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Abstract. We propose an extension of rewriting techniques to derive
inclusion relations a ⊆ b between terms built from monotonic operators.

Instead of using only a rewriting relation
⊆
−→ and rewriting a to b, we use

another rewriting relation
⊇
−→ as well and seek a common expression c

such that a
⊆
−→

∗

c and b
⊇
−→

∗

c. Each component of the bi-rewriting system

〈
⊆
−→,

⊇
−→〉 is allowed to be a subset of the corresponding inclusion ⊆ or

⊇. In order to assure the decidability and completeness of the proof

procedure we study the commutativity of
⊆
−→ and

⊇
−→. We also extend

the existing techniques of rewriting modulo equalities to bi-rewriting
modulo a set of inclusions. We present the canonical bi-rewriting system
corresponding to the theory of non-distributive lattices.

1 Introduction

Rewriting systems are usually associated with rewriting on equivalence classes of
terms, defined by a set of equations. However term rewriting techniques may be
used to compute other relations than congruences. Particularly interesting are
non-symmetric relations like pre-orders. For instance, logics of inequalities [7],
rewriting logic [21], ordered algebras [8], subset logic [12, 24], unified algebras [2,
22], taxonomies [1, 23, 26], subtypes [5], refinement calculus [20], all them use
some kind of pre-order on expressions. In this paper we will show the applicability
of rewriting techniques to monotonic pre-order relations on first order terms
(inequality logics), that is the deduction of inequalities —here we call them
inclusions— from a given set of them, the axioms.

The idea of applying rewriting techniques to the deduction of inclusions be-
tween terms, like a ⊆ b, is very simple. We compute by repeatedly replacing both
1) subterms of a by “bigger” terms using the axioms and 2) subterms of b by
“smaller” terms using the same axioms until a connection is found between a and

b. Evidently there are many paths starting from a in the direction
⊆
−→ and from

b in the direction
⊇
−→ (see figure 2). Many of them are blind alleys and others are
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not terminating. Thus, it is essential that the search avoids blind alleys for effi-
ciency reasons and, specially, avoids infinite sequences of rewritings with infinite
different terms (infinite paths due to cycles are avoided easily). Evidently infinite
different rewritings would prevent the decidability of the procedure. The solution
to non-termination is to orient the axioms using a well founded ordering(s) on
terms. Because the relation is non-symmetric, the orientation results in a pair

of rewriting systems 〈
⊆
−→R1

,
⊇
−→R2

〉, that is, we get a bi-rewriting system. We
introduce the definitions of a Church-Rosser and quasi-terminating bi-rewriting
system in order to assure the decidability and the completeness of the search
procedure. That is, given a set of axioms, if we can orient and complete them
obtaining a confluent bi-rewriting system, then we will have a semi-decidable
procedure to test a ⊆ b. The procedure is decidable if the bi-rewriting system is
quasi-terminating.

Most of the notions of rewriting can be extended to bi-rewriting and the
development of the subject follows the same pattern as rewriting: from Church-
Rosser property to critical pairs lemma and then the completion process. How-
ever there are also some differences. Equational rewriting is in essence a theory of
normal forms, while bi-rewriting disregards this notion since is based on quasi-
termination and Church-Rosser properties. Bi-rewriting can also be seen as a
generalization of equational rewriting: equations can be translated to pairs of
inclusions and then we can reproduce the equational case. The price of this gen-
eralization is that bi-rewriting is based on a search procedure —which is avoided
in canonical rewriting systems— and as we will see in section 2, the set of critical
pairs of a non-left-linear bi-rewriting system may be infinite and then the study
of confluence is case dependent.2

This paper proceeds as follows. In section 2 we present a version of the critical
pairs theorem [10, 16, 17] for bi-rewriting systems using an extended definition
of critical pairs. We also give a counter-example that invalidates this theorem
stated in terms of standard critical pairs and a counter-example for the Toyama
theorem [27].

In section 3 we generalize the results of section 2 to bi-rewriting systems
modulo a set of (non-orientable) inclusions. We will see that the characterization
of Huet for left-linear rules (in terms of α and γ properties [10, lemma 2.8]), the
generalization of Peterson and Stickel [25] for non-left-linear rules (in terms of
E-compatibility), and the result of Jouannaud & Kirchner [13, 14, 15] (in terms
of E-coherence or confluence of cliffs), all of them are not valid for inclusions. We
present a new characterization of bi-rewriting modulo a set of inclusions where
stronger properties are required. We have divided section 3 in two subsections,
the first devoted to abstract bi-rewriting properties and the second to term
dependent properties.

In section 4 we present two examples of canonical bi-rewriting systems. We

2 The possibility of a infinite set of critical pairs does not apply to the translation of a
set of equations into a bi-rewriting system. In fact, the set of critical pairs obtained
in the translation is a subset of those obtained in the equational case, and the only
disadvantage is the loss of efficiency due to the use of a search algorithm.



sketch a method able to handle schemes of critical pairs, which are needed in
non-left-linear bi-rewriting systems. We also show some of the disadvantages of
modeling inclusions with equations containing unions or intersections.

2 Inclusions and Bi-rewriting Systems

If nothing is said, we follow the notation used in [6, 10, 16]. We shall be concerned
with first-order terms over a nonempty signature. We will denote the p occurrence
or position in t by t|p, and the substitution of the occurrence p by s in t by
t[s]p. We use the relational logic notation to present the abstract bi-rewriting
properties. The inverse of the relation −→R will be denoted by ←−R , its reflexive-
transitive closure by −→∗

R , the transitive composition by −→R1
◦−→R2

, and the
union by −→R1

∪ −→R2
.

An inclusion is an ordered pair of terms 〈s, t〉 written s ⊆ t. Given a finite set
of inclusions I, ⊆I will denote the monotonic (stable and compatible) closure of
I. That is, u ⊆I v iff u is w[σ(s)]p and v is w[σ(t)]p for some term w, occurrence
p of w, substitution σ and inclusion s ⊆ t in I. The reflexive-transitive closure
⊆∗

I defines the inclusion theory presented by I.

The orientation of a finite set of inclusions I, for rewriting purposes, may

result in two sets of rewriting rules, R1 with rules like s
⊆
−→t and R2 with rules like

s
⊇
−→t. The pair 〈R1, R2〉 is called a bi-rewriting system. For example, inclusions

defining the union may be oriented as it is shown in figure 1.

I =

{

X ∪X ⊆ X

X ⊆ X ∪ Y

Y ⊆ X ∪ Y

R1 =
{

r1 : X ∪X
⊆
−→X

R2 =

{

r2 : X ∪ Y
⊇
−→X

r3 : X ∪ Y
⊇
−→Y

Fig. 1. Orientation of the inclusion theory of the union.

In this section we suppose that each inclusion may be oriented putting it in
R1 or in R2, or may be in both sets. In the next section we will consider the case
of inclusions which can not be oriented.

Given a bi-rewriting system 〈R1, R2〉 its monotonic closure results in a pair of
rewriting relations 〈−→R1

, −→R2
〉. Then the relation (−→R1

∪ ←−R2
)∗ is equal

to ⊆∗

I .

Based on the pair of rewriting relations 〈−→R1
, −→R2

〉 a sound breadth-
first search proof procedure for the inclusion theory ⊆∗

I can be easily defined
(see figure 2). The procedure is complete and semi-decidable iff the bi-rewriting
system is Church-Rosser –the branches being enumerable– and it is decidable iff
the bi-rewriting system is also quasi-terminating. These two notions are studied
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Fig. 2. An image of the bi-rewriting algorithm

in the following paragraph, and defined as extensions of the standard definitions
for term rewriting systems.

A bi-rewriting system 〈R1, R2〉 is said to terminate iff −→∗
R1

and −→∗
R2

are
well founded orderings. It is said to quasi-terminate (globally finite) iff the sets
{x | a−→∗

R1
x} and {x | a−→∗

R2
x} are finite for any term a. It is Church-Rosser

iff (−→R1
∪ ←−R2

)∗ ⊆ −→∗
R1

◦←−∗
R2

.

In order to test automatically the Church-Rosser property we extend the
standard procedure of rewriting to bi-rewriting. So we reduce the Church-Rosser
property to three simpler properties, namely bi-confluence (or commutativity),
local bi-confluence and critical pairs bi-confluence.

A bi-rewriting system 〈R1, R2〉 is bi-confluent or commutative iff
←−∗

R2
◦−→∗

R1
⊆ −→∗

R1
◦←−∗

R2
. It is locally bi-confluent iff ←−R2

◦−→R1
⊆

−→∗
R1

◦←−∗
R2

. A pair of terms s, t is bi-confluent s ↓ t iff there exists u such
that s−→∗

R1
u and t−→∗

R2
u. The Newman’s lemma is also true in bi-rewriting

systems: a terminating bi-rewriting system is Church-Rosser iff it is locally bi-
confluent.

A simple extension of the standard critical pairs definition can be given for
bi-rewriting systems. However, as we will see, it is not sufficient to prove the
critical pairs lemma [17]. The simple definition of critical pair arises from the
most general non-variable overlap between the left hand side of a rule in R1 and
the left hand side of a rule in R2. Given l−→R1

r and s−→R2
t, a position p of a

non-variable subterm of s, and the most general unifier σ of l and s|p, the pair
σ(t) ⊆ σ(s[r]p) is a critical pair; and the same for critical pairs between R2 and
R1.

Unfortunately, in the presence of non-left-linear rules, the critical pair lemma
can not be proved because the confluence of variable overlaps is no longer
possible. Here is a simple counter-example to the validity of this lemma.

The bi-rewriting system 〈{f(X,X)
⊆
−→X}, {a

⊇
−→b}〉 has no critical pairs, and

f(a, b)
⊆
←−f(a, a)

⊆
−→a does not satisfy the Church-Rosser property. This prob-

lem would be avoided if 〈a
⊆
−→b〉 ∈ R1.

Non-left-linear rules also unvalidate the Toyama theorem [27] for bi-rewriting
systems as the following counter-example shows. The following two bi-rewriting



systems

R1 =











X ∪X
⊆
−→X

X ∪ Y
⊆
−→Y ∪X

X ∪ (Y ∪ Z)
⊆
−→(X ∪ Y ) ∪ Z

R2 =

{

X ∪ Y
⊇
−→X

X ∪ Y
⊇
−→Y

and

R′

1 =

{

X ∩ Y
⊆
−→X

X ∩ Y
⊆
−→Y

R′

2 =











X ∩X
⊇
−→X

X ∩ Y
⊇
−→Y ∩X

X ∩ (Y ∩ Z)
⊇
−→(X ∩ Y ) ∩ Z

are both Church-Rosser and have disjoint alphabets, but their union 〈R1 ∪
R′

1, R2 ∪R′

2〉 is not Church-Rosser as the following rewriting sequence shows.3

(A∩B)∪(A∩C)←−−⊆
R2

(

A∩(B∪C)
)

∪(A∩C)←−−⊆
R2

(

A∩(B∪C)
)

∪
(

A∩(B∪C)
)

−−→⊆
R1

A∩(B∪C)

Using the previous definition of critical pairs, the critical pairs lemma is only
true for left-linear systems: a terminating and left-linear bi-rewriting system is
Church-Rosser iff all critical pairs are bi-confluent. In order to keep this lemma
for non-left-linear bi-rewriting systems, we have to enlarge the set of critical
pairs as follows.

Definition 1. If 〈α1
⊆
−→β1〉 ∈ R1 and 〈α2

⊇
−→β2〉 ∈ R2 are two rewriting rules

(with variables distinct) and p a position in α1, then

1. if α1|p is non-variable subterm and σ is the most general unifier of α1|p and
α2 then 〈σ(α1[β2]p), σ(β1)〉 is a (standard) critical pair,

2. if α1|p = x is a repeated variable in α1, F a term x 6∈ V(F ), q an occurrence
in F , and α2−→∗

R1
β2 is not satisfied,4 then 〈σ(α1[F [β2]q]p), σ(β1)〉 is an

(extended) critical pair where σ only substitutes x by F [α2]q.

The same for critical pairs between R2 and R1.

The set of (extended) critical pairs of the previous definition is in general
infinite —〈σ(α1[F [β2]q]p), σ(β1)〉 is a critical pair scheme— (in section 4 we will
see two examples using these schemes). So the critical pairs lemma even if true
with this definition of critical pairs, will be of little practical help to test bi-
confluence. Then the conditions of confluence have to be studied in each case
taking into account the particular shape of the non-left-linear rules.

Nevertheless, if all rules come from the translation of an equational theory

then we can always have 〈α
⊆
−→β〉 ∈ R1 iff 〈α

⊇
−→β〉 ∈ R2 and the extended

critical pairs schemes will not appear.5 Notice also that an inclusion a ⊆ b could

be used by both R1 and R2 systems —as rules a
⊆
−→b and b

⊇
−→a— without losing

necessarily the termination property of the bi-rewriting system 〈R1, R2〉.
6

3 The non-confluence of this inclusion sequence is due to the addition of new symbols
in the signature, not to the addition of new rules.

4 If this condition is satisfied then we can make the pair confluent like in the equational
case.

5 Any equation a = b is translated into a ⊆ b and b ⊆ a and these are oriented as

a
⊆
−→b and a

⊇
−→b, in the case we have the same orientation ordering for R1 and R2.

6 Both rewriting systems can have different orientation orderings.



3 Bi-rewriting Modulo a Set of Inclusions

Like in equational rewriting, in bi-rewriting it is not always possible to orient
all inclusions of a theory presentation in two terminating rewrite relations, as
shown in the previous section. Frequently enough, we must handle three rewrite
relations, the terminating relations −→R1

and −→R2
resulting from the inclu-

sions oriented to the right and to the left respectively, and the non-terminating
relation −→ I resulting from the non-oriented inclusions. We name these three
relations a 〈R1, R2〉 bi-rewriting system modulo I.7 Figure 3 shows an example
of them.

3.1 From Church-Rosser to Local Confluence

The simplest way to have a complete and decidable proof procedure for 〈R1, R2〉
modulo I is reducing it to the bi-rewriting system 〈R1 ∪ I,R2 ∪ I〉 and, like in
the previous section, to require of it the following properties

−−→
R1

∪ −−→
I

and −−→
R2

∪←−−
I

are quasi-terminating, and (1)

(−−→
R1

∪ −−→
I
∪←−−

R2

)∗ ⊆ (−−→
R1

∪ −−→
I

)∗◦(←−−
R2

∪ −−→
I

)∗ (2)

However, the quasi-termination of −→R1
∪ −→ I and −→R2

∪ ←− I is not
enough to reduce the property (2) —called 〈R1, R2〉 weak Church-Rosser mod-
ulo I— to the corresponding local bi-confluence (4). To do this we would need
the (strong) termination of −→R1

∪ −→ I and of −→R2
∪ ←− I , which are not

true. The solution to this problem comes from requiring the following property
stronger than (1)

−−→∗
I

◦−−→
R1

and ←−−∗
I

◦−−→
R2

are terminating, and −−→
I

is quasi-terminating (3)

Notice that from the fact (−→ I ∪ −→R)∗ = (−→∗
I ◦−→R)∗◦−→∗

I one can see
that (3) implies (1). Using the stronger termination property (3), the weak
Church-Rosser property (2) can be reduced to the following local confluence
property:

←−−
R2

◦−−→
∗

I
◦−−→

R1

⊆ (−−→
∗

I
◦−−→

R1

)∗◦−−→
∗

I
◦(←−−

R2

◦−−→
∗

I
)∗ (4)

The equivalence of (2) and (4) can be proved using noetherian induction on
−→∗

I ◦−→R1
and ←−∗

I ◦−→R2
. In fact, to prove this equivalence, it is not nec-

essary for −→ I to be quasi-terminating. If −→ I is symmetric the above ter-
mination property (3) becomes similar to the termination property required in
rewriting modulo a set of equations [3]. That is, I symmetric means we can de-
fine equivalence classes ([s]

I
−→R [t]

I
iff s−→∗

I ◦−→R◦−→∗
I t) and, the termination

of −→∗
I ◦−→R1

and ←−∗
I ◦−→R2

is equivalent to the existence of two well founded
I-compatible order relations ≻1 and ≻2 satisfying −→R1

⊆≻1 and −→R2
⊆≻2;

7 Although we use the word “modulo”, it does not mean that −→∗
I is a congruence,

be aware it is a non-symmetric relation (monotonic pre-order).



and the quasi-termination of −→ I is equivalent to the finiteness of the equiva-
lence classes.

However, we know by analogy with rewriting modulo a set of equations, that
the proof procedure based on these properties is not a practical one. Like in the
equational case, rewriting by −→∗

I ◦−→R is inefficient, if decidable at all. There-
fore we will approximate it by a weaker, but more practical notion of bi-rewriting
named 〈I\R1, I

−1\R2〉 by similarity to the corresponding equational definitions.
As we will see later, this new rewriting relation will have to satisfy what is called
a 〈I\R1, I

−1\R2〉 strong Church-Rosser modulo I property, defined as follows:

(−−−−−−→
I\R1

∪ −−→
I
∪←−−−−−−

I−1\R2

)∗ ⊆ −−−−−−→
∗

I\R1

◦−−→
∗

I
◦←−−−−−−

∗

I−1\R2

(5)

This property plus the quasi-termination of I\R1 and I−1\R2 and the decid-
ability of the I-unification are sufficient to have a more efficient complete and
decidable proof procedure. The solution we will propose comes mainly from the
two solutions known for the equational case [13, 25]. In the following we consider
how they can be adapted to bi-rewriting.

Huet [10] and Jouannaud & Kirchner [14, 13] have proved that given a set
of rules R and equations E such that ←−−→∗

E ◦−→R is terminating, R is strong
Church-Rosser modulo E iff all peaks and cliffs are confluent: ←−R◦−→R ⊆
−→∗

R◦←−−→∗
E ◦←−∗

R and ←−−→E ◦−→R ⊆ −→
∗
R◦←−−→∗

E ◦←−∗
R . Notice these are sufficient

and, what is also important, necessary conditions. Besides, the finiteness of the
E-equivalence classes is not required. These confluence properties, stated by
Huet, are too strong and can not be reduced to the confluence of critical pairs
unless the rules are left-linear. To overcome this limitation of non-left-linear
systems Jouannaud & Kirchner [3, 6, 13] propose a new rewriting relation E\R
satisfying −→R ⊆ −→E\R ⊆ ←−−→

∗
E ◦−→R . This relation is proved to be strong

Church-Rosser modulo E iff all critical peaks ←−R◦−→E\R and critical cliffs
←−−→E ◦−→R are confluent. Then this confluence can be reduced to critical pairs
confluence and to extended rules. We are interested in extending the same kind
of result to bi-rewriting systems because on it are based the proof and completion
procedures.

Then the direct translation of the previous result to the bi-rewriting
case may be stated as follows. 〈R1, R2〉 is strong Church-Rosser modulo I iff
←−R2

◦−→R1
⊆ −→∗

R1
◦−→∗

I ◦←−
∗
R2

and −→ I ◦−→R1
⊆ −→∗

R1
◦−→∗

I ◦←−
∗
R2

and
←−R2

◦−→ I ⊆ −→
∗
R1

◦−→∗
I ◦←−

∗
R2

where −→∗
I ◦−→R1

and ←−∗
I ◦−→R2

are ter-
minating. Unfortunately this result is not true unless −→R1

and −→R2
have

the same set of normal forms, which is semantically meaningless. Here is a

counter-example of its validity. Let I = {a
⊆
←→b, c

⊆
←→d}, R1 = {b

⊆
−→c} and

R2 = {c
⊇
−→b}, then −→∗

I ◦−→R1
and ←−∗

I ◦−→R2
are terminating and all peaks

and cliffs are confluent, nevertheless a−→ I b−→R1
c−→ I d is not confluent.8

Another way of having the strong Church-Rosser property is by means
of the stronger requirement on R rewriting modulo E given by Peterson &

8 Note that if we translate the counter-example to the classical case defining −→R

def
=

−→R1
∪ −→R2

, then R becomes non-terminating, and the hypothesis of the Jouan-

naud theorem is not satisfied.



Stickel in [25]. They define a rewriting relation between E-equivalence classes
which can be modeled by (←−−→∗

E ◦−→R)∗◦←−−→∗
E . They also formulate what they

call an E-completeness property, equivalent to what we have called weak
Church-Rosser property. They were the first to propose the mentioned rela-
tion E\R. When this relation is E-compatible, that is, when ←−−→∗

E ◦ −→R ⊆
−→E\R◦←−−→∗

E ◦(←−R◦←−−→∗
E )∗, then the corresponding weak and strong Church-

Rosser properties both become equivalent to the peaks confluence property
←−E\R◦−→E\R ⊆ −→

∗
E\R◦←−−→∗

E ◦←−∗
E\R . The E-compatibility is not a neces-

sary condition although it is a sufficient one. To adapt this same result to the
bi-rewriting case we will need a requirement even stronger than E-compatibility,
as shown below.

Given a 〈R1, R2〉 bi-rewriting system modulo I, the problem is to find which
requirements two new relations I\R1 and I−1\R2 have to satisfy in order to
prove (5), the 〈I\R1, I

−1\R2〉 strong Church-Rosser modulo I property. Since
I\R1 and I−1\R2 are required to satisfy at least −→R1

⊆ −→ I\R1
⊆ −→∗

I ◦−→R1

and −→R2
⊆ −→

I−1\R2

⊆ ←−∗
I ◦−→R2

, the termination of −→∗
I ◦−→R1

and

←−∗
I ◦−→R2

ensures the termination of −→∗
I ◦−→ I\R1

and ←−∗
I ◦−→ I−1\R2

. From

a computational point of view, this relations are to be based on the suppression
of those applications of −→ I in −→∗

I ◦−→R not conducting to a new way of apply-
ing −→R later. That is, with the new relations, all this unnecessary I-rewritings
before R-rewritings could be suppressed or moved to the final I-unification. This
requirement is captured by the following local commutativity property of I and
I\R1, and of I−1 and I−1\R2:

−−→
I

◦−−−−−−→
I\R1

⊆ −−−−−−→∗

I\R1

◦−−→∗
I

←−−
I

◦−−−−−−→
I−1\R2

⊆ −−−−−−→∗

I−1\R2

◦←−−∗
I

(6)

These requirements are stronger than the E-compatibility in [25] and the
confluence of cliffs in [13]. Furthermore, if −→∗

I ◦−→R1
and ←−∗

I ◦−→R2
are termi-

nating then −→∗
I ◦−→ I\R1

and ←−∗
I ◦−→ I−1\R2

are also terminating and the local

commutativities are equivalent to the global commutativities: −→∗
I ◦−→

∗
I\R1

⊆
−→∗

I\R1
◦−→∗

I and ←−∗
I ◦−→

∗

I−1\R2

⊆ −→∗

I−1\R2

◦←−∗
I . These global commutativ-

ity properties lead to the equivalence of the 〈I\R1, I
−1\R2〉 weak Church-Rosser

and the 〈I\R1, I
−1\R2〉 strong Church-Rosser modulo I properties. On the other

hand, using the previously proved equivalence between weak Church-Rosser (2)
and local bi-confluence (4) modulo I, the 〈I\R1, I

−1\R2〉 weak Church-Rosser
property becomes equivalent to the following local bi-confluence property:

←−−−−−−
I−1\R2

◦−−→
∗

I
◦−−−−−−→

I\R1

⊆ (−−→
∗

I
◦−−−−−−→

I\R1

)∗◦−−→
∗

I
◦(←−−−−−−

I−1\R2

◦−−→
∗

I
)∗

And again, the commutativity properties and the inclusions −→R1
⊆ −→ I\R1

and −→R2
⊆ −→

I−1\R2

allows us to reduce this condition to the following one

←−−
R2

◦−−→∗
I

◦−−→
R1

⊆ −−−−−−→∗

I\R1

◦−−→∗
I

◦←−−−−−−∗

I−1\R2

(7)

and from this to whatever of the following ones



←−−−−−−
I−1\R2

◦−−→
R1

⊆ −−−−−−→
∗

I\R1

◦−−→
∗

I
◦←−−−−−−

∗

I−1\R2

or←−−
R2

◦−−−−−−→
I\R1

⊆ −−−−−−→
∗

I\R1

◦−−→
∗

I
◦←−−−−−−

∗

I−1\R2

This results can be summarized in the following lemma:

Lemma2. If −−→
∗

I
◦−−→

R1

and ←−−
∗

I
◦−−→

R2

are terminating, and

−−→
R1

⊆ −−−−−−→
I\R1

⊆ −−→∗
I

◦−−→
R1

−−→
R2

⊆ −−−−−−→
I−1\R2

⊆ ←−−∗
I

◦−−→
R2

−−→
I

◦−−−−−−→
I\R1

⊆ −−−−−−→∗

I\R1

◦−−→∗
I

←−−−−−−
I−1\R2

◦−−→
I
⊆ −−→∗

I
◦←−−−−−−∗

I−1\R2

←−−
R2

◦−−→∗
I

◦−−→
R1

⊆ −−−−−−→∗

I\R1

◦−−→∗
I

◦←−−−−−−∗

I−1\R2

then 〈I\R1, I
−1\R2〉 is strongly Church-Rosser modulo I.

This lemma reproduces adapted to bi-rewriting the results of Huet, Peterson,
Stickel, Jouannaud and Kirchner but is based on stronger properties.

A generalization of lemma 2 was given in [18], and we summarize it bellow.
The set I of non-oriented inclusions of a theory presentation is divided into two
subsets I1 and I2 (I = I1∪I2). From them two non-terminating rewrite relations
−→ I1

and −→ I2
can be defined such that (−→R1

∪ −→ I1
∪ ←− I2

∪ ←−R2
)∗

corresponds to the inclusion theory. These four relations constitute a 〈R1, R2〉
bi-rewriting system modulo 〈I1, I2〉. We say that such a system is strong Church-
Rosser iff

(−−→
R1

∪ −−→
I1
∪←−−

I2
∪←−−

R2

)∗ ⊆ −−→∗
R1

◦−−→∗
I1

◦←−−∗
I2

◦←−−∗
R2

Then the generalization of lemma 2 can be stated as follows:

Lemma3. If −−→
∗

I1
◦−−→

R1

and −−→
∗

I2
◦−−→

R2

are terminating, and

−−→
I1

◦−−→
I1\R1

⊆ −−−−−−→
∗

I1\R1

◦−−→
∗

I1

←−−−−−−
I2\R2

◦←− I2
⊆ ←−−

∗

I2
◦←−−−−−−

∗

I2\R2

←−−
∗

I2
◦−−→

∗

I1
⊆ −−−−−−→

∗

I1\R1

◦−−→
∗

I1
◦←−−

∗

I2
◦←−−−−−−

∗

I2\R2

←−−−−−−
I2\R2

◦−−→
∗

I1
⊆ −−−−−−→

∗

I1\R1

◦−−→
∗

I1
◦←−−

∗

I2
◦←−−−−−−

∗

I2\R2

←−−−−−−
I2\R2

◦−−→
R1

⊆ −−−−−−→
∗

I1\R1

◦−−→
∗

I1
◦←−−

∗

I2
◦←−−−−−−

∗

I2\R2

←−−
∗

I2
◦−−−−−−→

I1\R1

⊆ −−−−−−→
∗

I1\R1

◦−−→
∗

I1
◦←−−

∗

I2
◦←−−−−−−

∗

I2\R2

←−−
R2

◦−−−−−−→
I1\R1

⊆ −−−−−−→∗

I1\R1

◦−−→∗
I1

◦←−−∗
I2

◦←−−−−−−∗

I2\R2

then 〈R1, R2〉 is (strongly) Church-Rosser modulo 〈I1, I2〉.

The generalization comes from the fact that now the commutativity property
is only required between I1\R1 and I1 and between I2\R2 and I2, and is not
needed between I1\R1 and I2 or I2\R2 and I1.

Till now, we have studied Church-Rosser, termination, confluence and local
confluence properties in the framework of relational algebra [4]. All proofs can be
done without references to the structure of terms. In the following subsection we
will consider the term structure in order to reduce the local confluence properties
to the confluence of (extended) critical pairs.



3.2 From Local Confluence to (Extended) Critical Pairs

We begin defining the rewrite relations I\R1 and I−1\R2 that were only ax-
iomatically characterized by the commutativity and local confluence properties
in the previous subsection.

Definition 4. We say that s rewrites to t modulo I at [p, σ, α−→ β], written
s−→ I\Rt, iff there exists a rule 〈α−→ β〉 ∈ R, an occurrence p in s, and a sub-
stitution σ such that s|p−→∗

I σ(α) and t = s[σ(β)]p.

With this definition I\R verifies −→R ⊆ −→ I\R ⊆ −→
∗
I ◦−→R (although in

general −→∗
I ◦−→R 6⊆ −→ I\R). The relations −→ I\R1

and −→
I−1\R2

are defined

in this way.

We are using the notions of E-matching and E-unification from [25] but
adapted to bi-rewriting. Given two terms s and t, we say that s I-matches t

iff there exists a substitution σ such that s−→∗
I σ(t), and we say that s I-unify

with t iff there exists a substitution σ such that σ(s)−→∗
I σ(t). Notice that, since

−→ I is not necessarily symmetric s I-unify t is equivalent to t I−1-unify s, but
not to t I-unify s. We will suppose in the following that I-unification and I and
I−1-matching are decidable.

As in the equational case (to prove confluence of cliffs or E-compatibility),
we will prove the commutativity properties by means of the extensionally closed
property defined as follows.

Definition 5. Given a set of rules R and inclusions I, R is said to be right
(left) I-extensionally closed iff whenever 〈α1 ⊆ β1〉 ∈ I, 〈α2−→ β2〉 ∈ R, β1|p
(α1|p) and α2 I-unify (I−1-unify) with minimum unifier σ and β1|p (α1|p) is not
a variable, then σ(α1)−→ I\Rσ(β1[β2]p) (then σ(β1)−→ I−1\R

σ(α1[β2]p)).

Since −→ I is non-symmetric, we have had to distinguish between right and left
extensionally closed in the previous definition. We will suppose in the following
that R1 is right I-extensionally closed, and that R2 is right I−1-extensionally
closed, or what is the same left I-extensionally closed.

Let’s study now the conditions for the satisfiability of lemma 2. This condi-
tions will be the premises of theorem 7. The rest of the section is an sketch of
the proof of this theorem.

We start with the commutativity properties (6). Both properties may be
generalized to −→ I ◦−→ I\R ⊆ −→

∗
I\R◦−→∗

I where I and I\R stands for I and

I\R1 in one case, and for I−1 and I−1\R2 in the other. Suppose a−→ I b at
[p1, σ1, α1−→ I β1] and b−→ I\Rc at [p2, σ2, α2−→Rβ2], where pi are positions, σi

are substitutions, α1−→ I β1 is an inclusion and α2−→Rβ2 is a rule. We have to
consider the following three cases in its commutativity.

case p1|p2 It can be easily proved that a−→ I\Rd−→ I c where d = a[σ2(β2)]p2
=

b[σ1(α1)]p1
[σ2(β2)]p2

= c[σ1(α1)]p1
.



case p1 ≺ p2 Let v satisfy p2 = p1 · v. We have β1|v I-unify α2. If β1|v is
not a variable, we are in the conditions of definition 5, and if R is right
I-extensionally closed, then a−→ I\Rc at [p1, σ, α2−→Rβ2] for some σ.
Otherwise, there exist two occurrences v1 and v2 satisfying p1 · v1 · v2 = p2

and β1|v1
= x, x being a variable. If all inclusions in I are left linear (and

non-erasing) then x occurs once in α1. Let v′

1 be this occurrence. It can be
proved that a−→ I\Rd at [p′2, σ2, α2−→Rβ2] and d−→ I c at [p1, σ

′

1, α1−→ I β1]
where p′2 = p1 · v

′

1 · v2, σ′

1(y) = σ1(y) for y 6= x and σ′

1(x) = σ1(x)[σ2(β2)]v2

and d = c[σ′

1(α1)]p1
= a[σ2(β2)]p′

2
.

case p1 � p2 Let v be the occurrence such that p2 ·v = p1. We have a|p2
−→ I b|p2

at [v, σ1, α1−→ I β1] and therefore a−→ I\Rc at [p2, σ2, α2−→Rβ2].

It must be noticed that like in [25], and differently from [13], the inclusions in
I are required to be right-linear in order to prove commutativity of −→ I and
−→ I\R1

, and left-linear in order to prove commutativity of ←− I and −→
I−1\R2

;

so, all inclusions in I have to be linear. If all inclusions are left- or right-linear,
but they are not all linear, then we can oversee this problem using lemma 3 by
putting right-linear inclusions in I1 and left-linear inclusions in I2.

Let’s study now the condition (7) for the confluence of peaks. Suppose
we have a←−R2

b−→∗
I c−→R1

d where reduction c−→R1
d takes place at p1 and

b−→R2
a at p2. Three cases must be considered:

case p1|p2 We
can reduce the problem to the confluence of a←−R2

b−→ I\R1
d′ where re-

ductions also take place at [p1, σ1, α1−→R1
β1] and [p2, σ2, α2−→R2

β2], and
as in the commutativity case, both reductions can be permuted.

case p1 ≺ p2 The middle I rules commute with R2 in (7) and the problem is
reduced to the confluence of a′←−

I−1\R2

c−→R1
d. This case is equal to the

next one if we exchange the indexes 1 by 2 and and we reverse the order of
the relations in both sides of the inclusion.

case p1 � p2 We commute I with R1 in (7) and we test the confluence of
←−R2

◦−→ I\R1
. The previous case, as well as this one are generalized by

the confluence of a←−R2
b−→ I\R1

c where reductions take place at p1 and p2

respectively, and p1 � p2. It corresponds to the equational case in the study
of the confluence of ←−R◦−→E\R where we can always suppose that the
E\R reduction takes place below the R reduction. As we have seen in the
previous section, if there is a variable overlap, and the rule used in b−→R2

a is
left-linear or α1−→∗

R2
β1 is satisfied, the pair is always confluent. Otherwise

we have to include this kind of overlap in the critical pairs definition given
below.

Definition 6. If 〈α1
⊆
−→β1〉 ∈ R1 and 〈α2

⊇
−→β2〉 ∈ R2 are two rewriting rules

normalized apart, and p is a position in α1, then

1. if α2|p is not a variable and σ is a minimum I-unifier of α2|p and α1, then
〈σ(β2), σ(α2[β1]p)〉 is a (standard) critical pair,



2. if α2|p = x is a repeated variable in α2, F is a term x 6∈ V(F ), q a posi-
tion in F , and α1−→∗

R2
β1 is not satisfied, then 〈σ(β2), σ(α2[F [β1]q]p)〉 is an

(extended) critical pair where the domain of σ is {x} and σ(x) = F [α1]q.

ECP (I\R1, R2) denotes this set of standard and extended critical pairs. The set
ECP (R1, I

−1\R2) can be defined similarly.

Again we have had to introduce critical pair schemes which may generate
infinite critical pairs. Using this extended definition of critical pairs we can prove
the following theorem which characterizes the strong Church-Rosser property of
a 〈R1, R2〉 bi-rewriting system modulo I.

Theorem 7. Given two sets of rules R1 and R2 and a set of inclusions I, if
I∗R1 and I−1∗

R2 are terminating, R1 is right I-extensionally closed, R2 left
I-extensionally closed, all inclusions in I are linear, and all standard and ex-
tended critical pairs ECP (I\R1, R2) and ECP (R1, I

−1\R2) are confluent, then
〈I\R1, I

−1\R2〉 is (strongly) Church-Rosser modulo I.

4 Two Examples: Towards a Completion Procedure

As we said in the previous sections, bi-rewriting compared with equational
rewriting, faces the extra difficulty of a possible infinite set of critical pairs.
Non-left-linear rules may generate what we called critical pair schemes (see defi-
nitions 1 and 6). The process of completion with these schemes is an open prob-
lem. In this section instead of giving the completion procedure we sketch out
the possibilities of completion of two examples of bi-rewriting by means of rule
schemes.

4.1 Inclusion Theory of the Union Operator

Figure 1 shows the first bi-rewriting system that we want to complete corre-
sponding to the union operator. Its termination can be proved using the inter-
pretation |X ∪ Y | = |X| + |Y |. Although the standard critical pairs (scp) of

this system are confluent, the presence of the non-left-linear rule X ∪ X
⊆
−→X

also makes necessary the consideration of the extended critical pairs (ecp). We
will do this in two steps dividing the set of ecp in two subsets. First, we con-
sider scp and the finite subset of ecp of the particular form 〈σ(α1[β2]p), σ(β1)〉

where α1|p = x is a repeated variable in the non-left-linear rule 〈α1
⊆
−→β1〉 ∈ R1,

〈α2
⊇
−→β2〉 ∈ R2 being the other rule, and σ substitutes x by α2. Between all

these critical pairs we may focus into the following two sequences of oriented
rules and non-oriented inclusions:



r4 Y ∪ (X ∪ Y )
⊆
−→X ∪ Y ecp from r1 and r3

r5 Y ∪X
⊆
←→X ∪ Y scp from r2 and r4

r6 (X ∪ Y ) ∪ Y
⊆
−→X ∪ Y ecp from r1 and r3

r7 (X ∪ Y ) ∪ (Y ∪ Z)
⊆
−→X ∪ (Y ∪ Z) ecp from r2 and r6

r8 (X ∪ Y ) ∪ Z
⊆
←→X ∪ (Y ∪ Z) scp from r3 and r7

Using the commutativity r5 and the associativity r8 all the other rules generated
by the subset of ecp become redundant. The fact that these inclusions can not be
oriented makes necessary the use of 〈{r1}, {r3}〉 bi-rewriting modulo I = {r5, r8}.
Notice that in this case −→∗

I = ←−∗
I , and so we can use the standard equational

I-matching and I-unification, and also the flattered notation for ∪.
Let’s consider now the scp and the rest of ecp 〈σ(α1[F [β2]q]p), σ(β1)〉 where

F is an expression, q is an occurrence in F , and σ substitutes α1|p = x by F [β2]q.
Using them we can obtain the sequence:

r9 F [X] ∪ F [X ∪ Y ]
⊆
−→F [X ∪ Y ] ecp from r1 and r2

r10 F [X ∪ Y ]
⊇
−→F [X] ∪ F [Y ] scp from r2 and r9

r11 F [X ∪ Y ∪ Z]
⊇
−→F [X ∪ Y ] ∪ F [Y ∪ Z] ecp from r2 and r9

Where the orientation in the last two rules depends on the orientation ordering
used for the other symbols in the signature. Another possible orientation of r10

could be:

r′10 F [X] ∪ F [Y ]
⊆
−→F [X ∪ Y ] from r2 and r9

and, then r9 would be subsumed by r1 and r′10, and r11 would become confluent.
Notice that we are dealing with rule schemes instead of ordinary rules, and

that the use of rule schemes in completion is an open problem. However, in this
case, the rule scheme r′10 may be subsumed by the following (finite) set of rules:

For any f ∈ Sign

r
(f)
12 f(X1, . . . ,Xn) ∪ f(X ′

1, . . . ,X
′

n)
⊆
−→f(X1 ∪X ′

1, . . . ,Xn ∪X ′

n)

where f is any n-ary symbol in the signature with n > 0. This results from the
following compositional property:

F [G[X]] ∪ F [G[Y ]]−−→
⊆

r′
10

F [G[X] ∪G[Y ]]−−→
⊆

r′
10

F [G[X ∪ Y ]]

Similarly, rules r10 and r11 are subsumed by

For any f ∈ Sign

r
(f)
13 f(. . . Xi ∪X ′

i . . .)
⊇
−→f(. . . Xi . . .) ∪ f(. . . X ′

i . . .)

r
(f)
14 f(. . . Xi ∪X ′

i ∪X ′′

i . . .)
⊇
−→f(. . . Xi ∪X ′

i . . .) ∪ f(. . . X ′

i ∪X ′′

i . . .)

but the same does not apply to r9. Because of this we choose r′10 instead of r10.
Finally, using this transformation we obtain the confluent 〈R1, R2〉 bi-rewriting
modulo I system shown in figure 3 where rext

1 and rext
12 are the I-extensions of r1

and r12, and r
(∪)
12 is not necessary because is subsumed by rext

1 .



R1 =



















r1 X ∪X
⊆
−→X

rext
1 X ∪X ∪ Y

⊆
−→X ∪ Y

r
(f)
12 f(. . . X . . .) ∪ f(. . . Y . . .)

⊆
−→f(. . . X ∪ Y . . .)

r
(f)ext

12 f(. . . X . . .) ∪ f(. . . Y . . .) ∪ Z
⊆
−→f(. . . X ∪ Y . . .) ∪ Z

R2 =
{

r2 X ∪ Y
⊇
−→X

I =

{

r5 Y ∪X
⊆
←→X ∪ Y

r8 (X ∪ Y ) ∪ Z
⊆
←→X ∪ (Y ∪ Z)

Fig. 3. A canonical bi-rewriting system for the inclusion theory of the union.

4.2 The Inclusion Theory of Non-Distributive Lattices

The presentation of non-distributive lattices may be given by the following set
of inclusions:

X ∪X ⊆ X X ⊆ X ∩X

X ⊆ X ∪ Y X ∩ Y ⊆ X

Y ⊆ X ∪ Y X ∩ Y ⊆ Y

Applying to them the completion process of the previous subsection we get
the confluent 〈R1, R2〉 bi-rewriting modulo I system of figure 4. Notice that

rule r
(∩)
4 is subsumed by r7 , and r

(∪)
8 is subsumed by r3.

R1 =















































r1 X ∪X
⊆
−→X

rext
1 X ∪X ∪ Y

⊆
−→X ∪ Y

r2 X ∩ Y
⊆
−→X

r3 X ∪ (Y ∩ Z)
⊆
−→(X ∪ Y ) ∩ (X ∪ Z)

rext
3 X ∪ (Y ∩ Z) ∪ T

⊆
−→

(

(X ∪ Y ) ∩ (X ∪ Z)
)

∪ T

r
(f)
4 f(. . . X . . .) ∪ f(. . . Y . . .)

⊆
−→f(. . . X ∪ Y . . .)

r
(f)ext

4 f(. . . X . . .) ∪ f(. . . Y . . .) ∪ Z
⊆
−→f(. . . X ∪ Y . . .) ∪ Z

R2 = r5, r
ext
5 , r6, r7, r

ext
7 , r

(f)
8 , r

(f)ext

8 (Dual of R1)

I =

{

r9 Y ∪X
⊆
←→X ∪ Y r11 Y ∩X

⊆
←→X ∩ Y

r10 (X ∪ Y ) ∪ Z
⊆
←→X ∪ (Y ∪ Z) r12 (X ∩ Y ) ∩ Z

⊆
←→X ∩ (Y ∩ Z)

Fig. 4. A canonical bi-rewriting system for the inclusion theory of non-distributive
lattices.

We don’t know of any canonical rewriting system for non-distributive lattices,
although they are known for distributive lattices [11] and for boolean rings [9]. So



its modelization by a bi-rewriting system represents a contribution to rewriting
techniques (see also [19]). The lack of disjunctive and conjunctive normal forms
is the cause of non-existence of a canonical rewriting system. On the contrary,
the proposed bi-rewriting system has two normalizing rules. Rules r3 and r7

acting in opposite directions allow to get a disjunctive normal form the first,
and the other a conjunctive normal form. In a non-distributive lattice these
rules are strict inclusions and they can not be used as equational rewrite rules.
Furthermore, if they are put together in a unique rewriting system then we lose
termination.

4.3 Why Inclusions and not Equations

In the previous subsection we discussed briefly the advantage of modeling the de-
duction in a non-distributive lattice by a bi-rewriting system: there is no canoni-
cal rewrite system for it. In general inclusions express weaker constraints between
terms than equations, allowing to use rules like r3 and r7 in the previous exam-
ple. Even in the case of lattices where inclusions may be modeled by equations
—like a ⊆ b by a ∪ b = b or a ∩ b = a— inclusions are more natural and have
some advantages. The transitivity and monotonicity of inclusions which are cap-
tured implicitly by bi-rewriting systems, must be “implemented” explicitly by
equational rewrite rules. Let’s consider a little further the case of transitivity.

The inclusions a ⊆ b and b ⊆ c can be oriented like a
⊆
−→b and b

⊆
−→c and we

can prove a ⊆ c rewriting a into b and b into c. However, their translation to
equations results in two rules a∪ b−→ b and b∪ c−→ c. These rules generate non-
confluent critical pairs with the other rules defining the union and intersection,
and the completion process leads to add the following rules a∩ b−→ a, b∩ c−→ b,
a∪ c−→ c and a∩ c−→ a. In general, the completion of a sequence a1 ⊆ . . . ⊆ an

lead to add rules ai ∪ aj−→ aj and ai ∩ aj−→ ai for any i < j. This means that
the transitivity of inclusions is not captured by the transitivity of the equality
relation or by the transitivity of the rewriting relation −→∗ , loosing so one of
the main powers of rewriting systems.
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4. H. Bäumer. On the use of relation algebra in the theory of reduction systems.

Technical report, Dept. Informatica, Univ. of Twente, Enschede, The Netherlands,
1992.

5. L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138–164, 1988.



6. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. V. Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier Science Publishers, 1990.

7. J. Gallier. The semantics of recursive programs with function parameters of finite
types: n-rational algebras and logic of inequalities. In N. Nivat and J. Reynolds,
editors, Algebraic Methods in Semantics. Cambridge University Press, 1985.

8. I. Guesarian. Algebraic Semantics, volume 99 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1981.

9. J. Hsiang and N. Dershowitz. Rewrite methods for clausal and non-clausal theo-
rem proving. In 10th Int. Colloquium on Automata, Languages and Programming,
Barcelona, Spain, 1983. Springer-Verlag.

10. G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

11. J.-M. Hullot. A catalogue of canonical term rewriting systems. Technical Report
CSL-113, Computer Science Laboratory, Menlo Park, California, 1980.

12. B. Jayaraman. Impplementation of subset-equational programs. J. of Logic Pro-

gramming, 12:229–324, 1992.

13. J.-P. Jouannaud and H. Kirchner. Completion on a set of rules modulo a set of
equations. SIAM J. computing, 15(1):1155–1194, 1986.

14. C. Kirchner. Methodes et Outils de Conception Systematique d’Algorithmes d’Uni-

fication dans les Theories Equationnelles. PhD thesis, Universite de Nancy I, 1985.

15. H. Kirchner. Preuves par Completion dans les Varietes d’Algebres. PhD thesis,
Universite de Nancy I, 1985.

16. J. W. Klop. Term rewriting systems: A tutorial. Bulletin of the EATCS, 32:143–
183, 1987.

17. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Perg-
amon Press, Elmsford, N. Y., 1970.

18. J. Levy and J. Agust́ı. Bi-rewriting, a rewriting technique for monotonic order
relation. Technical Report IIIA 92/26, Institut d’Investigació en Intel·ligència Ar-
tificial, Blanes, Spain, 1992.

19. J. Levy and J. Agust́ı. Implementing inequality specifications with bi-rewriting
systems. In 4th Compass Workshop, Lecture Notes in Computer Science, Caldes
de Malavella, Spain, 1992. Springer-Verlag.

20. J. Levy, J. Agust́ı, F. Esteva, and P. Garćıa. An ideal model for an extended λ-
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