CSP: Solving by Inference

Pedro Meseguer IIIA-CSIC Bellaterra, Spain

Overview

Incomplete Inference

- Motivation: solving subnetworks
- Node consistency
- Arc consistency
- Constraint propagation
- Path consistency
- K-consistency
- Generalized Arc consistency

CSP: Incomplete Inference

Inference

Inference:

 $P \longrightarrow P'$

legal operations on variables, domains, constraints

- P' is equivalent to P: Sol(P) = Sol(P')
- P' is presumably easier to solve than P
 - smaller search space
 - constraints are *more* explicit

Inference can be:

- complete: produces the solution
 - adaptive consistency
- incomplete: requires further search

arc consistency

CSP: Incomplete Inference

3

Incomplete Inference: Local Consistency

P constraint network of n variables: Is P solvable?

Simpler problem:

- P_{j}^{1} , P_{j}^{2} , P_{k}^{3} ...subnetworks of P of 1, 2,3,...variables
- · Are they solvable?
 - YES, but there are values that do not appear in any solution
 ☐ they can be removed from P
 - NO, \square P has no solution

#vars in subnet: 1 2 3 ...
node arc path

consistency consistency consistency

Empty domain: *P* has no solution !!

CSP: Incomplete Inference

Node Consistency (NC)

NC:

- Variable x_i is *node consistent* iff every value of D_i is allowed by R_i
- P is NC iff every variable is NC

Unitary constraint on x_i

```
NC Algorithm:

procedure NC-1 (X,D,C)

for all x_i | X do

for all a | D_i do

if a | R_i then D_i := D_i - \{a\};
```

CSP: Incomplete Inference

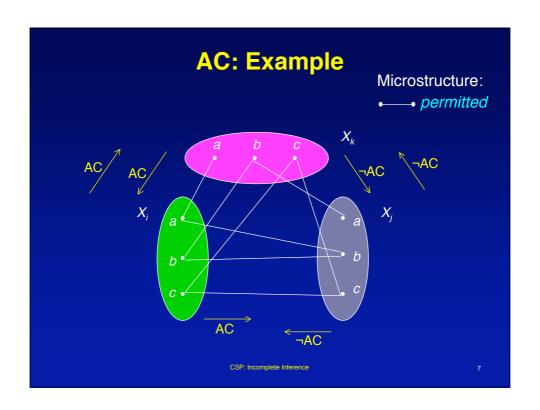
5

Binary Arc Consistency (AC)

AC:

- Constraint C_{ij} is directional arc consistent $(i \square j)$ iff for all $a \square D_i$ there is $b \square D_i$ such that $(a, b) \square R_{ij}$
- Constraint C_{ij} is AC iff it is directional AC in both directions
- A problem is AC iff every constraint is AC

CSP: Incomplete Inference



Filtering by Arc Consistency

If for $a \square D_i$ there not exists $b \square D_j$ such that $(a, b) \square R_{ij}$, a can be removed from D_i (a will not be in any sol)

Domain filtering:

- Remove arc-inconsistent values
- Until no changes

Example:

Function revise(i,j)

Function revise(i,j):

- R_{ii} becomes directional arc-consistent
- it may remove values of D_i
- iterate over other constraints

Complexity: $O(d^2)$

CSP: Incomplete Inference

Example: 3-queens

- c_{12} is not arc-consistent because value 2 of d_1
- c_{21} is not arc-consistent because value 2 of d_2
- c_{32} is not arc-consistent because value 2 of d_3

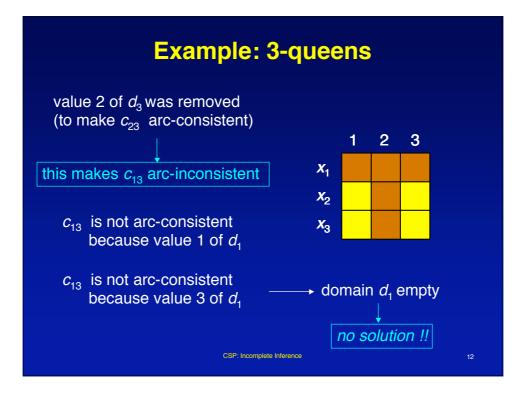
CSP: Incomplete Inference

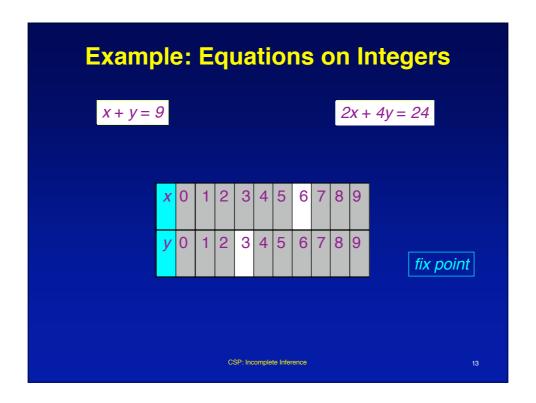
Constraint Propagation

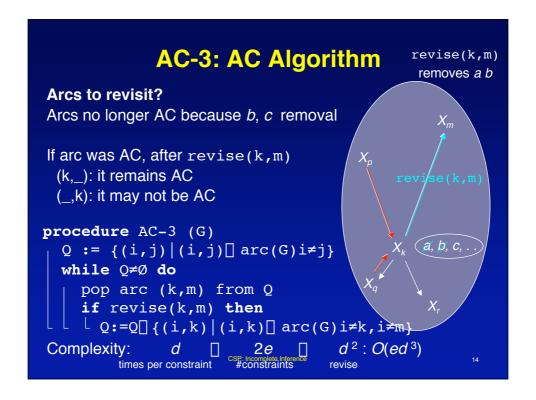
- **AC**(*c*): procedure to make *c* arc consistent
- To make P arc-consistent, process each constraint?

- But **AC**(c) may render other constraints arc-inconsistent
- To make *P* arc-consistent, iterate:
 - Apply **AC** on $\{c_1, c_2, ..., c_r\}$
 - Until no changes in domains: fix point

CSP: Incomplete Inference







CSP: Incomplete Inference

change := TRUE;

return change;

AC-2001: AC Algorithm procedure AC-2001 (G) $Q := \{(i,j) | (i,j) | arc(G)i \neq j\}$ while Q≠Ø do pop arc (k,m) from Q if revise2001(k,m) then OPTIMAL Complexity: Value (X, a) is tested d times on last(i,a,j) Value (X_i, a) is tested d times on D₁ • d values per variable d O(ed 2) 2e: (d+d)values revise #constraints CSP: Incomplete Inference

Binary Path Consistency

A pair of values ((i, a) (j, b)), st $(a, b) \square R_{ij}$, is path consistent iff for all X_k , $i \neq k$, $j \neq k$, there exists $c \square D_k$ such that,

$$(a, c) \square R_{ik}$$
 and $(c, b) \square R_{kj}$

A pair of variables (X_i, X_j) is path consistent iff every pair of values $(a, b) \square R_{ii}$ is path consistent

A problem is path consistent iff every pair of variables is path consistent

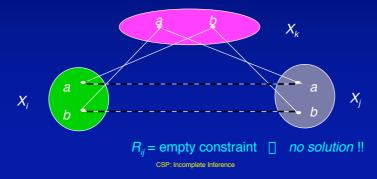
CSP: Incomplete Inference

17

Filtering by Path Consistency

If for $(a,b) \square R_{ij}$ there not exists $c \square D_k$ such that $(a, c) \square R_{ik}$, $(b, c) \square R_{jk}$, pair (a,b) can be removed from R_{ij} (it will not be in any sol)

Example:



Function revise3(i,j,k)

Function revise3(i,j,k):

- makes C_{ii} path consistent with x_k
- it can remove pairs of permitted value

CSP: Incomplete Inference

19

PC-2: PC Algorithm

PC-2: revise3 on all possible triangles (including universal constraint)

```
procedure PC-2 (X,D,C)
  Q := {(i,j,k) | 1≤i<j≤n,1≤k≤n,k≠i,k≠j};
  while Q≠Ø do
    pop (i,j,k) from Q;
    if revise(i,j,k) then
       Q:=Q [ {(1,i,j)(1,j,i) | 1≤1≤n,1≠j,1≠i};</pre>
```

Complejidad: $O(n^3d^5)$

CSP: Incomplete Inference

K-Consistency

K-Consistency:

- for any subset of k-1 variables $\{X_1, \overline{X_2, \ldots, X_{k-1}}\}$ consistently assigned;
- for any X_k there exists $d \square D_k$ such that $\{X_1, X_2, \dots, X_k\}$ is consistent

K-strong-consistency: J-consistent, for $1 \le J \le K$

Algorithms for K-strong-consistency:

• Freuder 82, Cooper 89,

 $O(\exp K)$

CSP: Incomplete Inference

21

Function reviseK(1,2,..,k)

Function reviseK(1,2,...,k):

- Makes a subnetwork K consistent
- Discovers nogoods of size K-1

CSP: Incomplete Inference

Local Consistency Levels

Nogood: forbidden tuple of values

- In the initial constraints
- Discovered during search / local consistency process

Local consistency levels:

nogood size

Node consistency:

1-consistency

1 removes values

Arc consistency:

2-consistency

from domains

Path consistency:

3-consistency

2 discovers forbidden

value pairs

K-consistency:

K-1 discovers forbidden value combinations

CSP: Incomplete Inference

Generalized Arc Consistency

- c is arc-consistent iff: every possible value of every variable in *var* (*c*) appears in rel(c)domain
- If c is not arc-consistent because $a \sqcap D_{v}$:
 - a will not be in any solution
 - a can be removed: $D_x \square D_x \{a\}$
 - if D_x becomes empty, P has no solution.
- P is arc-consistent iff: every constraint is arc-consistent
- If P is arc-consistent \rightarrow P has solution

incomplete inference !!

filtering

inference