y<z T=4
I For all C; (/<))
oVaib

Cfab)® C(b) =0

v bis a full-support




NC*
I For all C; (/<))
oVaib
Cfa,b) ® C(b) = 0

v bis a full-support

Directional AC (DAC™)

X<y<Zz

NC*
I For all C; (/<))
oVaib
Cfa,b) ® C(b) = 0

v bis a full-support

v complexity:
O(ed ?)

Directional AC (DACY)

X<y<Zz




|

Full DAC (FDAC®)

NC* X<y<Zz

For all C; (i<))
oVaib

Cfa,b) ® G(b) = 0
(full support)

For all C; (i>))
oVaidbp,
Clab) =0
(support)

|

Full DAC (FDAC")

NC* X<y<z

For all C; (i<))
owVaib

Cfa,b) ® G(b) = 0
(full support)

For all C; (i>))
oVaiab
Clab) =0
(support)

46



Full DAC (FDAC®)

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) =0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

Full DAC (FDAC")

NC*
I For all C; (i<))
oVaib
Clab) ® G(b) = 0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz
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Full DAC (FDAC")

NC*
I For all G; (i<))
oVaib
Clab) ® C(b) = 0
(full support)

» Forall G; (i>))

X<y<z

(full support)

oVaib
Cfa,b) =0 W
(support) ;
Full DAC (FDAC™)
{
NC* X<y<z T=4
I For all G; (i<J) c, =1
oVaiab X
Cfa,b) ® C(b) =0 v @
w\©

» Forall G; (i>))
oVaib
Clab)=0
(support)
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Full DAC (FDAC®)

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) =0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

Full DAC (FDAC")

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) = 0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz
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Full DAC (FDAC®)

NC*
I ForaHC% (i<J)
oVaib
Clab) ® G(b) =0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

Full DAC (FDAC")

NC*
I For all C; (i<))
oVaib
Clab) ® G(b) = 0
(full support)

» Forall G; (i>))
oVaiab
Clab) =0
(support)

X<y<Zz

v

w

@
©
y

T=4
C, =2

@
©

v

w
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NC*
I For all C; (i<))
oVaib
Cfab) ® ¢(b) =0
(full support)

» Forall G; (i>))
oVaib
Cfab)=0
(support)
v complexity:

O(end 3)

Full DAC (FDAC®)

X<y<z 4

T=
C@

1®V
@) w

!

2

%

w

©
©
y

Hierarchy

AC* O(n 2d 3)

NC* O(nd)

e s

DAC* O(ed 2)

Bt

FDAC* O(end 3)
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Hybrid: search+local consist.

4 WCSPs are solved with search:

= Lower Bound = Upperbound => Backtrack
#Each node is a WCSP subproblem

= T : Upper Bound (best known solution)

= C, : Lower Bound

# Algorithm: maintain local consistency
during search
= MNC, MAC, MDAC, MFDAC

Experiments

#Qverconstrained Random CSPs

52



CPU time

25

20+

15}

107+

Sparse Loose

PFC—RDAC -
MAC* ----x---
MNC* ——

MDAC* =

MFDAC* s = : ,*\*/:_E]
5 Y
0 e .
10 15 20 25 30
n. of variables
CPU time
80 —
20l Sparse Tight
60 B MNC* o
50+ MAC* -
40l  PFC-RDAG--s- /
MDAC* = J

301 MFEDAC* s /
20} y A
10t P

0= st s S e SR el

1

i
0 12 14 16 18

n. of variables
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CPU time

60
50|
40+
30/
20|
10

0

Dense Loose

MDAC* -
MFDAG* s
MAC* -
PFC—RDAC =
MNC* ——

10 12 14 16 18 20

n. of variables

CPU time

70
60-
50+
40-
30~
20
10+
0

Densé Tight |

MNC* ——

PFC-RDAC =
MDAC* -

MFDAC* ——=——

10

17 12 13 14 15

n. of variables
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Complete Inference:
Bucket Elimination

# Backtracking-free approach

# Sequence of problem reductions that
preserve the best solution

# Bucket Elimination (BE) [Dechter 99]
= Variables are eliminated one at a time
= When no variable remains, the problem is

trivially solved

# This approach has been rediscovered once

and again [Bertele and Brioschi 72]

Bucket Elimination (BE)

#Two primitive operators:
= Sum of functions (/+g)
= Elimination of a variable ¢/:(f)

Sx,x)=x+x,, g(x,,x)=x,x,

@e.g.: (f+2)(x,X%,,X;) =X, + X, + X, X,

elim, (f)(x,) = Iré})n{f(a,xz)}

55



BE Basic Step: Variable
Elimination

%

oS

BE Basic Step: Variable
Elimination

# Select a variable

)

S

56



BE Basic Step: Variable
Elimination

# Compute its bucket
# Bucket: set of &
functions that (%)

mention the variable

@

BE Basic Step: Variable
Elimination

# Compute new
function
g < elim( Ef)

f EBucket

57



BE Basic Step: Variable
Elimination

# Remove variable (x,)
and functions in ﬁ‘

Bucket @ﬁa
Complexity of Variable
Elimination

® () —(%)
Rot
(0)—(%)
# Eliminating x;: l e e o
= time: O(exp(dg))

= space: O(exp(dg,)) @
e
(%)

58



BE: complexity

#time: O(exp(w*))
#space: O(exp(w*))
#wWw* <n

#these bounds are tight

#the space complexity renders BE
infeasible as a general method

Hybrid: search + complete
inference

59



Search Basic Step: Variable
Branching

Search Basic Step: Variable
Branching

-Select a variable @

60



Search Basic Step: Variable

Branching
ﬂa
(%)
e

X, < a X,<—c
X, < b

(%) (%) (%)
(%] (%] (%]
W—  W— (%) ‘9

Hybrid: search + complete
inference

# Idea:
= Select a variable
= If it is not too costly, then eliminate it
= Else let search take care of it
# Two examples:
= BE-BB(k) [Larrosa and Dechter, 2001]
= SBE(k) [Dechter and El Fattah 2000, Kask et
al 2001]
# k is a control parameter
= k small, more search
= klarge, more variable elimination

61



BE-BB(K)

# At each node:
X; < select a future variable
if dg(x;) < k then eliminate x;
else branch on the values of x;

# Property:
BE-BB(-1) is BB
BE-BB(w*) is BE

BE-BB(2): example

/

v
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BE-BB(2): example

/

v

BE-BB(2): example

<D

\/
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BE-BB(2): example

/

v

BE-BB(2): example

R

\/
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- BE-BB(2): example

o

Y/

- BE-BB(2): example

/Q l \




- BE-BB(2): example

/Q l \

- BE-BB(2): example




- BE-BB(2): example

.ﬁf i@}/@ ;/d}@

- BE-BB(2): example

ng g/@ %/@

@) @,




- BE-BB(2): example

057@ Qg/@ g%;

@,

- BE-BB(2): example

ng Q?O Q?Q

@) @,




BE-BB(2): example

il

OQ OQ

v
.

BE-BB(2): example

S
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BE-BB(2): example

S

BE-BB(k): complexity

#Space: O(exp(k))

#Time: O(exp(k+2(k)))
» Z(k): number of branched variables

» Z(k): it can be computed out of the k-
restricted induced graph G*(k,0)
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Empirical Evaluation (time
bounds)

- Random Graphs (50 nodes, 200 edges, average degree 8, w*~23)

60

o] _—— Branch and bound

40

Bucket
30 - «— elimination

k#2(K)

20 4

10 4

A o B o @ Q8 P 8 L

Empirical Evaluation (time

bounds)
60 -
50 - —+~ dg=4
40 dg=6
—~—dg=8
~
;5 30 —=—dg=10
20 | ——dg=12
by —dg=14
103 - dg=16
0 rTr T rrrr 111111 1rr1r 1 1T T T 17T 1 T 1T 1T T T T T 17T dg=18
Bde Ra > pPPppg

k
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Empirical Evaluation (CPU

time)

k n=30, r=5, n=35, r=5, n=20, r=>5, n=40, r=2,

dg=6 dg=6 ag=7 dg=4
-1 49.0 107.5 45.3 84.9
0 6.1 27.5 38.8 63.2
1 25 11.2 31.1 26.5
2 1.6 43 15.9 6.8
3 .9 37 8.8 6.0
4 5 21 11.5 8.7
5 2.6 6.2 46.3 29.6
6 3.2 9.6 89.8 131.3
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Super-Bucket Elimination,
SBE(k)

#Eliminate sets of variables such that:

» individual eliminations are too costly
in space (namely, each variable in the
set has degree larger than k)

= the join degree is lower than k

SBE(2): example

73



SBE(2): example

'SBE(2): example
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'SBE(2): example

{

inthe set S

Super bucket: set of functions mentioning variables
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SBE(2): example

SBE(K

# Each super-bucket elimination is a set of COP
instances that can be solved with BB!!

#e.qg.:

S, x5,x,), (x5, %4, X5), h(X,, X5, X5),

elim,;(f +g+h)(x,,x5)
\

D, <D,  optimization problems

76



SBE(K)

# Repeat:
S <« {x;}, future variable
while | Ng| > kdo
S < S U {x;}, future variable
endwhile

eliminate S from the super-bucket (Branch
and Bound)

# Property:
SBE(0) is BB
SBE(w*) is BE

SBE(2): example
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SBE(2): example

SBE(2): example




{SBE(Z): example

{SBE(Z): example




SBE(2): example

SBE(2): example
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SBE(K)

#Complexity:
= space: O(exp(k))

= time: O(exp(w,*))

3

k-augmented induced width

Empirical Evaluation (time
bounds)

N - Random Graphs (50 nodes, 200 edges, average degree 8, w*=~23)

60
co «— Branchand bound
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% 40 A

3 Bucket

2 55 elimination

i —

§ 20

= 10 -




Empirical Evaluation (time
~ bounds)
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dg=2
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\\ — dg=1 4
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dg=18
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Summary

#Soft constraints:
= augment the CSP framework
= find best solution

#Valued CSP:
= general axiomatic framework

#Solving techniques:
= generalization of CSP techniques




That's all !

L
#Slides available next week at:

= Www.lIsi.upc.es/~larrosa

= Www.iila.csic.es/~pedro

83



