CSP: Constraint Programming

Pedro Meseguer
lHIA-CSIC
Bellaterra, Spain

Overview

Constraint Programming

Modelling
Search space size
Primal / Dual models
Global constraints
Solving
Guidelines
CP Styles

CSP: Constraint Programming

Constraint Programming

CP:
« provides a platform for solving CSPs
« proven useful in many real applications

Platform:
« set of common structures to reuse

* best known algorithms for propagation & solving

Two stages:
* modelling
* solving

CSP: Constraint Programming

CP: Modelling

Modelling decisions: select among alternatives

- the choice of the variables } o e S
* the choice of the domains
* how we state the constraints <— space reduction

Example: Map Colouring
- variables: are regions or colours?

Any CSP can be modelled in different ways
- Efficiency of algorithms can vary dramatically

* No strong results are known

« Formulating an effective model is not easy,
requires considerable skills in modelling

N-queens: Model 1

Variables: n?, one per cell, matrix Bnx n

Domains: {0,1}, B[a,b]=0, no queen

Bla,b]=1, queen

Constraints: If B[a,b] = 1 then

2 3 4

same row B[_,b]=0 A

same column Bla,_]=0 A

same diagonal B[a+0,b+06]=0, B[a-4,b-8]=0 A
same diagonal B[a-9,b+0]=0, B[a+0,b-5]=0

CSP: Constraint Programming

N-queens: Model 2

Variables: n, one per row

Domains: {0,1,...,n-1}, queen column

Constraints:

different columns X; # X; A
different diagonals | x;- x;1 = | j- I

Different row constraint is
included in the formulation!!

CSP: Constraint Programming

N-queens: Model 3

Variables: n, one per row

Domains: {0,1,...,n-1}, queen column

Constraints:
different columns all-different(X,, X,,...,X,,)/\
different diagonals | X;- X;l » | i- I

Different row constraint is
included in the formulation!!

CSP: Constraint Programming

N-queens Models

- Model 1 Model 2 Model 3
2n2 nn nn

Search
space size 4 65,536 256 256

gtvars 10 1.27 E30 1.00 E10 1.00 E10

20 ERROR!! 1.05 E26 1.05 E26

Constraints |nrows
n columns n columns 1 all-diff
number 2(n-1) diagonals | 2(n-1) diagonals | 2(n-1) diagonals

prunning Equal model 1 More than
model 2

Constraint Formulations

Binary (arity < 2) :

+ conceptually simple, easy to implement
* may generate weak formulations

Non-binary (arity > 2) :
* more complex constraints

« GAC: stronger (filter more) than AC on
equivalent binary decomposition

Equivalence: any non-binary CSP can be
reformulated as a binary one

CSP: Constraint Programming

Primal / Dual Formulations

Primal CSP: (X, D, C)

D’={d’, d’,
d’; = rel(c)

primal constraint
values=permitted
primal tuples

Always binary!!

CSP: Constraint Programming

ay, C'={c;}

var(cy) = {x}, X}

ic,eC’ [

var(c) N var(c) = &

rel(c’;)=same values
for shared
primal vars

10

Example: Crossword puzzles

a monarch
aardvark monarchy
aback monarda
abacus

abaft Zymurgy
abalone zyrian
abandon zythum

CSP: Constraint Programming

Primal model (Non-binary)

variables: cells

domains: ‘a’, ...,

constraints: contiguous
letters must form words in
dictionary

CSP: Constraint Programming

Dual model (binary)

variables: words
across and down

domains: words from
dictionary

constraints: intersecting
words must agree on
common letter

CSP: Constraint Programming

Hidden Variable Formulation

Primal CSP: (X, D, C) binary non-binary
X={X,...,x}, D={d,...d} C= B U {C,...C}}

Hidden formulation: —
X'=XU{X,...xy D’=DU{d,...d}, C'=BU{cy}

a new variable a,=rel(c,) var(cp)= {x; X;}
per non-binary values=permitted ~ 3Cp Sl
constraint primal tuples Xx; € var(c,) A
rel(c,,)= same

hidden variables values
for x;

CSP: Constraint Programming 14

Global Constraints

Real-life constraints: often complex, non-binary

cis global iff:

- arity(c) > 2

* ¢ is logically equivalentto {c,,c,,...,c,} binary
« AC(c) prunes more than AC(c,,Cs,...,Cy)

Propagation:
* specialized algorithms

) : . decrease AC complexit
« exploit constraint semantics prexity

CSP: Constraint Programming

Var: F,N,S; Va:{ @ @ }; CtrsiN#SzF=zN

F{@® @

logically
equivalent
all-differen
N S

|V -}
{00 * {00 (@ @}

3 binary constraints,
they are AC,
no pruning

CSP: Constraint Programming

Example: all-different

Enforcing arc-consistency:
* n variables, d values
* n(n-1)/2 binary constraints : O(n? d?)
* 1 n-ary constraint:
* general purpose algorithm O(d")
« specialized algorithm O(n? d?)

CSP: Constraint Programming

CP: Solving

Solving decisions: select among alternatives
+ search algorithm
* local consistency: level / how often
* heuristics: variable / value

}inter/eaved

Example: Map Colouring
» static or dynamic variable ordering ?

Efficient solving:
* reasonable initial size of the search space
« drastic reductions of space during search

CSP: Constraint Programming

CP Solving: Some Guidelines

Easy/hard problems:
* hybrid search
+ dynamic variable ordering: min domain / degree
 easy: FC / hard: MAC

One solution/All solutions:
* one solution: hybrid search
- all solutions: hybrid search or complete inference

For specific problems (scheduling, routing...) check:
- formulation, global constraints
* heuristics, experiences

CSP: Constraint Programming

CP: Declarative Programming

Declarative Programming: you declare
+ Variables
+ Domains

« Constraints
and ask the SOLVER to find a solution!!

SOLVER offers:

Implementation for variables / domains / constraints
* Hybrid algorithm: backtracking + incomplete inference
+ Global constraints + optimized AC propagation
+ Empty domain detection
+ Embedded heuristics

CSP: Constraint Programming

Constraint Logic Programming

Logic Programming:
* Depth-first search
+ Unification: substitute equals by equals clauses/database

special case of constraint solving

Constraint

More general constraint solver ——— Logic
Programming

substituted |by

Existing solvers:
+ Chip, Eclipse, Mozart, Sictus Prolog (and many others)

CSP: Constraint Programming

Constraint Programming Libraries

Library to be included in your program:
* Imperative programming

Provides:
* Special objects:
* Variables / Domains / Constraints (global)

« Special functions to find:
* One solution / the next solution

Existing Solvers:
+ llog Solver, Choco

CSP: Constraint Programming

