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In openmultiagent systems, agents depend on reputation and trustmechanisms to evaluate

the behavior of potential partners. Often these evaluations are associated with a measure of

reliability that the source agent computes. However, due to the subjectivity of reputation-

related information, this can lead to serious problems when considering communicated

social evaluations. In this paper, instead of considering only reliability measures computed

from the sources, we provide a mechanism that allows the recipient decide whether the

piece of information is reliable according to its own knowledge. We do it by allowing the

agents engage in an argumentation-based dialog specifically designed for the exchange of

social evaluations.We evaluate our framework through simulations. The results show that in

most of the checked conditions, agents that use our dialog framework significantly improve

(statistically) the accuracy of the evaluations, over the agents that do not use it. In particular,

the simulations reveal that when there is a heterogeneity set of agents (not all the agents

have the same goals) and agents base part of their inferences on third-party information, it

is worth using our dialog protocol.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Computational trust and reputation models have been recognized as one of the key technologies in the design of open

multi-agent systems [1]. These models provide social evaluations about the potential performance of agents in a specific

context, by aggregating (mainly) the outcomes of past interactions and third-party communications. Some models also

attach to the social evaluation a reliability measure that reflects how confident the source agent feels about that value. This

allows agents to internally weight the relevance of the calculated evaluations.

The reliability value is transmitted together with the social evaluation when there is a communication, so the recipient

agent can decide whether it is worth considering that piece of information. However, due to the subjectivity of reputation

information, a social evaluation declared reliable by agent Amay not be reliable for agent B, because the bases under which

A has inferred the evaluation cannot be accepted by B. This can happen because agents have different mechanisms to infer

social evaluations, have had different experiences, have different goals, etc. The use of reliability measures in communicated

social evaluations is restricted to those situations where the recipient agent knows that the source agent is honest, that has

a similar way to calculate social evaluations in that specific context and that has had similar experiences.

This paper offers an alternative mechanism. We suggest that the reliability measure cannot depend on the source agent,

but must be fully evaluated by the recipient agent according to its own knowledge. In our approach, rather than only allow

one shot communications, we allow agents to participate in argumentation-based dialogs regarding reputation elements
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in order to decide on the reliability (and thus acceptance) of a communicated social evaluation. Our approach differs from

others in that it is the recipient agent, not the source agent,whodecides about the reliability of a communicated evaluation. 1

Although we assume that agents use different reputation models, we consider that they use a common language to ex-

press reputation-related concepts. Such a language is defined in Section 2. We introduce in the same section the concepts of

reputation theory to characterize the structure of reputation-related information that we handle in this paper. In section 3,

we exemplify the class of problems that we solve in this paper and give the main features of the proposed framework. Since

our approach uses argumentation techniques we define the notion of argument and attack between arguments regarding

reputation-related information in Section 4. We also provide a method for deciding whether a communicated social evalu-

ation can be considered reliable enough by the recipient agent. We specify completely the dialog protocol in Section 5, and

in Section 6we demonstrate with experimentation that the proposedmechanism significantly improves the accuracy of the

evaluations. Section 7 details the related work and Section 8 concludes the analysis and introduces work for the future.

2. The Lrep language

Lrep is a language that captures the reputation-related information that individual agents use to write statements (and

reason)about reputationconcepts. The language isbasedonanontologyof reputation [3]used tocharacterized thereputation

information.

Themain element we are interested in representing is a social evaluation. From a cognitive perspective a social evaluation

is a belief that encodes an evaluation of a social entity in a given context [4,5]. In amore computational fashion and according

to [3,4], social evaluations incorporate three main elements: the target, the context, and the value of the evaluation. For

instance, a social evaluation may say that an agent a (target), as a car driver (context) is very good (value).

From the concept of social evaluation, a taxonomy of social evaluations is defined, including for instance, the concepts of

image and reputation, that we are interested to capturewithin the Lrep language. The following subsections formally describe

the language as a many-sorted first-order language, giving a brief description of each type of social evaluation.

2.1. Defining Lrep

Following [6]where languages arebuilt as ahierarchyoffirst-order languages,wedefine Lcontext , and Lrep. Both are classical

first-order languages with equality and contain the logical symbols ∧,¬ and→. 2 Lcontext is the language that the agents

use to describe the context of the evaluations, like norms, or skills, while Lrep is used to write statements about reputation.

Definition (Lcontext-Domain Language). Lcontext is an unsorted first-order language that includes predicates, constants and

functions, necessary for writing statements about the domain. Even when we do not provide any specific language for

describing thecontextof theevaluations,wesuggest that afirst-order languageshouldbeenough toexpressnorms, standards

or skills.

Definition (Lrep-Reputation language). Lrep is a sortedfirst-order language that agents use to reason about social evaluations.

It includes Lcontext and special first-order predicates that are identified by their sorts. These special predicates describe the

types of social evaluations, (Image, Reputation, Shared Voice, Shared Evaluation, Direct Experience) and Communications (Img,

Rep, ShV, ShE, DE and Comm from now on). From now on, direct experiences and communications will be called ground

elements, the basic elements from which social evaluations are inferred.

The taxonomy of social evaluations appears for the first time in [4], but is formalized in [3]. In Sections 2.3 and 2.4 we

present someexamples onhow Lrep canbeused tomodel the informationmanagedby the eBaymodel [7] andAbdul-Rahman

and Hailes model [8] respectively.

The sorts that the language uses are the following:

• SA: It includes a finite set of target identifiers {i1, . . . , in}, which embraces single agents, group of agents and institutions.

In fact, we assume that each possible group has assigned an identifier.
• SF : It contains the set of constant formulas representing elements of Lcontext and Lrep itself. The idea is that well-formed

formulas from Lcontext and Lrep are introduced in Lrep as constants for the language. 3 In this way, they can be nested in a

first-order predicate. Regarding embedded Lrep formulas we only allow one nested level. We use it to capture the idea of

communicated social evaluations.
• SV : It represents the values of the evaluation. Our needs require that the set of possible values is countable, and that a

linear pre-order is defined between the values.

1 A preliminary version of the theoretical development was published in [2].
2 For the sake of clarity we reduce the first-order languages to facts, conjunctions of facts, and rules.
3 It canbebuilt recursively and simultaneouslywith SF .Weadd the constant�ϕ� for eachϕ ∈ wff (Lcontext)and the constant��� for each formula� ∈ wff (Lrep).
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• ST : It incorporates discrete time instants.We use them to express that direct experiences and communications take place

in a discrete unit of time. In a more pragmatic view, it also serves as a unique identifier for the communication and direct

interactions.

We pay special attention to the sort SV , which represents values of a totally ordered set M = 〈G,≤〉. It includes the set

of constants CV containing a label v for each v ∈ G. Examples of M are 〈[0, 1] ∩ IQ ,≤〉, where≤ is the standard pre-order

binary function for rational numbers, and 〈{VB, B,N, G, VG},≤s〉 referring to the linguistic labels Very Bad, Bad, Neutral,

Good, Very Good, where VB ≤s B ≤s N ≤s G ≤s VG.

The set of well-formed formulas of Lrep (wff(Lrep)) is defined using the standard syntax of classical first-order logic, and

includes special predicates to describe reputation-related concepts. They are Img, Rep, ShV , ShE, DE, Comm. As mentioned

before, the last two predicates (DE and Comm) are what we call ground elements.

• Img(SA, SF , SV ): It represents an image predicate, an evaluation that is believed by an agent. For instance,

Img(j, �Provider(service(X))�, VG)

indicates that the agent holding the predicate has a VG image of agent j as a provider of service X. In terms of the mental

state of the agent, it indicates that and the holder of the predicate believes such evaluation. In this case and in future

examples, we takeM as < VB, B,N, G, VG,≤s> where the elements represent linguistic labels indicating very bad, bad,

neutral, good and very good.
• Rep(SA, SF , SV ): It represents a reputation predicate. A reputation refers to an evaluation that is known to circulate in the

society. For example

Rep(j, �Provider(service(X))�, VG)

indicates that “it is said” that agent j is VG as a provider of service X. In this case, the agent holding the predicate believes

that the evaluation circulates in society, but this does not imply that the agent believes the evaluation.
• ShV(SA, SF , SV , SA), ShE(SA, SF , SV , SA): They represents a shared voice and a shared image respectively. A shared voice

is also an evaluation that circulates in the society (like reputation). The difference is that the members of the society

that say it, are identified. A shared image is a belief about the beliefs of other agents. It indicates that the holder of the

predicate believes that a certain group of identified agents believe an evaluation. Both predicates include the group that

shares the voice or image respectively.
• DE(SA, SF , SV , ST ): It represents a direct experience. For instance,

DE(j, �Provider(service(X))�, VG, t2)

indicates that the agent had a VG direct experience with j as a Provider of service X at the time t2.• Comm(SA, SF , ST ): It represents a communication. For example,

Comm(j, �Img(j, k, Provider(service(X)), VG)�, t2)
indicates that the agent received a communication at time t2 from agent j saying that its image about k as a Provider of

service X is VG.

Often, we will write a subindex to explicitly state the agent holding the predicate. For instance,

DEi(j, �Provider(service(X))�, VG, t2)

indicates that agent i has had a direct experience with j as a provider of service X at the time t2 and it was VG.

2.2. Reputation theories

Wedefine the concept of reputation theory to characterize all the reputation information that an agent i holds. Intuitively,

we consider that from a set of direct experiences (DE) and communications (Comm) (the ground elements) agents are able to

infer the remaining reputation information (image, reputation, shared voice and shared evaluation) through a consequence

relation�i, associatedwith agent i. The consequence relation can be understood as the agent i’s reputationmodel. Formally:

Definition (Reputation theory). Let � ⊂ wff (Lrep), we say that � is a reputation theory when ∀α ∈ �, α is a ground

element. Then, letting d ∈ wff (Lrep), we write � � d to indicate that from the reputation theory �, d can be deduced via�.



670 I. Pinyol, J. Sabater-Mir / International Journal of Approximate Reasoning 54 (2013) 667–689

The reputation-related information that agent i holds is characterized by the tuple

〈�i,�i〉
where �i is i’s reputation theory, and �i the consequence relation (i’s reputation model). The semantics of the language is

given by the reputation model, and the axiomatization by the consequence relation � associated with a reputation model.

The importance for us relies in the capability of the language to capture the information that reputation models manage.

2.3. Example 1: eBay reputation model

eBay site [7] is one of the most popular on-line marketplace, with more than 100 million registered users. The site offers

several services that enhance the usability of themarketplace, like securedpay-pal, on-line auctions, categorical searches etc.

Also, it offers a reputation service: it allows the buyers to rate the seller once a transaction is finished, and summarizes this

information publicly, for other potential buyers. The eBay reputationmodel considers reputation as a public and centralized

value inwhich thecontext is implicit. Buyers rate sellers after each transactionwithvaluesof +1, 0 ,−1. The reputationvalueof

each seller is calculated as the sumof all the ratings over the last sixmonths, and presented to potential buyerswith a system

of colored stars. For instance, it uses a golden star for top sellers and apurple star for sellerswith a score between500 and999.

Considering now Lrep, the reputation theory in eBay’s model is composed of a set of communicated direct experiences,

where the ratings from buyers are the direct experiences, and the context is constant (say C), and the value representation is

a bounded rational type ([0, 1] ∩ IQ ).We can easily normalize the values−1, 0, 1 to 0, 0.5, 1 respectively. As an example, let

b1, b2, . . . be buyers, and s1, s2, . . . sellers, a reputation theory for the eBay system could then have the following elements:

Comm(b1,DE(s1, C, 0, t1))

Comm(b2,DE(s1, C, 0, t2))

Comm(b2,DE(s1, C, 0.5, t3))

Comm(b1,DE(s2, C, 1, t4))

Comm(b4,DE(s2, C, 1, t5))

Comm(b3,DE(s2, C, 1, t6))

The model computes the reputation of each sellers. Since eBay score goes from 0 to 100,000, a simple normalized

transformation to the interval [0,1] seems plausible. However, notice that the colored stars representation does not follow

a linear curve. From a semantic point of view and in our value representation, 0 means very bad reputation, 0.5 neutral

reputation, and 1 very good reputation. Havingmore than 10 points is already considered a good reputation in eBay’s model.

The next step in the scale ismore than 100 points (with a different colored star), and the next ismore than 500. In conclusion,

there is no linear relation between the punctuation and the semantic representation of the stars. A possible transformation

function is described in the following equation:

H : [0, 100000] → [0, 1] (1)

H(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if X < 10;
1 if X > 100000;
log(X)−0.5

8
+ 0.5 otherwise.

(2)

The idea is that from a set of communicated direct experiences, reputation predicates can be inferred through �eBay .

According to the previous reputation theory example, the generated predicates are

Rep(s1, C, 0)

Rep(s2, C, 0)

In the example, s2 gets a punctuation of 0 because its punctuation is still lower than 10.

2.4. Example 2: The Abdul-Rahman and Hailes model

Themodel presented by Abdul-Rahman and Hailes [8] uses the term trust, and evaluations take into account the context.

The model is fed by two sources: direct experiences and third-party communications of direct experiences. The represen-

tation of the evaluations is done in terms of the discrete set {vt (very trustworthy), t (trustworthy), u (untrustworthy), vu

(very untrustworthy)}. For each agent and context the system keeps a tuple with the number of past own experiences or

communicated experiences in each category. For instance, agent A may have a tuple of agent B as a seller like (0, 0, 2, 3),
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Fig. 1. Abdul-Rahman and Hailes model values expressed in terms of a probabilistic distribution.

meaning that agent A has received or experienced 2 results as untrustworthiness and 3 as very untrustworthiness. Finally

the trust value is computed taking the maximum of the tuple values. In our example, agent B as a seller would be very

untrustworthy according to A.

In the case of tie between vt and t and between u and vu the system gives the values U+ (mostly trustworthy) and U−
(mostly untrustworthy) respectively. In any other tie case the system returns U0 (neutral).

Each agent holds its own reputation theory. In this case, we use a specific representation type for the evaluation values

of the model. Similar to the Repage model [9], we define a probability distribution over the ordered set of linguistic labels

{vt,t,u,vt}. Hence, the value of the evaluations is represented as a tuple of four rational numbers, each one of them between

0 and 1 and summing exactly one. Fig. 1 shows the possible values of this representation. An example of a reputation theory

for the agent i could be:

DEi(b1, seller, [1, 0, 0, 0], t1)
DEi(b1, seller, [0, 1, 0, 0], t2)
DEi(b2, seller, [0, 0, 0, 1], t3)
DEi(b2, seller, [0, 0, 0, 1], t4)
Commi(u1,DEu1(b1, seller, [1, 0, 0, 0], tx), t5)
Commi(u2,DEu1(b1, seller, [0, 1, 0, 0], ty), t6)

Agent i is able to infer image predicates from the theory above. The trust measure that the model provides, in terms of

Lrep, coincide with the concept of image, because agents accept the measure as true. Then, using the transformation shown

in Fig. 1, the following image predicates can be inferred:

Imgi(b1, seller, [0.5, 0.5, 0, 0])
Imgi(b2, seller, [0, 0, 0, 1])

3. Communicated social evaluations and their reliability

3.1. Preliminaries

The problem regarding communicated social evaluations that the subjective notion of reputation brings, is the same as

for any rhetorical construct that depends on internal elements that are private. Let us consider a very simple example:

i: How is John as a car driver?

j: He is a very good driver

i: Why?

j: Well, Emma told me that, and she is a good informer

i: Oh! for me, Emma is very bad as informer!
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In the previous example, should agent i consider the information sent by j saying that John is a very good driver? Notice

that j is justifying her opinion with a previous communication from Emma, which she thinks is a good informer. But it

contradicts an information that i considers valid. For i, the information is not reliable, even when j may be totally honest.

When talking about social evaluations and reputation models, usually the model already handles possible inconsistent

knowledge. Different opinions referring to the same target agent may be totally contradictory, and the agent integrates and

aggregates the information in order to achieve a consistent mental state. Determining whether a piece of information is

acceptable in a possibly inconsistent knowledge base has been faced in argumentation theory. In this field, each piece of

information is justified by the elementary elements from which it has been inferred, the so called arguments. Then, two

arguments can attack each other, indicating that the information supporting them would be inconsistent if they are both

accepted at the same time.

3.2. Characterizing the problems behind reliability measures

Having introduced the reputation language, we can illustrate more precisely the kind of problems we deal with in this

paper, and the characteristics of the proposed system. We start with a very simple example. Let i, j be two agents with their

respective reputation theories and reputationmodels 〈�i,�i〉 and 〈�j,�j〉. Let us consider that agent ihas aVG imageof John

as a car_seller (with a maximum reliability), so �i �i Imgi(John, car_seller, VG). When i communicates such information to

j at time t, j updates its reputation theory with a new communication:

�j ∪ {Commj(i, �Img(John, car_seller, VG)�, t)}

Let us assume that i inferred the image of John as a car_seller from (1) a communication from Alice and (2) the very good

reputation (according to i) of Alice as informer:

(1) Commi(Alice, �ImgAlice(John, car_seller, VG)�, t)
(2) Repi(Alice, informer, VG)

Also, assume that j has a very different opinion about the reputation of Alice as infomer, a very bad reputation indeed.

Specifically, �j �j Repj(Alice, informer, VB). With this scenario, at least one question arises. Should j update its reputation

theory with the original communication from i?

We argue that the communicated information from i is not reliable for j in this example. Without the analysis of the

internal elements, such a situation is impossible to detect, and the effects of including i’s communication in j’s reputation

theory can be devastating for j. Agents use social evaluations to decide what to do. It may happen that i’s communication

helps j choose John as a car_seller when j wants to buy a car. If the direct interaction with John does not go well, several

things may occur:

1. Direct experiences are costly. Probably j has bought a car before noticing that it was not good.

2. j may generate a bad image of i as informer, which can lead to j not considering any future communications from i,

even when i, according to j’s knowledge, was honest.

3. Also j may spread bad reputation of i as informer, and thus collide with the opinion of other members of the society

that are aligned with i. Consequently such members may retaliate against j [4].

All the previous situations could be avoided if j has the capability to decide whether the piece of information is reliable

enough,notbasedonthereliabilitymeasure that iassigns,buton the internalelements that iuses to justify thecommunicated

social evaluation and that j can check. Furthermore, our approachmakes itmore difficult to intentionally lie, since a potential

liar should know beforehand what the recipient knows, and build the argument accordingly to it. In current approaches,

a liar agent can put a very high reliability value in the communicated social evaluation to introduce noise in the recipient

agent.

To allow agents to analyze the justifications, we propose a protocol that implements a dialectical process between the

agents. Intuitively, both the source and the recipient agents, following a well-defined protocol, can exchange at each turn

a justified social evaluation (argument) that counterargues (attacks) some of the arguments uttered by the other agent.

At the end of the process, the recipient agent holds a tree of arguments that can be used to decide whether the original

communication from the source agent is reliable, and update its reputation theory accordingly. The technical details to

design such a protocol and the posterior analysis are taken from the field of computation argumentation,which has proposed

frameworks andmethods to deal with similar situations.We have taken some of these concepts and tools and adapted them

to confront the peculiarities that reputation information and our scenarios have. We highlight just two:

The attacks are graded: In the previous example, j holds a very different opinion of the reputation of Alice as informer

than i has, very bad (VB) against very good (VG) respectively. However, this would note the case if j thinks that the reputation
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of alice as informer is good (G), so �j �j Rep(Alice, informer, G). The attack should be considered weaker in the latter case.

Our framework handles graded attacks by assuming that each agent has a distance function� : G×G→ IQ over the totally

order set M = 〈G,≤〉which is used to represent the values of the social evaluations (see Section 2).

Heterogeneity of the agents: Even when agents use the same language to talk and reason about reputation, they may

use different reputation models. Usually, an argument is defined as a pair composed of a conclusion and a set of elements

that have been used to infer such conclusion (supporting set). The conclusion is the element that is being justified by the

supporting set. If agents use different inference rules, the supporting set must include enough information to reconstruct

the reasoning path followed by the agent that has built the argument. This could also be easily done by sending the exact

inference rules of the reputation model in the arguments, but it would violate the privacy of the agents and therefore is

not an option. Instead, our framework provides an intermediate solution. We define a very simple inference consequence

relation �arg that all agents must know, and specify a transformation that agent should use to build arguments using �arg .
From 〈�i,�i〉 and 〈�j,�j〉, we move to 〈�i,�arg〉 and 〈�j,�arg〉, where �i and �j are argumentative theories built from

their respective reputation theories and reputation models. Argumentative theories contain all the elements from their

respective reputation theories, and simple implication rules that simulate inference steps performed by their respective

reputation model, without indicating how they were performed internally.

The protocol allows agents to construct trees of arguments with their respective attacks. We provide an acceptability

semantics, a mechanism for deciding whether the information from the source agent can be considered reliable for the

recipient. We can do that because the argumentation framework we instantiate introduces the concept of inconsistency

budgets [10]. Intuitively, inconsistency budgets indicate the amount of inconsistency that an agent can (wants to) tolerate.

For instance, in the previous examplewhere�j �j Rep(Alice, informer, G), agent jmay consider that the difference between

G and VG is small enough to accept that they are not contradictory, even when that might not be the case for another agent.

Agents autonomously decide the strength of a given attack according to their own distance function and therefore to which

extent they can accept inconsistencies.

The next section formally describes: (1) how agents build arguments; (2) how agents construct an argumentative theory

from a reputation theory; (3) how such arguments influence each other and with which strength; and (4) how the recipient

agent can decide whether a piece of communicated information is reliable.

4. The reputation argumentation framework

Our approach suggests that agents use argumentation techniques to decide whether a piece of information can be

considered reliable or not. For this, we need to define an argumentation framework for reputation-related concepts. First,

we specify the notion of argument, the construct of arguments, and how they influence each other. Second, we define Larg ,

a language based on LRep to write argument sentences, and the consequence relation�arg associated with the language and

used to build arguments. We also give an acceptability semantics, indicating under which conditions, an agent would accept

a given communicated social evaluation as reliable.

Definition (Argument). A formula (�:α) ∈ wff (Larg) when α ∈ wff (LRep) and � ⊆ wff (LRep). Intuitively, we say that the

set � is the supporting set of the argument, and α its conclusion. It indicates that α has been deduced from the elements in

�.

The validity of a given well-formed argument must be contextualized in an argumentation theory, a set of elementary

argumentative formulas, called basic declarative units (BDU). We adapt the following definition from [11]:

Definition (Argumentative theory). A basic declarative unit (BDU) is a formula ({α}:α) ∈ wff (Larg). Then, a finite set

� = {γ1, . . . , γn} is an argumentative theory iff each γi is a BDU.

From an argumentative theory �, we can now define how arguments are constructed. For this we use the inference

relation �arg , characterized by the deduction rules Intro-BDU, Intro-AND and Elim-IMP (Fig. 2). Rule Intro-BDU allows the

introduction of a basic declarative unit from the argumentative theory. It is necessary to ensure completeness (proposition

4.1), permitting each BDU formula from the theory to be deduced via �arg . Rule Intro-AND permits the introduction of

conjunctions. Finally, rule Elim-IMP performs the traditionalmodus ponens.

Definition (Valid argument and subargument). Let (�:α) ∈ wff (Larg) and let � be an argumentative theory. We say that

(�:α) is a valid argument in the bases of � iff � �arg (�:α). Also, we say that a valid argument (�2:α2) is a subargument

of (�:α) iff �2 ⊂ �.

Asmentioned earlier, each agent i constructs its argumentative theory�i in order to build arguments. This argumentative

theory is based on the reputation information that i has, characterized with the tuple 〈�i,�i〉. Assuming that �i is defined
by a finite set of natural deduction rules {�i1 , . . . ,�im},
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Fig. 2. Deductive rules for the consequence relation �arg .

• For all α ∈ �i then ({α}:α) ∈ �i. That is, all ground elements from the reputation theory are BDU in the argumentative

theory.
• For all α1, . . . , αn s.t. �i �i αk where 1 ≤ k ≤ n, if there exists m s.t. α1, . . . , αn �im β , then ({α1, . . . , αn →

β}:α1, . . . , αn → β) ∈ �i. This construct introduces every instantiated deductive step as a rule in the form of a basic

declarative unit. For instance, if α, β �i2 γ , the argumentative theory will include the BDU formula ({α, β → γ } :
α, β → γ ).

The following proposition is easy to prove and establishes the completeness of the deductive system.

Proposition 4.1. Let 〈�i,�i〉 be the reputation information associated with agent i, and �i its argumentative theory. If �i �i α,

then there exists an argument (� : α) such that �i �arg (� : α).

4.1. Argument interactions

We have explained how agents construct their argumentative theory from their reputation information, and how from

such theory they can build arguments using �arg . In this subsection we detail how arguments generated from different

agents influence one other. Unlike argumentation systems that are used as theoretical reasoning processes this does not

imply necessary that the attack relation must be symmetric. Differently from argumentation systems used as theoretical

reasoning processes to analyze the possible inconsistencies that a single agent may hold, our framework is designed to

be part of a dialectical process, where attacks are produced only from arguments sent by other agents. Note that in our

framework attacks may or may not be symmetric.

To specify the attack relationship among arguments, we define first the binary relation ∼= between Lrep predicates.

Let α, β be well-formed non-ground formulas from LRep. Then, α ∼= β iff type(α) = type(β), α.target = β.target,
α.context = β.context and α.value �= β.value. We can see that ∼= is symmetric but not reflexive nor transitive.

For instance, Rep(i, seller, VB) ∼= Rep(i, seller, G), but Rep(i, seller, VB) � Img(i, seller, G) and Rep(i, seller, VB)

� Rep(i, buyer, VG).

Definition (Attack between arguments). Let (�1:α1), (�2:α2) be valid arguments in the bases of �. We say that (�1:α1)
attacks (�2:α2) iff ∃(�3:α3) subargument of (�2:α2) s.t. (α1

∼= α3).

We want also to quantify the strength of the attack. Let a = (�1:α1) be an argument that attacks b = (�2:α2). Then,
by definition, a (�3:α3) subargument of (�2:α2) s.t. (α1

∼= α3) exists. The strength of the attack is calculated through the

function w as w(a, b) = α1.value� α3.value, where� is a binary function defined over the domain of the representation

values used to quantify the evaluations (the total ordered set M = 〈G,≤〉). For instance, if M = 〈[0, 1] ∩ IQ ,≤〉, we can

define �(x, y) = |x − y|. In this case, 1 is the strongest attack. If M = 〈{VB, B,N, G, VG},≤s〉, we could first assign each

label a number: f (VB) = 0, f (B) = 1, …, and then,�(x, y) = |f (x) − f (y)|. In this case, the strongest attack is quantified

with 4.� implements a difference function among the possible values.

The previous attack definition does not consider attacks between direct experiences nor communications. This means

that discrepancies at this level cannot be argued, even when they are completely contradictory. Yet, this is justified by the

fact that, in our framework, ground elements are not generated from any other piece of information. Thus, a communicated

ground element should be introduced directly into the reputation theory. Obviously, the language could be extended to

capture the elementary predicates that compose direct experiences (contracts, fulfillments etc.). Again though, we think

that sharing this low level information would violate the privacy of the agents.

4.2. Deciding about the reliability

At this point, agents can build arguments, determinewhen their arguments attack arguments fromother agents (and vise

versa), and assign a strength to these attacks. However, we are still missing how agents can decide when to accept a given

argument, considering that they will have a weighted tree of arguments where each node is an argument and each edge

represents the strength of the attack. For this, we instantiate a weighted version of the classic Dung abstract argumentation

framework [12], and use an acceptability semantics defined for this framework.
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Dung’s framework is defined as follows:

Definition (Abstract argumentation framework). An abstract argument system (or argumentation framework) is a tuple

AF = 〈A, R〉where A is a set of arguments and R ⊆ A× A is an attack relation. Given a, b ∈ A, if (a, b) ∈ R (or aRb), we say

that a attacks b. Let S ⊆ A, and a, b ∈ A then

• S is conflict-free iff �a, b ∈ S s.t. aRb.
• An argument b is acceptable w.r.t. the set S iff ∀a ∈ A, if aRb then ∃c ∈ S s.t. cRa.
• S is admissible if it is conflict-free, and each argument in S is acceptable w.r.t. the set S. Also, S is a preferred extension iff

it is maximal w.r.t. the set inclusion.
• An argument b is credulously accepted iff it belongs to at least one preferred extension.

This abstract framework does not consider strength in the attacks.Work fromDunne et al. [10] extends Dung’s framework

with weights.

Definition (Weighted abstract argumentation framework). Aweighted argument system is a triple AFw = 〈A, R,w〉where

〈A, R〉 corresponds to a Dung’s argumentation framework, andw : R→ IR> is a function that assigns weights to each attack

relation. 4

The semantics of w gives a pre-order between possible inconsistencies. Let a1, b1, a2, b2 ∈ A where a1Rb1 and a2Rb2,

if w((a1, b1)) < w((a2, b2)) means that accepting both a1 and b1 is more consistent than accepting both a2 and b2. This

leads to the definition of inconsistency budgets and β−solutions (β s.t. β ∈ IR≥). Intuitively, a β-solution is a solution of

the unweighted Dung’s framework in which the amount of inconsistency (calculated through the sum of the weights of the

attacks) is lower or equal to β . Formally:

Definition (β-solutions [10]). Given AFw = 〈A, R,w〉, a solution S ⊆ A is a β−solution if ∃T ∈ sub(R,w, β) s.t. S is a

solution of the unweighed system AF = 〈A, R\T〉. Function sub returns a set of subsets of R in which the weights sum up to

a maximum of β: sub(R,w, β) = {T|T ⊆ R and (
∑

r∈T w(r)) ≤ β}
We use a credulous semantics for the acceptance of reliable information, although alternatively, other semantics could

be used. Credulous semantics ensures that at least, the argument belongs to one preferred extension, which is what we are

looking for. In the weighted version, we can define that, given AFw = 〈A, R,w〉, an argument b ∈ A is credulously accepted

if it belongs to at least one β-preferred extension, so, if ∃T ∈ sub(R,w, β) s.t. b ∈ S, and S is a preferred extension of the

Dung’s framework AF = 〈A, R\T〉.
We can instantiate now the weighted argument system by using the constructs defined in this section. Let � be an

argumentative theory as defined in this section. We define:

• C(�) = {(� : α)|� �arg (� : α)}, the set of all valid arguments that can be deduced from �.
• R(�) = {((�1 : α1), (�2 : α2))|(�1 : α1) attacks (�2 : α2) and (�1 : α1) ∈ C(�) and (�2 : α2) ∈ C(�)}, the set of

all possible attack relations between the arguments in C(�).

Then, we can describe the instantiation:

Definition (Reputation argument framework). The reputation argument system for the argumentative theory � is defined

as AF� = 〈C(�), R(�),w〉, where w : R(�)→ IR is the strength function as defined above using the� difference function.

This finishes the definition of the reputation argument system. The idea is that each agent will be equipped with its own

argumentation reputation system, and will incrementally add the arguments issued by the other agent. Intuitively, if the

argument that justifies the original communicated social evaluation belongs to a preferred extension of the recipient agent,

the latter will introduce the social evaluation into its reputation theory.

5. The dialog protocol

Adialog between twoparties that can be seen as a game inwhich each agent has an objective and a set of legalmovements

(illocutions) to perform at each turn. Walton et al. in [13] state several types of dialogs depending on the participants’ goals.

In our case, wemodel a special kind of information-seeking dialog. The goal of the game then is to see whether the opponent

(OPP) can accept reasonably the inquiring information from the proponent (PRO).

4 Following the notation in [10], we write IR> and IR≥ to refer to the set of real numbers greater than 0 and greater or equal to 0 respectively.
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Table 1

Possible moves of the dialog game at turn k. The function supp(b) returns the supporting set of

b.

counterkPRO(b)

Precondition

(1) k is even, b ∈ C(�PRO ∪ X
k−1
OPP ) and b has not been issued yet

(2) ∃r ∈ IN s.t. 1 ≤ r < |Sk−1|, r is odd and (b, Sk−1r ) ∈ R(�PRO ∪ X
k−1
OPP )

(3) �γ ∈ C(�PRO ∪ X
k−1
OPP ) s.t. (γ, Sk−1t ) ∈ R(�PRO ∪ X

k−1
OPP ) where

r + 1 ≤ t < |Sk−1| and t is odd

Postcondition

(i) Xk
PRO = X

k−1
PRO ∪ BDU(supp(b))

(ii) Xk
OPP = X

k−1
OPP

(iii) Sk = 〈Sk−10 , . . . , Sk−1r , b〉

counterkOPP(b)

Precondition

(1) k is odd, b ∈ C(�OPP ∪ X
k−1
PRO ) and b has not been issued yet

(2) ∃r ∈ IN s.t. 0 ≤ r < |Sk−1|, r is even and (b, Sk−1r ) ∈ R(�OPP ∪ X
k−1
PRO )

(3) �γ ∈ C(�OPP ∪ X
k−1
PRO ) s.t. (γ, Sk−1t ) ∈ R(�OPP ∪ X

k−1
PRO ) where

r + 1 ≤ t < |Sk−1| and t is even

Postcondition

(i) Xk
PRO = X

k−1
PRO

(ii) Xk
OPP = X

k−1
OPP ∪ BDU(supp(b))

(iii) Sk = 〈Sk−10 , . . . , Sk−1r , b〉
(or 〈Sk−10 , b〉 if r = 0)

Weuse the argumentation frameworkdefined in theprevious sections to give semantics to thedialogs. Thekey is that each

agent participating in the dialog will use its own argument framework to deal with possible inconsistencies. It is important

to notice that agents do not have access to the set of arguments of the other agents. They incorporate such knowledge from

the exchange of illocutions uttered in the dialog.

Let PRO and OPP be the proponent and the opponent agents engaged in the dialog respectively. Following a similar

approach used in [14], both agents are equipped with a reputation argument system:

AFPRO = 〈C(�PRO ∪ XOPP), R(�PRO ∪ XOPP),wPRO〉
AFOPP = 〈C(�OPP ∪ XPRO), R(�OPP ∪ XPRO),wOPP〉

where �PRO, �OPP are the argumentative theories of agents PRO and OPP, which are private. wPRO and wOPP are the weight

functions of agents PRO and OPP. Finally, XPRO (XOPP) is the set of BDU from the arguments that results from the proponent’s

(opponent’s) issued arguments. Both XPRO and XOPP are public and are the result of the exchange of arguments. This allows

the agents to recognize and reconstruct arguments from the other agent. As for the state of our dialog protocol, we give a

definition inspired by [15]:

Definition (Stateof thedialog). Astateof adialog at thekth turn (wherek ≥ 0) is characterizedby the tuple 〈Sk, Xk
PRO, X

k
OPP〉k

where Sk = 〈Sk0, . . . , Skt 〉 is the ordered set of arguments that represents a single dispute line. A dispute line is a finite

sequence of arguments a0, . . . , an where ∀l s.t. 1 ≤ l < n, al+1 attacks al . X
k
PRO, X

k
OPP are the public sets of BDU formulas

of the proponent and the opponent respectively at turn k, incrementally built after each argument exchange and that are

public.

The proponent is the initiator of the dialog and issues the argument a = (�:α). The initial state at turn 0 is then

characterized by 〈〈a〉, BDU(�), {}〉0. The function BDU(X) returns the set of elements from X as a BDU formula. So, if α ∈ X ,

then {α}:α ∈ BDU(X). The possible types of movements are summarized in Table 1, where we include preconditions and

postconditions:

The proponent can perform the movement counterkPRO(b) when the turn k is even (1). Of course, b should be a valid

argument built from its argumentative theory and the BDU from the previous exchange of arguments (C(�PRO ∪ X
k−1
OPP )) (1).

We also require that b attacks some of the arguments of the current dispute line that the opponent has issued (so, in an

odd position) (2). When this occurs, we also want to ensure that the proponent cannot attack any other argument issued

by the opponent later than the one being attacked (3). Once the illocution is submitted, the effects in the dialog state are

also described in Table 1. First, the set XPRO is updated with the supporting set of the argument b (i). Notice that in the way

we define the construction of arguments (see Section 4) the supporting set only contains BDU. Thus, since this set is added

to the argumentative theory of the opponent, it is able also to recognize the argument and attack it if necessary. Moreover,

when an argument of the dispute line is attacked at point r of the dispute line, the dialog starts a new dispute line from that

point (iii).
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Fig. 3. Arguments uttered by the proponent (S0,S2,S2′ ) and the opponent (S1,S1′ ,S3′ ) in the example respectively. Dotted arrows indicate attack. For the sake of

clarity, we omit the notation �·�. nComm(·) and nDE(·) indicates that the agent holds n communications and n direct experiences respectively.

The opponent can submit counterarguments by sending the illocution counterkOPP(b)with symmetric effects as explained

in the previous paragraph. In this case, k must be odd. A dialog finishes when there are no possible movements.

Thewinner is the last participantwhomakes amove. Hence, if the number ofmoves is even, thewinner is the proponent.

If the number of moves is odd, the opponent wins. This protocol is a simplification of a TPI-Dispute (two-party immediate

response dispute) and instantiates a protocol described in [14]. From there, the following proposition can be deduced:

Proposition 5.1. Let AFPRO and AFOPP be the argument frameworks of the participants of a dialog. When the game is finished and

the proponent is the winner, the original argument a = (�:α) belongs to a 0-preferred extensions of AFOPP .

This means that the argument a is credulously accepted by the opponent. Therefore, the conclusion α can be introduced

into the reputation theory of the opponent. It is easy to prove that the dialog incrementally builds a dialectical tree, which

has been proved to construct admissible extensions [14]. This is one of the advantages of using argumentation frameworks.

Agents do not need to generate all possible arguments to determined the state of a given argument. It is enough to generate

a dialectical tree, which is what in fact, the protocol we have defined perform.

If OPP wins, OPP cannot find a 0-preferred extension that includes the argument a. In this case, OPP could choose not to

update its reputation theory. However, depending on its tolerance to inconsistencies, OPP can find a 1-preferred extension

that includes argument a, or even a 2-preferred extension. By increasing the inconsistency budget, the original argument

may become acceptable, and thus the communicated social evaluation considered reliable. This might be seen equivalent to

the threshold that some reputation models that manage reliability measures use to accept communicated information. The

difference is that contrary to the measure being calculated by the source agent, in our approach, the reliability is computed

by the recipient, who assigns strengths that can be different from the source. Algorithm 1 formalizes the procedure we

have just described. In the next subsection we provide an example that shows the use of the protocol and the inconsistency

budgets.

5.1. An example

Wewant to finish this section by showing a simple example. Here, agent i (the proponent) sends the first communication

to j (the opponent). The arguments they build are shown in Fig. 3. In the domain, we have the context seller, composed of

sell(q) (quality dimension of the sold products) and sell(dt) (delivery time of the product). We use the Lrep language taking

M as 〈{VB, B,N, G, VG},≤s〉. Also, the context Inf is used and stands for informant. For instance, the argument S0 (Fig. 3)

indicates that the agent has a VG (very good) image of a as a seller, because of the images it has about a taking into account

the quality of the products (sell(q)) and the delivery time (sell(dt)) are G and VG respectively. The latter is justified because

it had three direct experiences with a resulting in a very good delivery time (VG), and so on. In the figure, elements in dot

lines belong to the ground elements of the argumentation theory of i. Arrows represent implication relation which are also

in the argumentative theory. For instance, there is an implication relation in the theory that says:
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Algorithm 1: Reputation Theory Update (for agent j)

Data: Agent i, j
Data: Argument �:α (sent by i)

Data: Reputation Information 〈�,�R〉
Data: Inconsistency Budget b

Result: �res (Reputation Theory Updated)

�j ← Argumentative Theory from 〈�,�R〉;
AFj ← 〈C(�j), R(�j),wj〉 /*The argument framework of j*/;

〈winner, Xi〉 ← dialogGame(AFj ,i, 〈〈α〉, �, {}〉0); if winner= i then

�res ← � ∪ {Comm(i, α)} /*i wins, then j updates its reputation theory*/;

else

if �:α is acceptable w.r.t. 〈C(�j ∪ Xi), Rj,wj〉 and budget b then

�res ← � ∪ {Comm(i, α)} /*With inconsistency budget b, j accepts also the argument*/;

else

�res ← � /*Agent j rejects the argument*/;

end
end

Img(a, sell(dt), VG), Img(a, sell(q), G)→ Img(a, seller, VG)

and another saying that

Rep(a, sell(q), G)→ Img(a, sell(q), G)

In Fig. 3 we show arguments and sub-arguments already instantiated to facilitate the reading.

The next table shows the illocutions that the agents exchange. The column Dispute Line shows the state of the dispute

line.

Action Dispute Line

– S0 = {S0}
counter1OPP(S1) S1 = {S0, S1}
counter2PRO(S2) S2 = {S0, S1, S2}
counter3OPP(S1′) S3 = {S0, S1′ }
counter4PRO(S2′) S4 = {S0, S1′ , S2′ }
counter5OPP(S3′) S5 = {S0, S1′ , S2′ , S3′ }

In the first move, the opponent (OPP) utters the argument S1 which attacks the original S0. S1 has the conclusion formula

Rep(a, sell(q), B) and attacks the subargument of S0 that has as a conclusion Rep(a, sell(q), G). The strength is calculated

applying the function� on the values of the predicates. In this case,�(B, G) = 2. In the next move, the proponent (PRO)

attacks S1 by sending S2 (strength = 4). At this point, we assume that OPP cannot attack S2, but it can attack again the original

S0. In movement 3, OPP sends the argument S1′ to attack S0 (strength = 2). Notice that the dispute line has changed. Then,

the proponent counterargues S1′ by sending S2′ (strength = 2). Finally, OPP finishes the game at movement 5 by issuing S3′ ,
which attacks S2′ (strength = 1).

The opponent wins the game. This means that OPP considers the initial information from PRO unreliable . The dialectical

tree after the game is shown in Fig. 4.With this tree, OPP cannot construct an admissible set that includes S0, and thus cannot

accept it. But this is only true when OPP takes an inconsistency budget of 0. As soon as it tolerates a budget of 1, the result

changes. Now, the set {S0, S2, S2′ , S3′ } is a 1-preferred extension and S0 becomes acceptable. At this point, OPP could update

its reputation theory, considering that the information is reliable enough.

It is important to recall again that this does not mean that j accepts the conclusion of S0 in the classical logical sense. It

means that j adds it in the reputation theory as a communication. The reputation model will be in charge of updating the

corresponding social evaluation taking into account other information like for instance, the reliability of i as informant.

6. Experimental results

In the previous sectionswe have presented the theoretical development of the reputation argumentation framework and

have discussed the reasons why we need such a system, and under which theoretical conditions the framework can be used

to argue about reputation concepts. We have shown the completeness of the deductive system (proposition 4.1) and the
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Fig. 4. The dialectical tree of agent j after the game. Arrows represent attack relation and the labels indicate the strength of the attacks.

correctness of the argumentation-based protocol (proposition 5.1). Nevertheless, under the assumption of self-interested

agents that try to maximize their utility functions, it is not always clear whether it is worth engaging in a dialog protocol.

Firstly, there is an obvious trade off between time and cost, which in our framework is related strictly to the number of

exchanged messages and the achieved accuracy respectively. In this sense,

1. When the cost of a bad interaction is higher than the cost of messaging (or waiting time), the accuracy becomes a

crucial issue, and argumentation can help.

2. On the contrary, when the cost of messaging dominates the potential failure of an interaction, for sure argumentation

is not a good solution. For example, application involving wireless sensor networks wheremessaging is a critical issue

due to the high energy cost, argumentation-based protocols are not the best solutions.

We focus on the former, and assume that the cost of messaging is not relevant in comparison to the cost of a bad

interaction. 5

Also, notice that the reputation argumentation framework is a complement attached to an existing reputation model,

which in general, is already pretty accurate. In fact, there is no guarantee that the use of our argumentation protocol

significantly improves the accuracy of the agents. In this section we present the results of a set of simulations that explore

some of the relevant parameters that we consider crucial. We empirically validate that the argumentation-based protocol

for social evaluation exchange significantly improves the accuracy of the agents when modeling the behavior of others.

The simulations should be considered a proof-of-concept environment that proves that in the scenario described below

the use of argumentation is useful. Even when wewould require a more complete set of experiments to completely validate

the utility of the argumentation-based protocol, interesting conclusions can be extracted, and of course can be extrapolated

to other scenarios. 6

6.1. Description of the simulations

Similar to [17–19], we consider an scenario with buyers and sellers. Sellers offer products with constant quality (q) and

deliver themwith a constant delivery time (dt). Buyers are endowedwith a reputationmodel and evaluate sellers in the role

seller, which is composed of sell(q) (quality dimension of the sold products) and sell(dt) (delivery time). We also consider

the context Inf, which stands for informant.

We consider that different buyers can evaluate sellers in different ways (they have different goals). To simplify, some

buyers only take into account good sellers according to the quality of the products (QBuyers), while others, according to the

delivery time (DTBuyers). This resembles the different goals of the agent. The key point is that initially, buyers communicate

social evaluations only regarding the role seller. So, a good seller for agent A is not necessary good for agent B.

Under standard settings, the introduction of information from unaligned buyers may bias the accuracy of the reputation

models, while when using argumentation, such information can be filtered the accuracy improved. This evidence clashes

with the idea that to argue, both the source and the recipient agents must have some knowledge about the environment,

but not too much. If agents do not have any information (or few), no argumentation is possible. On the opposite, if agents

have already a lot of information that includes a high number of direct trades, agents will not be able to respond, since direct

experiences cannot be attacked in our framework. To parametrize the former situation we include a bootstrap phase, where

agents explore the environment without arguing. We do not let agents trade directly with all the agents, only with a subset

of them. In concrete, our simulations have the following phases:

• Bootstrap phase: It is used to endow the buyers with some knowledge about the environment (that is, other sellers and

buyers). At each turn, each buyer performs two tasks: (1) it chooses a seller randomly, buying from it, and (2) it sends

a communication of an image predicate regarding a random seller or buyer (in the latter in the role of Inf ) to a random

buyer agent. No argumentation is present in this phase. The number of direct trades and messages sent at each turn can

be parameterized. In our simulations we allow each agent one direct trade and one message per turn.

To parametrize the fact that agents do not have too much information in terms of direct trades, a percentage of the

buyers (pctBuyers-Bootstrap) can only perform direct trades with a percentage of sellers (pctSellers-Bootstrap). The other

5 Even when the cost of messaging is null, if the cost of interacting is very low there is no motivation for the agents to exchange information. Experimental

evidence of this can be found in [16].
6 The simulations were performed in JAVA. The source code can be downloaded at http://www.iiia.csic.es/∼ipinyol/sourceIJAR10.zip.
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Fig. 5. A possible scenario during the bootstrap phase.

buyers can trade directly to any seller. Such special buyerswill have tomodel the remaining sellers only using third-party

information. Fig. 5 illustrates the scenario in this phase.
• Experimental phase: After the bootstrapping phase we introduce a single Q-buyer agent (our subject of study) that wants

to model the behavior of a set of sellers (which correspond to a 100 - pctSellers-Bootstrap% of the sellers 7 ) before

trading with one of them. As discussed earlier, both the source and the recipient of the communication must have some

knowledge before arguing, and because of that, our subject of study needs to go also through a bootstrap phase.

An intuitive example that resembles into the structure of this phase is a situation in which a human buyer navigates

through on-line forums starting new traces before making the decision of acquiring an expensive good (like a laptop, a

car, etc.).

Once the subject of study finishes the bootstrap, the simulation proceeds. As said before, it wants to buy a good, and for

this, it needs tomodel the behavior of the unknown sellers. It receives amessage from each buyer agent about each of the

unknown sellers. Depending on the experimental condition, the studied agent will aggregate the communication to its

reputation theory, orwill argue anddecidewhether to accept or not themessage. See Fig. 6 for an illustration of this phase.

The two experimental conditions are:

• NO-ARG: The studied agent does not use argumentation when receiving the messages. This means that the reputation

model is the only mechanism to avoid information from bad informants. Agents use an extension of the Repage system

[9] that contemplates an ontological dimension. In any case, the reputation model is able to detect bad informants

7 We use the same pctSellers-Bootstrap value, but the set of sellers is not necessary the same as in the bootstrap phase.
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comparing what they said with what they experienced. We recall here that we have two groups of buyer agents (QBuyer

and DTBuyer) and that have different perspectives of what a good seller is.
• ARG: The studied agent and the source buyer agent (informant) engage in a dialog following the protocol described in

the paper. Parameter β plays a crucial role in the experiments. It is easy to see that the higher the β parameter, the closer

the performance results to be to NO-ARG condition, since when β is high enough, the argument is always accepted [10].

The main parameters that we manage in the simulations are:

Parameter Description

#sellers Number of sellers (40)

#buyers Number of buyers (20)

pctGoodQuality Percentage of sellers that offer

good quality (25%)

pctGoodDTime Percentage of sellers that offer good

delivery time (25%)

pctQBuyers Percentage of QBuyers. 100 - pctQBuyers

are DTBuyer (20%, 50%, 80%)

pctBuyers-bootstrap Percentage of buyers that during the bootstrap

phase can only trade with a subset of randomly

selected sellers that represent the percentage

pctSellers-bootstrap

pctSellers-bootstrap It also determines the percentage of sellers

that during the experimental phase the studied

agent does bootstrap with. Then, the rest

of sellers are those that the studied agent

must discover only through messages (20%).

turnsBootstrap Turns in the bootstrap phase. We use such

parameter to control the amount of initial

information

β Inconsistency budget (0)

For the simulations, agents use the Lrep language taking M as 〈{VB, B, N, G, VG},≤s〉 (see Section 2). The performance

of an execution computes how well the studied agent models the unknown sellers. We compare the best possible social

evaluation as a seller (according to the parameters of the seller and the goals of the studied agent), with the real evaluation.

For instance, given a seller who offers a bad quality and a very good delivery time, the best theoretically evaluation for an

agent that is only interested in the quality dimension should be B (bad). In the case that our studied agent has evaluated

such seller as G, the difference between both evaluations gives a measure of the achieved accuracy.

We use the difference function� defined over M, in which we consider a mapping f : {VB, B,N, G, VG} → [0, 4] ∩ IN,

where f (VB) = 0, f (B) = 1, f (N) = 2, f (N) = 3, f (N) = 4, and define�(X, Y) = |f (X)− f (Y)|. Then, 0 is theminimumdif-

ference,whenbothevaluationshave the exact samevalue, and4 is themaximum,whenoneevaluation isVG and theotherVB.

We define the accuracy as the percentage of improvement with respect to the expected difference of two random eval-

uations. Given two random evaluations, their expected difference is exactly 40
25
= 1.6. The computation is summarized in

the following table:

Difference Possible values Prob. Expected

4 (VB, VG) 2 · 1
5
· 1
5

0.32

3 (VB, G),(B, VG) 2 · 2 · 1
5
· 1
5

0.48

2 (VB,N),(B, G),(N, VG) 2 · 3 · 1
5
· 1
5

0.48

1 (VB, B),(B,N),(N, G),(G, VG) 2 · 4 · 1
5
· 1
5

0.32

Total 1.6
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Fig. 6. A possible scenario during the experimental phase.

For instance, to compute the expectation of obtaining a difference of 2, we have to realize that there are only three

situations in which this occurs: (VB,N), (B, G), (N, VG). Therefore, the probability of archiving a situation in which the

difference is two is 3 · 1
5
· 1
5
. Since we also consider the symmetric situation (so, (VB,N) and (N,VB)), the probability is in fact

2 · 3 · 1
5
· 1
5
= 0.24. Thus, the expectation value is 0.24 · 2 = 0.48.

One would expect that the reputation model improves such value, so, that the difference decreases to some extend from

1.6. For this, we calculate the average difference of all the unknown sellers and compute the percentage with respect to 1.6.
For instance, an average difference of 0.5 improves 68.75% (68.75 = (1.6 − 0.5) · 100/1.6), while an average difference

of 0.3 improves 81.25% the random expected difference. We compare the experimental conditions ARG and NO-ARG using

this measure.
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Fig. 7. The performance of both experimental conditions varying the pctBuyers-Boostrap, with pctQBuyers=80% and pctDTBuyers = 20%.

6.2. Simulation results

As said above, our main concern is to validate that the use of our argumentation mechanism improves significantly the

accuracy of the agents in some conditions, and characterize them to some extend. Concretely, and in the terms used in the

description of the experiment, the hypothesis is:

H: The experimental condition ARG achieves a higher improvement than the condition NO-ARG

We analyze such statement through the parameters pctBuyers-Bootstrap and turnBootstrap, because they model the

amount of initial information that they have about the environment.

6.2.1. pctBuyers-bootstrap

The parameter models the number of buyers that cannot interact with all the sellers in the bootstrap phase, only with

a subset of them. When the parameter is high it indicates that most of the buyers are not able to directly explore some

sellers, and when it is low, that most of the buyers are able to explore all the sellers. This parameter is an indicator of how

well the set of buyers is informed. We theorized that too little information as well as too much, can be critical in the use of

argumentation. The simulation results are in tune with this idea.

Figs. 7, 8 and 9 show the performance of ARG and NO-ARG when varying pctBuyers-Bootstrap from 5% to 95% (setting

turnsBootstrap to 20) with pctQBuyers=80%, pctQBuyers=50% and pctQBuyers=20% respectively . The results confirm the

hypothesis for most of the points in the graph8 (we highlight such intervals in the figures). It is interesting to observe that

all three graphs show a range of pctBuyers-Bootstrap in which the hypothesis is always confirmed with a p_value ≤ 0.01.
The following table summarizes them:

pctQBuyers Intervals (%)

80% (fig. 7) 40–80

50% (fig. 8) 35–70

20% (fig. 9) 5–70

When pctBuyers-Bootstrap is higher than 80%, ARG does not improve significantly NO-ARG. Those are the cases where the

lack of ground information makes the argumentation process useless. Also, when pctBuyers-Bootstrap is low, ARG does not

necessary provide significant improvements over NO-ARG. This happens when the agents mostly have ground information,

so the studied agent cannot reject any argument.

8 We performed t-test statistical analysis to validate whether ARG significantly improves NO-ARG with a p_value ≤ 0.01. When this is the case, we say that H

is confirmed. For the statistical analysis, each simulation is repeated 20 times. To give arguments in favor of assuming normality on the distributions, we applied

the Jarque-Bera (JB) test for normality, and we could not reject the null hypothesis, which assumes that the distribution follows a normal distribution.
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Fig. 8. The performance of both experimental conditions varying the pctBuyersBoostrap, with pctQBuyers=50% and pctDTBuyers = 50%.

Fig. 9. The performance of both experimental conditions varying the pctBuyers-Boostrap, with pctQBuyers=20% and pctDTBuyers = 80%.

It is also interesting to observe that as pctBuyers-Bootstrap increases, the accuracy of both ARG and NO-ARG decreases

a bit. This is because direct trades offer always a better way to discover sellers than just communications. Then, when

pctBuyers-Bootstrap is high, less buyers can directly interact with all the sellers.

6.2.2. turnBootstrap

Related to the previous parameter, we want to study the amount of information that is needed to actually achieve an

improvement by using argumentation.We set the parameter pctBuyers-Bootstrap to 75% and vary the turns that agents spend

in the bootstrap phase. The higher turnsBootstrap is, the larger amount of information the agents will have about the sellers

when the experimental phase starts.

Figs. 10, 11 and 12 illustrate the results with pctQBuyers=80%, pctQBuyers=50% and pctQBuyers=20% respectively. As

expected, ARG does not perform better than NO-ARG until certain amount of data is managed by the agents. Fig. 12 is maybe

the most illustrative situation. There it can be observed how from 10 turns on, ARG is always better than NO-ARG. This is

an indicator of the amount of information needed to take advantage of argumentation. The following table summarizes the

intervals where ARG significantly improves NO-ARG. 9

9 Not all points achieve a p_value < 0.01. All of them though achieve p_value < 0.05.
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Fig. 10. The performance of both experimental conditions varying the turnsBootstrap, with pctQBuyers=80% and pctDTBuyers = 20%.

Fig. 11. The performance of both experimental conditions varying the turnsBootstrap, with pctQBuyers=50% and pctDTBuyers = 50%.

pctQBuyers Intervals (turns)

80% (Fig. 10) 18–20

50% (Fig. 11) 10–20

20% (Fig. 12) 10–20

The intervals show the regions in which the difference is statistically significant with a p_value < 0.01. However, some

other points achieve a p_value < 0.05, which in many cases would be enough to consider it a significant improvement.

The pctQBuyers shows an interesting behavior too.When it is 20% the improvement can be already appreciated in the turn

10, while when it is 50% and 80% the improvement is appreciatedmuch later. We recall here that the studied agent is always

a QBuyer, and then, when pctQBuyers is low, there are few QBuyers, so, few agents with the exact same goals. Therefore,

the results confirm that when the percentage of QBuyers is low, few bootstrap turns are enough to encourage the use of

argumentation. Notice that when pctQBuyers is high, the achieved improvement by NO-ARG is already high, while it is low

when pctQBuyers is low.We can extrapolate here that when everybody has similar goals it is not worth arguing, while when

it is not the case, argumentation can improve significantly the performance. The problem is that in real scenarios, it is hard

to know the goals of the agents beforehand. Nevertheless, they could be learned by the agents.
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Fig. 12. The performance of both experimental conditions varying the turnsBootstrap, with pctQBuyers=20% and pctDTBuyers = 80%.

6.3. Discussion

We have performed a set of simulations to empirically validate the benefits of the argumentation-based protocol. We

compare the accuracy obtained by agents using our argumentation protocol (ARG), and those not using it (NO-ARG). Our

findings demonstrate that ARG significantly improves (p_value ≤ 0.01) the accuracy obtained by NO-ARG in most of the

checked conditions. After the exploration of several parameters we conclude that when (1) there is a heterogeneity set of

agents (not everybody has the same goals) and (2) agents do not base all their inferences in direct experiences, agents using

argumentation achieve significantly a better accuracy that agents not using it.

When everybody has similar goals the gained accuracy using ARG may not be significant (1). The reason is that through

argumentation, agents can reject information that they consider not reliable. On the contrary, when the goals are similar,

the inclusion of the communications in the reputation theories does not produce many changes in the new deductions: the

reputation mechanism by itself obtains very good accurate predictions that are difficult to be improved.

The analysis shows the importance of the bootstrapping phase, whichmodels the fact that argumentation is useful when

agents are endowed with some knowledge (2). Regarding this, the experiments reveal that certain number of bootstrapping

turns are needed to make ARG better than NO-ARG. This situation is especially depicted in Fig. 12.

We want to remark that the presented simulations were performed independently for ARG and NO-ARG. It means that

for each simulation, a bootstrap phasewas executed and either ARG or NO-ARGwhere executed.We partially exploredwhat

happenswhen after the same bootstrap phase, we run ARG and NO-ARG.We observe that inmost of the cases ARG performs

better than NO-ARG. Preliminary results are illustrated in Fig. 13. We let for future work a more exhaustive exploration in

this direction.

7. Related work

Many surveys exist in the literature regarding computational trust and reputation models. Some of them are based on

on-line related systems [20–23] and others focused on peer-to-peer systems [24,25]. Some reviews tackle concrete aspects

or functionalities like attack and defense techniques [26] or reputation management [27]. Others are more general [28–

31]. All of them provide comprehensive definitions of models that use reliability measures calculated from the source of

information.

Nevertheless, in this related work, we provide an overview of the work that takes advantage of the constituent elements

of reputation-related concepts. For instance, models like [32,33] use certified reputation, in which the same target agent is

able to justify its own reputation by presenting references (like reference letters when applying for a job). However, neither

dialogs nor specific acceptability semantics is provided. Work presented in [34] explicitly uses argumentation techniques

to handle recommendations. Its focus is bounded to peer-to-peer networks and recommendation systems. With a similar

objective than the previous work the research published in [35] uses probabilistic argumentation techniques to calculate

web of trusts applied to compute the strength of cryptographic keys. Thus, it relies on peer-to-peer networks and focuses

on a very specific dimension of trust, instead of considering a set of components under which to argue. In [36] reputation

values are justified by the history of interactions and social network analysis. In this approach, argumentation is used as a

theoretical reasoning process, instead of a dialectical procedure.

Thework presented in [37] contributes to thefield of computational reputationmodels by analyzing different aggregation

operations used by reputation models to better model the behavior of potential agents. This is in tune with the objective
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Fig. 13. The performance of both experimental conditions keeping the same bootstrap data, with fixed parameters. We illustrate how when keeping the same

bootstrap data, argumentation always produces a better performance.

of our work, although in our case, we focus on a filter mechanism to prevent agents to aggregate useless communications,

while the pointed out paper focuses on how such information must be aggregated inside the reputation model.

In [38], the authors analyze reputation-related concepts in terms of the internal elements used to infer them. How-

ever, it does not provide any formal protocol nor any acceptability semantics. More pragmatic approaches provide agent

architectures for fuzzy argumentation on trust and reputation, but they lack formal definitions of acceptability [39].

A very recent work [40] presents a formal argumentation framework to argue about the trustworthiness of information

sources using as a based the internal components of trust defined by Castelfranchi and Falcone [41]. However our approach

offers an argumentation framework to deal with the components of social evaluations, which of course have a direct impact

on the component called core trust by Castelfranchi and Falcone. Both approaches are complementary because they deal

with different aspects of evaluations. While [40] deals with the components of Trust as defined by [41], we deal with the

components of Social Evaluations, partially defined by Conte and Paolucci [4], and extended by Pinyol and Sabater-Mit [3].

Moreover, the pointed out paper remains at a theoretical level whilst we present an empirical validation that shows the

benefits of using such kind of framework.

A promising research line that can be complementary to our approach comes from the solution of the trust alignment

problem [42]. This approach suggests that with the exchange of ground elements to justify trust values (they consider only

interactions, composed of contracts and fulfillments), it is possible tomodel other agents’ inferences through inductive logic

algorithms. This approach requires though a very stable social groups where agents can gather a lot of shared interactions

and relatively simple reputation models.

From a more technical fashion, regarding the new argumentation-based protocol that we have developed, our work is

related to [43]. One of the main features of our framework is the capability to handle both numerical and categorical values

in the arguments, also used in the cited paper applied though to preference-based arguments. In a similar way, the work in

[44] faces the problem of merging information from difference sources by using argumentation frameworks. We instantiate

a similar framework to get in to the objective of our paper.

Finally, we do not want to forget the incursion of argumentation-based negotiation in the reputation and trust field. For

instance, thework presented in [45] acknowledges the notion of trust as amulti-faced holistic construct, based on evaluable

elements that can be used to argue and lead the decisionmaking.We can say that the approaches are complementary.While

ourwork focuses on the analysis of the internal elements of reputation-related components, which contributes to the field of

computational reputationmodels, negotiation approaches try to integrate it in argumentation-based negotiation processes.

8. Conclusions

Wehave defined an argumentation-based protocol for the exchange of reputation-related information that allows agents

to judge whether a given piece of information is reliable or not. We use argumentation techniques to give semantics to the

protocol. The main characteristics of the system are:

• Only the recipient agent decides about the reliability of a communicated evaluation. This differs from other approaches

inwhich the source agent attaches a reliabilitymeasure to the communicated social evaluation. Thismakesmore difficult
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for dishonest agents to intentionally send fraudulent information, because they must be aware of the knowledge of the

recipient and justify the lie accordingly.
• It uses argumentation frameworks to give semantics to the dialogs.We exploit the Lrep language to completely define how

arguments are constructed and influence one another. We instantiate a weighted abstract argumentation framework to

define the acceptability semantics of a communicated social evaluation.
• It handles quantitative and qualitative graded information. One of the main characteristics of reputation information is

that it is graded. Nowadays it is strange to find a model that provides crisp evaluations of the agents. For instance, an

agent A may be bad, very bad or very good etc. as a car driver, and this has to be taken into account when arguing about

evaluations.
• It permits dialogs between parties that use different reputation models. Even when we assume that agents use the

same language to talk and reason about reputation information (Lrep language), we suppose that they can use different

inference rules (different reputation models) without having to exchange the exact rules that each agent uses for the

inferences.

We have made an important assumption: agents use the same language to talk about reputation concepts. This requires

that the concepts described by the language have the same semantics for both agents. We allow though the use of different

deduction rules to infer the predicates. In the case agents use different semantics they should engage first in a process of

ontology alignment.

At the theoretical level, the next step regarding this work will be the inclusion of defeats among arguments. We plan to

use the typology of ground elements to give strength to the arguments, independently of their attack relations. For instance,

one may consider that arguments based on direct experiences are stronger than those based on communications.

At the simulation level, the objective of the experimental section was to provide empirical evidences that in some open

multi-agent environments, theuseof our argumentation-basedprotocol significantly improve theperformanceof the agents,

meaning that they are able to better forecast the behavior of other agents in the interactions. It was not our intention to prove

any property or usage of the inconsistency budget, which in our simulations is always set to 0 to maximize the difference

with the non-argumentation setting. In the current experimental settings, when the inconsistency budget increases, the

results of ARG and NO_ARG become similar. We let for future work an in-depth study of scenarios and situations where the

strategic use of the inconsistency budget shows empirical evidences of better performance.

It is also important to remark that dialog games in dynamic contexts may be neither sound nor complete [46]. This

implies that we can only ensure the correctness of the presented dialog protocol when the internal information that agents

have does not change during the game. This constraint can be too strong in certain scenarios, specially when each step of

the dialog can be considered a communication that may change the internal mental state of the recipient agents. This is a

research line that should be explored and investigated in the future.
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