CSP: An Introduction

Pedro Meseguer IIIA-CSIC Bellaterra, Spain

Some Definitions

Constraint Network (CN): (X, D, C)

- $X = \{x_1, x_2, \dots, x_n\}$ • $D = \{d_1, d_2, \dots, d_n\}$
- $C = \{C_1, C_2, \dots, C_r\}$

 $c \in C$

variables domains (finite) constraints

 $Var(C) = \{x_{i}, x_{j}, ..., x_{k}\}$ scope $rel(c) \subseteq d_i \times d_i \times ... \times d_k$ permitted tuples arity(c) = |var(c)| (unary, binary, ternary,...)

Constraint Satisfaction Problem (CSP):

· CN solving: assig. satisfying every constraint

CSP: Introduction

NP-complete task

Job-Shop Scheduling

GIVEN: *n* jobs, each with *m* operations *m* resources, each operation requires a resouce for a period
precedence between operations of each job
GOAL: can *n* jobs be performed in time D?

Formulation:

- variables: operations
- dominios: start times
- constraints:
 - precedence
 - exclusivity

Relevance

CSP: formal model to express problems

Artificial Intelligence

- temporal reasoning
- Control Theory
- controllers for sensory based robots
 Concurrency

process comm. and synchr.

- •Computer Graphics
- geometric coherence
 Database Systems
- constraint databases
- Bioinformatics

sequence alignment

- •Operations research
 - optimization

Real-life applications

- Production planning
- Staff scheduling
- Resource allocation
- Circuit design
- Option trading
- DNA sequencing

•...

CSP: Introduction

Constraint Graphs

Primal graph:

- Nodes: variables
- Arcs: between two constrained variables

Dual graph:

- Nodes: constraints
- Arcs: between two constraints sharing a variable

CSP: Introduction

Hypergraph:

- Nodes: variables
- Hyperarcs: constraints

