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Optimal defender allocation for massive security games: A
branch and price approach
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ABSTRACT
Algorithms to solve security games, an important class of Stackel-
berg games, have seen successful real-world deployment by LAX
police and the Federal Air Marshal Service. These algorithms pro-
vide randomized schedules to optimally allocate limited security
resources for infrastructure protection. Unfortunately, these state-
of-the-art algorithms fail to scale-up or to provide a correct so-
lution for massive security games with arbitrary scheduling con-
straints. This paper provides ASPEN, a branch-and-price algo-
rithm to overcome this limitation based on two key contributions:
(i) A column-generation approach that exploits an innovative com-
pact network flow representation, avoiding a combinatorial explo-
sion of schedule allocations; (ii) A branch-and-bound approach
with novel upper-bound generation via a fast algorithm for solv-
ing under-constrained security games. ASPEN is the first known
method for efficiently solving real-world-sized security games with
arbitrary schedules. This work contributes to a very new area of
work that applies techniques used in large-scale optimization to
game-theoretic problems—an exciting new avenue with the poten-
tial to greatly expand the reach of game theory.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence — Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms
Algorithms, Security, Arbitrary Scheduling Problem, Performance

Keywords
Game Theory, Stackelberg Games, Algorithms, Uncertainty, Secu-
rity, Randomization, Column Generation, Branch and Price, AS-
PEN, SPARS

1. INTRODUCTION
Algorithms for attacker-defender Stackelberg games, resulting

in randomized schedules for deploying limited security resources
at airports, subways, ports, and other critical infrastructure have
garnered significant research interest [13, 9]. Indeed, two impor-
tant deployed security applications are using such algorithms: AR-
MOR and IRIS. ARMOR has been in use for over two years by
Los Angeles International Airport police to generate canine-patrol
and vehicle-checkpoint schedules [15, 14]. IRIS was recently de-
ployed by the Federal Air Marshals Service (FAMS) to create flight
schedules for air marshals [16]1. These applications are fueled by
1FAMS deploys armed air marshals on US commercial aircraft to

efficient algorithms that enable scale-up [13, 5, 2, 7] in the input
games, with the latest significant scale-up achieved in ERASER-C,
the algorithm used in IRIS [9].

Unfortunately, current state of the art algorithms for Stackel-
berg games are inadequate for larger security scheduling applica-
tions [14]. For example, given that US carriers fly over 27,000
domestic and 2,000 international flights daily, generating random-
ized flight schedules for the limited air marshals resources is a mas-
sive scheduling challenge. IRIS addresses an important part of this
space — the international sector — but only considers schedules
of size two (one departure and one return flight). However, algo-
rithms like ERASER-C in IRIS fail to scale-up and/or to provide a
correct solution when air marshals are allowed to fly tours of more
than two flights (common in the domestic sector) [9]. The cul-
prit is the exponential explosion in the defender’s strategy space in
such games caused by the arbitrary size and structure of possible
security schedules, and the concomitant combinatorial allocations
of security resources to schedules. Indeed, as shown by Korzhyk et
al. [10], the problem can be solved in polynomial time only if the
schedules are of size 0 or 1, or if there is exactly one resource type
for a schedule size of 2, and is NP-hard in general.

Motivated by FAMS and other applications with complex schedul-
ing constraints, including transportation networks and border pa-
trols, this paper presents algorithms for SPARS (Security Problems
with ARbitrary Schedules) — where there are no special restric-
tions on the possible schedules. Our main contribution is ASPEN
(Accelerated SPars ENgine), a new algorithm for SPARS solving
massive Stackelberg security games with arbitrary scheduling con-
straints. ASPEN is based on the branch and price framework used
to solve very large mixed-integer programs, and provides two novel
contributions. First, ASPEN uses column generation to avoid rep-
resenting the full (exponential) strategy space for the defender. To
this end, we provide a novel decomposition of the security schedul-
ing problem (SPARS) into a master problem and a network flow
subproblem that can be used to generate feasible defender strategies
as needed. Second, ASPEN uses a novel branch-and-bound method
for searching the space of attacker strategies, achieving significant
performance improvements by integrating branching criteria and
bounds using the ORIGAMI algorithm [9]. Additionally, we apply
column generation to improve the scope of correct application of
previous methods such as ERASER-C. We evaluate ASPEN em-
pirically on problems motivated by the FAMS domain, illustrating
that this is the first known method for efficiently solving real-world-
sized security games with arbitrary schedules.

2. SPARS
deter and defeat terrorist/criminal attempts to gain control of the
aircraft.
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We adopt the model of security games from Kiekintveld et. al. [9],
though our work here will focus on the most general type of schedul-
ing problem allowed in this framework. A security game is a two-
player game between a defender and an attacker. The attacker’s
pure strategy space A is the set of targets T that could be attacked,
T = {t1, t2, . . . , tn}. The corresponding mixed strategy a = 〈ai〉
is a vector where ai represents the probability of the adversary
attacking ti. The defender allocates resources of different types
λ ∈ Λ to protect targets, with the number of available resources
given by R = {r1, r2, . . . , r|Λ|}. Each resource can be assigned to
a schedule covering multiple targets, s ⊆ T , so the set of all legal
schedules S ⊆ P(T ), where P(T ) represents the power set of T .
There is a set of legal schedules for each λ, Sλ ⊆ S.

The defender’s pure strategies are the set of joint schedules that
assign each resource to at most one schedule. Additionally, we as-
sume that a target may be covered by at most 1 resource in a joint
schedule (though this can be generalized). A joint schedule j can
be represented by the vector Pj = 〈Pjt〉 ∈ {0, 1}n where Pjt rep-
resents whether or not target t is covered in joint schedule j. We de-
fine a mapping M from j to Pj as: M(j) = 〈Pjt〉, where Pjt = 1
if t ∈

S
s∈j s; Pjt = 0 otherwise. The set of all feasible joint

schedules is denoted by J. The defender’s mixed strategy x speci-
fies the probabilities of playing each j ∈ J, where each individual
probability is denoted by xj . Let c = 〈ct〉 be the vector of cover-
age probabilities corresponding to x, where ct =

P
j∈J Pjtxj is

the marginal probability of covering t.
Payoffs depend on the target attacked and whether or not a de-

fender resource is covering the target. Ucd(t) denotes the defender’s
utility if t is attacked when it is covered by a resource of any type. If
t is not covered, the defender gets Uud (t). Likewise, the attacker’s
utilities are denoted by Uca(t) and Uua (t). We assume adding cov-
erage to target t is strictly better for the defender and worse for the
attacker: Ucd(t) > Uud (t) and Uca(t) < Uua (t), however, not neces-
sarily zero-sum. For a strategy profile 〈c,a〉, the expected utilities
for the defender and attacker are given by:

Ud(c,a) =
X
t∈T

at (ctU
c
d(t) + (1− ct)Uud (t)) (1)

Ua(c,a) =
X
t∈T

at (ctU
c
a(t) + (1− ct)Uua (t)) (2)

We adopt a Stackelberg model in which the defender acts first and
the attacker chooses a strategy after observing the defender’s mixed
strategy. Stackelberg games are common in security domains where
attackers can surveil the defender strategy [13]. The standard so-
lution concept is Strong Stackelberg Equilibrium (SSE) [11, 4, 17,
9], in which the leader selects an optimal mixed strategy based on
the assumption that the follower will choose an optimal response,
breaking ties in favor of the leader.2 There always exists an optimal
pure-strategy response for the attacker, so we restrict our attention
to this set in the rest of the paper. The formal definition of a Stack-
elberg equilibrium is given in Definition 1. The problem of finding
Stackelberg equilibria in security games has been shown to be in
polynomial time only if the schedule size is 0 or 1, or if the sched-
ule size is 2 and there is exactly one resource type; it is NP-hard in
all other settings [10].

DEFINITION 1. A pair of strategies 〈C, g〉 forms a Strong Stack-
elberg Equilibrium (SSE) if they satisfy the following:

2This tie-breaking rule is counter-intuitive, but the defender can
make this response strictly optimal for the attacker by playing a
strategy an infinitesimal ε away from the SSE strategy.

1. The leader (defender) plays a best-response:
Ud(c, g(c)) ≥ Ud(c′, g(c′)), for all c′.

2. The follower (attacker) plays a best-response:
Ua(c, g(c)) ≥ Ua(c, g′(c)), for all c, g′.

3. The follower breaks ties optimally for the leader:
Ud(c, g(c)) ≥ Ud(c, τ(c)), for all c, where τ(c) is the set
of follower best-responses to c.

Example: Consider a FAMS game with 5 targets (flights), T =
{t1, . . . , t5}, and three marshals of the same type, r1 = 3. Let the
set of feasible schedules be as follows:

S1 = {{t1, t2}, {t2, t3}, {t3, t4}, {t4, t5}, {t1, t5}}

Thus, in this example, the set of targets can be thought of as being
arranged in a pentagon, where each of the five links corresponds
to a schedule. The set of feasible joint schedules is shown below,
where column J1 represents the joint schedule {{t1, t2}, {t3, t4}}.
Thus, since targets t1, t2, t3 and t4 are covered by J1, PJ1 has
one’s in the corresponding entries and 0 corresponding to t5.

P =

J1 J2 J3 J4 J5

t1 :
t2 :
t3 :
t4 :
t5 :

26664
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

37775
Each joint schedule in J assigns only 2 air marshals in this exam-
ple, since no more than 1 FAM is allowed on any flight. Thus,
the third air marshal will remain unused. Suppose all of the tar-
gets have identical payoffs Ucd(t) = 1, Uud (t) = −5, Uca(t) =
−1 and Uua (t) = 5. In this case, the optimal strategy for the
defender randomizes uniformly across the joint schedules, x =
〈.2, .2, .2, .2, .2〉, resulting in coverage c = 〈.8, .8, .8, .8, .8〉. All
pure strategies have equal payoffs for the attacker, given this cov-
erage vector.

3. ASPEN SOLUTION APPROACH AND RE-
LATED WORK

The ERASER-C mixed-integer linear program [9] is the most
recent algorithm developed for larger and more complex Stackel-
berg security games [5]. Whereas previous work has focused on
patrolling arbitrary topologies using Stackelberg games [2, 13],
it has typically focused on a single defender. In contrast, AS-
PEN and ERASER-C focus on games with large numbers of de-
fenders of different types, handling the combinatorial explosion
in the defender’s joint schedules. Unfortunately, as the authors
note, ERASER-C may fail to generate a correct solution in cases
where arbitrary schedules with more than two flights (i.e., multi-
city tours) are allowed in the input, or when the set of flights can-
not be partitioned into distinct sets for departure and arrival flights.
For instance, ERASER-C incorrectly outputs the coverage vector
c = 〈1, 1, 1, 1, 1〉 for the example above (no legal joint sched-
ule can cover more than 4 targets, so it is not possible to cover all
targets with probability 1). ERASER-C avoids enumerating joint
schedules to gain efficiency, but loses the ability to correctly model
arbitrary schedules. Furthermore, ERASER-C only outputs a cov-
erage vector c and not the distribution x over joint schedules J
necessary to implement the coverage in practice (though for some
restricted cases it is possible to construct x from c in polynomial
time using the Birkhoff-von Neumann Theorem [10]). New algo-
rithms are needed to solve general SPARS problems that ERASER-
C cannot handle.
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SPARS problems can be formulated as mixed-integer programs
in which adversary strategies are represented by integer variables a
with at = 1 if target t is attacked and 0 otherwise. Two key com-
putational challenges arise in this formulation. First, the space of
possible strategies (joint schedules) for the defender suffers from
combinatorial explosion: a FAMS problem with 100 flights, sched-
ules with 3 flights, and 10 air marshals has up to 100,000 sched-
ules and

`
100000

10

´
joint schedules. Second, integer variables are a

well-known challenge for optimization. Branch and Price [1] is a
framework for solving very large optimization problems that com-
bines branch and bound search with column generation to mitigate
both of these problems. Column generation [6] can be viewed as a
“double oracle" algorithm [12], and is used to avoid explicitly enu-
merating all the variables in a large problem (in our problem, these
variables represent the joint schedules). This method operates on
joint schedules (and not marginal probabilities, like ERASER-C),
so it is able to handle arbitrary scheduling constraints directly.

First Node: all at ε [0,1]  
First leaf: at1= 1, arest= 0  

Second node: at1= 0, arest ε [0,1]  

Second leaf: at1=0, at2=1, 
arest=0  Third node: at1,at2= 0, arest ε 

[0,1]  

Last leaf: atT= 1, arest= 0  

Upper Bound 1 

UB1 >= UB2 >= … >= UBT 
LB1, …, LBT: Not necessarily ordered 

Upper Bound 2 

Upper Bound 3 

Upper Bound T 

Lower Bound 1 

Lower Bound 2 

Lower Bound T 
Column Generation 
Node  

ORIGAMI Node 

Figure 1: Working of Branch and Price

An example of branch and price for our problem is shown in Fig-
ure 1, with the root representing the original problem. Branches to
the left (gray nodes) set exactly one variable ti in a to 1 and the
rest to zero, resulting in a linear program that gives a lower bound
on the overall solution quality. Branches to the right fix variable
ti to zero, leaving the remaining variables unconstrained. An up-
per bound on solution quality computed for each white node can
be used to terminate execution without exploring all of the possible
integer assignments. Solving the linear programs in each gray node
normally requires enumerating all joint schedules for the defender.
Column generation (i.e., pricing) is a technique that avoids this by
iteratively solving a restricted master problem, which includes only
a small subset of the variables, and a slave problem, that identifies
new variables to include in the master problem to improve the so-
lution.

Unfortunately, branch and price and column generation are not
“out of the box approaches” and have only recently begun to be ap-
plied in game-theoretic settings [8]. We introduce a novel master-
slave decomposition to facilitate column generation for SPARS, in-
cluding a network flow formulation of the slave problem. We also
show experimentally that conventional linear programming relax-
ations used for branch and bound perform poorly in this domain,
and we replace them with novel techniques based on fast algorithms

for security games without scheduling constraints.

4. ASPEN COLUMN GENERATION
The linear programs at each leaf in Figure 1 are decomposed

into into master and slave problems for column generation (see
Algorithm 1). The master solves for the defender strategy x, given
a restricted set of columns (i.e., joint schedules) P. The objective
function for the slave is updated based on the solution of the master,
and the slave is solved to identify the best new column to add to the
master problem, using reduced costs (explained later). If no column
can improve the solution the algorithm terminates.

Algorithm 1 Column generation employed at each leaf
1. Initialize P
2. Solve Master Problem
3. Calculate reduced cost coefficients from solution
4. Update objective of slave problem with coefficients
5. Solve Slave Problem
if Optimal solution obtained then

6. Return (x,P)
else

7. Extract new column and add to P
8. Repeat from Step 2

4.1 Master Problem
The master problem (Equations 3 to 8) solves for the probabil-

ity vector x that maximizes the defender reward (Table 1 describes
the notation). This master problem operates directly on columns
of P, and the coverage vector c is computed from these columns
as Px. Constraints 4–6 enforce the SSE conditions that the play-
ers choose mutual best-responses defined in Definition 1, mirror-
ing similar constraints in ERASER-C. The defender expected pay-
off (Equation 1) for target t is given by the tth component of the
column vector DPx + Uu

d and denoted (DPx + Uu
d)t. Thus,

Equation 4 coupled with Equation 3 corresponds to condition 1,
the leader’s best response, of Definition 1. Similarly, the attacker
payoff for target t is given by (APx + Uu

a)t. Constraints 4 and 5
are active only for the single target t∗ attacked (at∗ = 1). This tar-
get must be the adversary’s best-response, due to Constraint 6, thus
corresponding to condition 2, in Definition 1. The follower will
break ties optimally for the leader in this formulation of the master
problem, since the formulation will choose that target t∗ which is
the follower’s best response and maximizes the defender payoff.

max d (3)
s.t. d − DPx−Uu

d ≤ (1− a)M (4)
k − APx−Uu

a ≤ (1− a)M (5)
APx + Uu

a ≤ k (6)X
j∈J

xj = 1 (7)

x,a ≥ 0 (8)

4.2 Slave Problem
The purpose of the slave problem is to find the best column to

add to the current columns in P. This is done using reduced cost,
which captures the total change in the defender payoff if a candi-
date column is added to P. The candidate column with minimum
reduced cost improves the objective value the most [3]. The re-
duced cost c̄j of variable xj , associated with column Pj, is given
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Table 1: Notation
Variable Definition Dimension

J Joint Schedules |J |
T Targets |T |
P Mapping between T and J |T | × |J |
x Probability Distribution over J |J | × 1
a Attack vector |T | × 1
d Defender Reward -
k Adversary Reward -
d Column vector of d |T | × 1
k Column vector of k |T | × 1
D Diag. matrix of Ucd(t)− Uud (t) |T | × |T |
A Diag. matrix of Uca(t)− Uua (t) |T | × |T |
Uu
d Vector of values Uud (t) |T | × 1

Uu
a Vector of values Uua (t) |T | × 1

M Huge Positive constant -

in Equation 9, where w,y, z and h are dual variables of master
constraints 4, 5, 6 and 7 respectively. The dual variable measures
the influence of the associated constraint on the objective, defender
payoff, and can be calculated using standard techniques [3].

c̄j = wT (DPj) + yT (APj)− zT (APj)− h (9)

An inefficient approach would be to iterate through all of the
columns and calculate each reduced cost to identify the best col-
umn to add. Instead, we formulate a minimum cost network flow
(MCNF) problem that efficiently finds the optimal column. Fea-
sible flows in the network map to feasible joint schedules in the
SPARS problem, so the scheduling constraints are captured by this
formulation. For a SPARS instance we construct the MCNF graph
G as follows.

A source node sourceλ with supply rλ is created for each de-
fender type λ ∈ Λ. A single sink node has demand

P
λ∈Λ rλ. Tar-

gets in schedule s for resource λ are represented by pairs of nodes
(asλ,t, bsλ,t) with a connecting link (so each target corresponds to
many nodes in the graph). For every schedule sλ ∈ Sλ we add the
following path from the source to the sink:

〈sourceλ, as,ti1 , bs,ti1 , as,ti2 , . . . , bs,tiL , sink〉

The capacities on all links are set to 1, and the default costs to 0. A
dummy flow with infinite capacity is added to represent the possi-
bility that some resources are unassigned. The number of resources
assigned to t in a column Pj is computed as follows:

assigned(t) =
X
s∈S

flow[link(as,t, bs,t)]

Constraints are added to G so that the number of scheduled re-
sources on each target is not greater than 1. Therefore, the added
constraints can be written down as follows:

assigned(t) ≤ 1 ∀ t ∈ T.

A partial graph G for our earlier example is shown in Figure 2,
showing paths for 3 of the 5 schedules. The paths correspond
to schedules {t1, t2}, {t2, t3} and {t1, t5}. The supply and de-
mand are both 3, corresponding to the number of available FAMS.
Double-bordered boxes mark the flows used to compute assigned(t1)
and assigned(t2). Every joint schedule corresponds to a feasible
flow in G. For example, the joint schedule {{t2, t3}, {t1, t5}} has
a flow of 1 unit each through the paths corresponding to schedules

{t2, t3} and {t1, t5}, and a flow of 1 through the dummy. Simi-
larly, any feasible flow through the graph G corresponds to a feasi-
ble joint schedule, since all resource constraints are satisfied.

cap =1  cap =1  

cap =1  cap =1  

cap =1  cap =1  

sink 
demand = 3 

source1 
supply r1= 3 

target t1 target t2 

target t3 

dummy target and path 

cap = inf  

target t5 
Flow = 1 

Flow = 1 

Flow = 1 

Figure 2: Example Network Graph

It remains to define link costs such that the cost of a flow is the
reduced cost for the joint schedule. We decompose c̄j into a sum
of cost coefficients per target, ĉt, so that ĉt can be placed on links
(as,t, bs,t) for all targets t. ĉt is defined as follows:

ĉt = wt.Dt + yt.At − zt.At (10)
Dt = Ucd(t)− Uud (t) (11)
At = Uca(t)− Uua (t) (12)

where wt, yt and zt are tth components of w,y and z. The overall
objective given below for the MCNF problem sums the contribu-
tions of the reduced cost from each individual flow and subtracts
the dual variable h. If this is non-negative, no column can improve
the master solution, otherwise the optimal column (identified by
the flow) is added to the master and the process iterates.

min
flow

X
(as,t,bs,t)

ĉt.flow[(as,t, bs,t)]− h

To recap, the entire column generation algorithm employed at
each node of the branch and bound tree shown in Figure 1 is given
by Algorithm 1 and was described in this section. If the mini-
mum reduced cost obtained at an iteration is non-negative, it in-
dicates that the optimal solution for the current leaf in the tree has
been achieved. Otherwise, a new column Pj is obtained by set-
ting Pjt = assigned(t) for all t ∈ T , and the master problem is
re-solved.

5. IMPROVING BRANCHING AND BOUNDS
ASPEN uses branch and bound to search over the space of pos-

sible attacker strategies. A standard technique in branch and price
is to use LP relaxation, i.e. allow the integer variables to take on
arbitrary values, to give an optimistic bound on the objective value
of the original MIP for each internal node. Unfortunately, our ex-
perimental results show that this generic method is ineffective in
our domain. We introduce ORIGAMI-S, a novel branch and bound
heuristic for SPARS based on ORIGAMI [9], which is an effi-
cient solution method for security games without scheduling con-
straints and heterogeneous resources. We use ORIGAMI-S to solve
a relaxed version of SPARS, and integrate this in ASPEN to give
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bounds and select branches.

min k (13)
Ua(c) = Ac + Uu

a (14)
0 ≤ k−Ua(c) (15)

k−Ua(c) ≤ (1− q) ·M (16)
ct =

P
s∈S c̃t,s ∀t ∈ T (17)X

s∈Sλ

c̃Tλ(s),s ≤ rλ ∀λ ∈ Λ (18)

X
t∈T

ct ≤ L ·
P
λ∈Λ rλ (19)

c ≤ q (20)
q ∈ {0, 1} (21)

c, ct,s ∈ [0, 1] ∀t ∈ T, s ∈ S (22)

The ORIGAMI-S model is given in Equations 13–22. It min-
imizes the attacker’s maximum payoff (Equations 13–16). The
vector q represents the attack set, and is 1 for every target that
gives the attacker maximal expected payoff (Equation 16). The
remaining nontrivial constraints restrict the coverage probabilities.
ORIGAMI-S defines a set of probabilities c̃t,s that represent the
coverage of each target t in each schedule s ∈ Sλ. The total cov-
erage ct of target t is the sum of coverage on t across individual
schedules (Equation 17). We define a set Tλ which contains one
target from each schedule s ∈ Sλ. The total coverage assigned by
resource type λ is upper-bounded by rλ (Equation 18), analogous
to the constraint that the total flow from a source in a network flow
graph cannot be greater than the available supply. Total coverage is
also bounded by multiplying the number of resources by the max-
imum size of any schedule (L) in Equation 19. The defender can
never benefit by assigning coverage to nodes outside of the attack
set, so these are constrained to 0 (Equation 20).

ORIGAMI-S is solved once at the beginning of ASPEN, and tar-
gets in the attack set are sorted by expected defender reward. The
maximum value is an initial upper bound on the defender reward.
The first leaf node that ASPEN evaluates corresponds to this max-
imum valued target (i.e, setting its attack value to 1), and a solu-
tion is found using column generation. This solution is a lower
bound of the optimal solution, and the algorithm stops if this lower
bound meets the ORIGAMI-S upper bound. Otherwise, a new up-
per bound from the ORIGAMI-S solution is obtained by choosing
the second-highest defender payoff from targets in the attack set,
and ASPEN evaluates the corresponding leaf node. This process
continues until the upper bound is met, or the available nodes in
the search tree are exhausted.

THEOREM 1. The defender payoff, computed by ORIGAMI-S,
is an upper bound on the defender’s payoff for the corresponding
SPARS problem. For any target not in the attack set of ORIGAMI-
S, the restricted SPARS problem in which this target is attacked is
infeasible.

Proof Sketch: ORIGAMI and ORIGAMI-S both minimize the
maximum attacker payoff over a set of feasible coverage vectors.
If there are no scheduling constraints, minimizing the maximum
attacker payoff also maximizes the defender’s reward [9]. Briefly,
the objective of both ORIGAMI and ORIGAMI-S is to maximize
the size of the attack set, such that the coverage probability of each
target in the attack set is also maximal. Both of these weakly im-
prove the defender’s payoff because adding coverage to a target is
strictly better for the defender and worse for the adversary.

ORIGAMI-S makes optimistic assumptions about the amount of
coverage probability the defender can allocate by taking the maxi-
mum that could be achieved by any legal joint schedule and allow-
ing it to be distributed arbitrarily across the targets, ignoring the
scheduling constraints. To see this, consider the marginal probabil-
ities c∗ of any legal defender strategy for SPARS. There is at least
one feasible coverage strategy for ORIGAMI that gives the same
payoff for the defender. Constraints 17 and 22 are satisfied by c∗,
because they are also constraints of SPARS. Each variable c̃Tλ(s),s

in the set defined for Constraint 18 belongs to a single schedule
associated with resource type λ, and at most rλ of these can be
selected in any feasible joint schedule, so this constraint must also
hold for c∗. Constraint 19 must be satisfied because it assumes that
each available resource covers the largest possible schedule, so it
generally allows excess coverage probability to be assigned. Fi-
nally, constraint 20 may be violated by c∗ for some target t. How-
ever, the coverage vector with coverage identical to c∗ for all tar-
gets in the ORIGAMI-S attack set and 0 coverage outside the attack
set has identical payoffs (since these targets are never attacked).

6. COLUMN GENERATION ON MARGINALS
FOR JOINT PATROLLING SCHEDULES

ERASER-C [9] is the algorithm that is used in IRIS and ad-
dresses the FAMS security game. However, it only generates the
vector c (marginals), which specify the probability of each flight
being covered by a federal air marshal. Joint schedules P and
the distribution of over joint schedules x assigning every federal
air marshal to a flight schedule is not provided. While the use of
marginals in ERASER-C did provide an exponential scale-up over
DOBSS [13], the best prior algorithm, the actual joint schedules
still need to be generated from these marginals. In the section, we
propose the use of the same column generation approach described
in Section 4 to generate these joint schedules from the marginals
output by ERASER-C. Thus, the objective of this section is to find
joint schedules P and probability distribution x such that the ob-
tained coverage vector is given by the output of ERASER-C, and
can be formulated as:

minx ||Px− c||1P
j xj = 1

xj ≥ 0
(23)

Here, ||Px− c||1 refers to the L1 norm of ||Px− c||1, or the sum
of the absolute differences between each corresponding term of Px
and c. L1 is chosen so as to keep the objective function linear.

The formulation of the associated master problem in this case
is given from Equation 24 to Equation 28. The absolute distance
between corresponding terms of Px and c is calculated in Equa-
tions 25 and 26, and is minimized in the objective as given in Equa-
tion 24.

min
x,γ

X
t∈T

γt (24)

s.t. Px− γ ≤ c (25)
Px + γ ≥ c (26)X
t∈T

xt = 1 (27)

x ≥ 0 (28)

The slave problem in this case is the same as the one used before,
where the reduced cost of a joint schedule is:

c̄j = −(w1 + w2)TPj − σ (29)
(30)
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where w1,w2, σ are the optimal dual variables of the current mas-
ter problem associated constraints 25, 26, and 27. Again, the re-
duced cost c̄j can be decomposed into reduced cost coefficients per
target ĉt, which can be computed using Equation 31.

ĉt = −(w1t + w2t) (31)

7. EXPERIMENTAL RESULTS
We evaluate our algorithms on randomly generated instances of

the scheduling problem, and provide two sets of results. We first
compare the runtime results for ASPEN with regular Branch and
Prices and column generation on the output of ERASER-C. We
then provide runtime results for ASPEN when the problem size is
scaled.

7.1 Comparison on FAMS domain
We compare the runtime performance of ASPEN, branch and

price without the ORIGAMI-S heuristic (BnP) and ERASER-C.
For this experiment we generate random instances of FAMS prob-
lems [9] with schedules of size two, with one departure flight and
one arrival flight drawn from disjoint sets, so the set of feasible
schedules form a bipartite graph with nodes as flights (for correct
operation of ERASER-C). We vary the number of targets, defender
resources, and schedules.
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Figure 3: Runtime Comparison Changing Number of Re-
sources

As mentioned earlier, ERASER-C outputs only the coverage vec-
tor c. Obtaining the probability distribution x over joint sched-
ules J from ERASER-C, specifically when the problem contains
heterogeneous resources is a non-trivial challenge given the large
numbers of joint schedules. This distribution over joint schedules
was obtained using column generation on marginals as described
in Section 6. In the following, when we refer to ERASER-C run-
times, they include the time for this column generation in order to
allow a head-to-head comparison with ASPEN.

All experiments were based on 15 sample games, and problem
instances that took longer than 30 minutes to run were terminated.
Results varying the number of defender resources are shown in Fig-
ure 3. The y-axis shows the runtime in seconds on the logarithmic
scale. The x-axis shows the number of resources. ASPEN is the
fastest of the three algorithms. The effectiveness of the ORIGAMI-
S bounds and branching are clear in the comparison with standard

Table 2: Number of columns: 200 targets, 600 schedules
Resources ASPEN ERASER-C BnP (max. 30 mins)

10 126 204 1532
20 214 308 1679
30 263 314 1976
40 227 508 1510
50 327 426 1393

BnP method. The improvement over ERASER-C was an unex-
pected trend, and can be attributed to the number of columns gen-
erated by the two approaches, as shown in Table 2. In fact, ASPEN
was 6 times faster than ERASER-C in some instances. Yet it is
not the precise amount of speedup, but the fact that ASPEN is ex-
tremely competitive with ERASER-C in this specialized domain
that is key; for ASPEN can correctly solve a far more general set of
security games (SPARS) as we report next.

We observe similar results in the second and third data sets pre-
sented in Figures 4 and 5. Figure 4 shows the results when the
number of schedules is changed, where as Figure 5 shows the re-
sults when the number of targets is varied. The y-axis in both fig-
ures shows the runtime in seconds in a logarithmic scale. The x-
axis shows the number of schedules and targets respectively. For
example, the average runtime required by ERASER-C when there
are 1000 schedules, 200 targets and 10 resources is 29.26 seconds
for ERASER-C, 5.34 seconds for ASPEN and the simulation was
terminated after 30 minutes for Branch and Price.
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Figure 4: Runtime Comparison Changing Resources and
Schedules

7.2 ASPEN on Large SPARS Instances
We also evaluate the performance of ASPEN on arbitrary schedul-

ing problems as the size of the problem is varied to include very
large instances. No comparisons could be made because ERASER-
C does not handle arbitrary schedules and the only correct algo-
rithms known, DOBSS [13] and BnP, do not scale to these prob-
lem sizes. Since ERASER-C does not handle arbitrary schedules,
Branch and Price does not scale to these problem sizes (as shown in
the previous section) and the only known algorithm ( DOBSS [13])
that correctly solves this class of games requires an exponential rep-
resentation size, ASPEN is the only algorithm capable of solving
these instances. We vary the number of resources, schedules, and

6



0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

8000	
  

5	
   10	
   15	
   20	
  

Ru
n.

m
e	
  
(in

	
  s
ec
on

ds
)	
  

Number	
  of	
  Resources	
  

Scale-­‐up	
  (200	
  Targets,	
  1000	
  schedules)	
  

2	
  Targets/Schedule	
  
3	
  Targets/Schedule	
  
4	
  Targets/Schedule	
  
5	
  Targets/Schedule	
  

(a) Resources

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

50	
   500	
   1000	
   1500	
   2000	
  

Ru
n)

m
e	
  
(in

	
  s
ec
on

ds
)	
  

Number	
  of	
  Schedules	
  

Scale-­‐up	
  (200	
  Targets,	
  10	
  Resources)	
  

2	
  Targets/Schedule	
  
3	
  Targets/Schedule	
  
4	
  Targets/Schedule	
  
5	
  Targets/Schedule	
  

(b) Schedules

Figure 6: Runtime Scale-up Changing Number of Resources and Schedules is varied

1	
  

10	
  

100	
  

1000	
  

200	
   400	
   600	
   800	
   1000	
  

Ru
n+

m
e	
  
(	
  i
n	
  
se
cs
	
  )	
  
[lo

g-­‐
sc
al
e]
	
  

Number	
  of	
  Targets	
  

Comparison	
  (1000	
  schedules,	
  10	
  Resources)	
  

ERASER-­‐C	
  

BnP	
  

ASPEN	
  

Figure 5: Runtime Comparison Changing Number of Targets

targets as before. In addition, we vary the number of targets per
schedule for each of the three cases to test more complex schedul-
ing problems.

Table 3: Number of columns: 200 targets, 1000 schedules
Resources 3 Tar. / sch. 4 Tar. / sch. 5 Tar. / sch.

5 456 518 658
10 510 733 941
15 649 920 1092
20 937 1114 1124

Figure 6(a) shows the runtime results with 1000 feasible sched-
ules and 200 targets, averaged over 10 samples. The x-axis shows
the number of resources, and the y-axis shows the runtime in sec-
onds. Each line represents a different number of schedules per tar-
get. The number of joint schedules in these instances can be as
large as 1023 (

`
1000
10

´
≈ 2.6 × 1023). Interestingly, the runtime

does not increase much when the number of resources is increased
from 10 to 20 when there are 5 targets per schedules. Column 4 of

Table 3 illustrates that the key reason for constant runtime is that
the average number of generated columns remains similar.

The graph also shows that increasing the complexity of sched-
ules (i.e., the number of targets per schedule) increases the run-
time. This happens because the complexity of the slave problem in-
creases when the complexity of schedules is increased, in turn lead-
ing to the generation of more columns before the optimal solution
is attained. This leads to the increase in runtime with the increase
in complexity of schedules. This can also be seen in Table 3 when
looking across a row. For example, the average number of columns
required when the number of resources is 5 is 157, 456, 518 and
658 when there are 2, 3, 4 and 5 targets per schedule.

Similar trends are obtained in the other two sets of experiments
as well. Figure 6(b) shows the runtime results when the number
of schedules is increased, whereas Figure 7 shows the results when
the number of targets is varied. The y-axes in both the cases shows
the runtime in seconds, whereas the x-axis shows the number of
schedules and targets respectively.
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8. CONCLUSIONS
We present a branch and price method, ASPEN, for solving large-

scale Stackelberg security games with arbitrary constraints, includ-
ing important real-world applications such as FAMS scheduling.
ASPEN incorporates several novel contributions, including a de-
composition of SPARS to enable column generation and the inte-
gration of ORIGAMI-S to substantially speed up the branch and
bound search. Experimental results show that ASPEN is com-
petitive with ERASER-C for the restricted class of games where
ERASER-C is applicable. More importantly, ASPEN solves far
more general instances of scheduling problems where ERASER-
C and other existing techniques fail. ASPEN is also substantially
faster than a standard implementation of branch and price for this
domain. This work contributes to a very new area of work that ap-
plies techniques used in large-scale optimization to game-theoretic
problems—an exciting new avenue with the potential to greatly ex-
pand the reach of game theory.
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ABSTRACT
Law enforcement agencies frequently must allocate limited resources
to protect targets embedded in a network, such as important build-
ings in a city road network. Since intelligent attackers may observe
and exploit patterns in the allocation, it is crucial that the alloca-
tions be randomized. We cast this problem as an attacker-defender
Stackelberg game: the defender’s goal is to obtain an optimal mixed
strategy for allocating resources. The defender’s strategy space is
exponential in the number of resources, and the attacker’s exponen-
tial in the network size. Existing algorithms are therefore useless
for all but the smallest networks.

We present a solution approach based on two key ideas: (i) a
polynomial-sized game model obtained via an approximation of
the strategy space, solved efficiently using a linear program; (ii)
two efficient techniques that map solutions from the approximate
game to the original, with proofs of correctness under certain as-
sumptions. We present in-depth experimental results, including an
evaluation on part of the Mumbai road network.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms
Algorithms, Performance, Experimentation, Security, Theory

Keywords
Game Theory, Stackelberg Games, Algorithms, Uncertainty, Secu-
rity, Randomization, Patrolling, Risk Analysis

1. INTRODUCTION
Protecting targets against potential attacks is an important prob-

lem for security forces worldwide. The general setting is as fol-
lows: An attacker assigns different values to reaching (and dam-
aging or destroying) one of multiple targets. A defender wants to
allocate resources (such as patrol cars or canine units) to capture
the attacker before he reaches a target. In many of these situa-
tions, the domain has structure that is naturally modeled as a graph.
For example, city maps can be modeled with intersections as nodes
and roads as edges, where nodes are targets for attackers. In or-
der to prevent attacks, security forces can schedule checkpoints on
edges (e.g., roads) to detect intruders. For instance, in response to
the devastating terrorist attacks in 2008 [3], Mumbai police deploy
randomized checkpoints as one countermeasure to prevent future
attacks [1]. The strategy for placing these checkpoints must neces-
sarily be decided in advance of attack attempts, should account for

targets of differing importance, and should anticipate an intelligent
adversary who can observe the strategy prior to attacking.

In light of these requirements, game-theoretic approaches have
been developed to assist in generating randomized security strate-
gies in several real-world domains, including applications in use by
the Los Angeles International Airport [14] and the Federal Air Mar-
shals Service [15]. To account for the attacker’s ability to observe
deployment patterns, these methods model the problem as a Stack-
elberg game and solve for an optimal probability distribution over
the possible deployments to ensure unpredictability. Novel solvers
for classes of security games have recently been developed [2, 13,
4]. However, these solvers take time at least polynomial in the
number of actions of both players. In our setting, every path from
an entry point to a target is an attacker action, and every set of r
or fewer edges is a defender action. (r is the maximum number
of checkpoints.) Since the attacker’s actions grow exponentially
with the size of the network, and the defender’s actions grow expo-
nentially with r, existing methods quickly become too slow when
applied to large real-world domains.

In this work, we develop an efficient procedure for generating
checkpoint deployments based on two key ideas: (i) a polynomial-
sized approximation of the strategy space solved using a linear
program; (ii) two efficient sampling techniques to map solutions
back to the original space. To avoid the exponential strategy space
over all possible combinations of checkpoint placements (the joint
distribution), our methods operate on the marginal probabilities of
edges, i.e., the total probability of placing a checkpoint on an edge.
Our linear program, RANGER, upper-bounds the capture probabil-
ities along paths by the sum of marginal probabilities.

Our sampling algorithms efficiently generate joint distributions
in the original problem space from RANGER’s solution of marginal
probabilities. We prove that under certain conditions, the actual
capture probabilities of our algorithms match the upper bounds of
RANGER, and thus necessarily give optimal payoff. Radius Sam-
pling generates optimal joint distributions if certain conditions on
the marginal distribution are met. Comb Sampling generates distri-
butions which are optimal against an approximating attacker who
calculates the expected value of an attack by summing the marginal
probabilities on the path.

In addition to our theoretical results, we test our methods empiri-
cally. First, we evaluate the quality of RANGER against an optimal
solution technique, DOBSS, to verify the accuracy of RANGER’s
approximation. Then, we evaluate the sampling procedures by test-
ing against an exact attacker who plays a best response to the de-
fender’s true joint distribution. We also apply our methods to a
game model of the city of Mumbai and the targets attacked in 2008.

2. RELATED WORK

9



Aside from the literature on Stackelberg games for security, our
approach is also based on insights from network interdiction [17,
16, 9, 5]. These are the special case of our model when there is
a single target, or — equivalently — all targets have identical val-
ues. For such games, Washburn and Wood (1995) give an algo-
rithm finding optimal strategies for both players based on Min-Cut
computations. However, different target values can cause their al-
gorithm to perform arbitrarily poorly, as we see in our experiments.

Two additional lines of work are somewhat related. Mavronico-
las et al. (2008) define and analyze a network security game where
each attacker can attack any node of the network, and the defender
chooses a path to patrol to capture as many attackers as possible.
Because the attacker is not restricted to paths, the types of results
for this game are different from ours, and the focus in [12, 11] is
on understanding the impact of selfish behavior by defenders rather
than optimal strategies. Hider-seeker games [2, 8] are also studied
on graphs, but here, the attacker’s goal is only to evade capture, not
to reach any particular target.

3. PROBLEM DESCRIPTION
A graph-based security game models an attacker and a defender

who take actions on a graph G = (V, E), with n = |V | nodes
and m = |E| edges. The attacker starts at one of the source nodes
s ∈ S ⊆ V of his choosing and travels along a path in an attempt to
reach one of the targets t ∈ T ⊆ V . The attacker’s pure strategies
are thus all s-t paths P , denoted by B, from some source s to some
target t. The defender tries to capture the attacker before he reaches
a target, by placing up to r resources on edges of the graph. The
defender’s pure strategies are subsets of r or fewer edges; we de-
note the set of all such sets by L. Assuming that the defender plays
L ∈ L and the attacker P ∈ B, the attacker is captured whenever
P ∩ L 6= ∅, and succeeds in his attack when P ∩ L = ∅.

Unsuccessful attacks always have a payoff of c for the defender,
while successful ones have a penalty of D(t). We make the natural
restriction that D(t) ≤ c. We also assume that the game is zero-
sum, meaning that the attacker’s payoff for a successful attack on
target t is −D(t), and −c for an unsuccessful one. We stress here
that targets may have vastly different payoffs associated with them,
unlike in [16]. This distinction is crucial to model real security
domains, and thus to bridge the gap between theory and practice.

Since the attacker can choose which source to enter from, for
our analysis, we merge all sources into a single source without loss
of generality. More formally, we reform the graph so that all orig-
inal source-incident edges are incident to the new source. While
this operation obviously changes the graph, it does so only in a
way that does not impact the game: no rational attacker would ever
include multiple sources in his path, and therefore, a defender will
never select an edge between two sources. Those are the only edges
that disappear from the problem. Thus, to simplify presentation
and analysis, we will assume that the attacker always enters from a
unique known source s.

In a world of increasingly sophisticated and determined attack-
ers, a good defender strategy must take into account the fact that the
attacker will observe and exploit patterns in the defender’s behav-
ior. Thus, the game is naturally modeled as a Stackelberg game, an
approach also taken (for the same reasons) in past work in security
settings [7, 10]. The defender is modeled as the leader and moves
first, by selecting a mixed strategy λ ∈ Λ that assigns a probabil-
ity to each pure strategy L ∈ L. The attacker is the follower and
chooses a strategy after observing the defender’s mixed strategy.
There is always a pure-strategy best response for the attacker, so
we restrict the attacker to pure strategies without loss of generality.
Thus, the attacker’s Stackelberg strategy is a function f : λ 7→ P .

For any pair of strategy profiles (λ, f), the expected rewards for the
defender (RD) and attacker (RA) are given by:

RD(λ, f) = p · c + (1− p) ·D(t) (1)
RA(λ, f) = p · −c + (1− p) · −D(t), (2)

where t is the target at the end of the path specified by f(λ),
and p the probability that the attacker is captured on the path to
t given the defender’s strategy λ. Although the optimal defender
strategy is a Stackelberg Equilibrium, since our game is zero-sum,
this is equivalent to a Maximin strategy [6]. Unfortunately, as L
has size Θ(mr), and B has size exponential in n, existing meth-
ods for computing such strategies do not scale to realistic problem
sizes. We therefore develop a linear program and two accompa-
nying sampling methods to efficiently solve graph-based security
games.

4. RANGER
We first introduce RANGER (Resource Allocation for Network-

based Games with Efficient Representations), a linear program for
finding an optimal set of marginal checkpoint probabilities for the
defender. We denote the marginal probability associated with edge
e by xe. Formally, xe =

∑
L∈L,e∈L λL, where λL is the proba-

bility of the set L under λ. We denote the marginal distribution by
~x = 〈xe〉.

By reasoning over ~x, we avoid the exponential size of the de-
fender’s space. The key insight of our approach is the following
simple consequence of the Union Bound: For any path P , the cap-
ture probability under λ is at most

∑
e∈P xe. We use this upper

bound (the sum of xe) as an approximation of the true capture prob-
ability in deriving RANGER. The power of our approach is that we
subsequently present ways to sample joint distributions where the
total capture probability matches this upper bound under certain
conditions; this immediately implies optimality of our procedures,
and retroactively justifies the approximation.

In the RANGER linear program below, xe is the marginal prob-
ability of placing a checkpoint on edge e. The dv are, for each ver-
tex v, the minimum sum of checkpoint probabilities along any path
from the source s to v1. This is enforced by the constraints (4)–(6).
Constraint (7) enforces that at most r checkpoints are placed, and
Constraint (3) captures the payoff for the defender.

Maximize RD , s.t.:
RD ≤ (1− dt) ·D(t) + dt · c (3)
ds = 0 (4)
dv ≤ min(1, du + xe) ∀e = (u, v) (5)
0 ≤ xe ≤ 1 ∀e ∈ E (6)∑
e∈E

xe ≤ r (7)

Notice that, as specified, the dv values do not have a lower bound.
However, we can show that in an optimal solution, we can, with-
out loss of generality, raise all dv values to their upper bound, the
shortest sum of marginals of a path to v.

THEOREM 1. Let (R∗
D, ~x∗, ~d∗) be an optimal solution returned

by RANGER. Define ~d′ = 〈d′v〉 for v ∈ V , where
d′v = min(1, minP∈Pv

∑
e∈P xe). Pv is the set of paths from s to

v. Then (R∗
D, ~x∗, ~d′) is also an optimal solution.

1Recall that we can assume a single source w.l.o.g.
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PROOF. We will show that (R∗
D, ~x∗, ~d′) satisfies all RANGER

constraints and leads to a reward greater than or equal to R∗
D and,

therefore, must also be optimal.
From Constraint 5 in RANGER, for any node v, d∗v ≤ d′v . By

definition of ~d′, d′s = 0. In addition, consider edge e′ = (u, v).
Let Pu = arg minP∈Pu

∑
e∈P xe. By definition d′v ≤ 1. And,

d′v = min

(
1, min

P∈Pv

∑
e∈P

xe

)
≤ min

(
1,
∑

e∈Pu

xe + xe′

)

≤ min

(
1,
∑

e∈Pu

xe

)
+ xe′ = d′u + xe′ .

Hence, d′v ≤ min(1, d′u + xe′). Finally, given c ≥ D(t) and
d′t ≥ d∗t ,

R∗
D ≤ (1− d∗t )D(t) + (d∗t )c

≤ (1− d′t)D(t) + (d′t)c.

Thus, (R∗
D, ~x∗, ~d′) satisfies all RANGER constraints and leads to

a reward greater than or equal to R∗
D . Since R∗

D is the optimal
value of RANGER, (R∗

D, ~x∗, ~d′) must also be an optimal solution
to RANGER.

Thus, although RANGER may not produce these maximal dv

values, in an optimal solution each dv can be set to exactly the
shortest sum of marginals to v without loss of generality. We will
define dv as such going forward to simplify our analysis.

We verify the claim that RANGER’s solution is an overestimate
of an optimal solution.

THEOREM 2. Let λ∗ be the optimal strategy and R∗ the cor-
responding defender reward. Then, R∗

D ≥ R∗, where R∗
D is the

defender reward returned by the LP.

PROOF. Let ~x∗ be the marginal probabilities of λ∗. Obviously,
0 ≤ x∗e ≤ 1, and

∑
e∈E x∗e =

∑
L∈L |L|·λ

∗
L ≤ r. For each vertex

v, let d∗v be the probability (under λ∗) of capturing the intruder
assuming he chooses the best path to reach v. Then 0 ≤ d∗v ≤ 1,
and for each edge e = (u, v), d∗v ≤ d∗u + x∗e , by the Union Bound.
The attacker will choose the path to maximize his own payoff R∗

A.
Because the game is zero-sum,

R∗ = −R∗
A = −max

t
{(1− d∗t ) · −D(t) + d∗t · −c}

= min
t
{(1− d∗t ) ·D(t) + d∗t · c}.

Thus, for any target t, R∗ ≤ (1− d∗t ) ·D(t) + d∗t · c. Thus, the
values R∗, ~d∗ and ~x∗ are feasible for the LP; because RANGER
finds the optimum feasible solution, we obtain that R∗

D ≥ R∗.

RANGER is an exponentially more compact representation of
both the attacker and defender strategy spaces. This can be seen
by noticing that RANGER has a polynomial number of variables
with respect to n and m. Any straightforward application of prior
formulations would have Θ(mr) variables for the defender and ex-
ponentially many (|B|) constraints for the attacker.

5. CREATING JOINT DISTRIBUTIONS
To deploy security resources, we require joint schedules, drawn

from a joint distribution over L. We develop sampling procedures
that use the ~x computed by RANGER to generate a distribution
over joint schedules. The principle behind these methods is to
bring the actual capture probability for a target t up to the value dt.

One way to ensure this would be if no deployment ever placed two
checkpoints on any s-t path to any target. More generally (and in-
formally), it is sufficient if this “checkpoint disjointness” is ensured
for “critical” s-t paths: those whose sum of marginal probabilities
are close to the minimal (dt).

Notice that placing checkpoints by independently sampling from
~x violates this approach with increasing frequency as r increases,
and yields very suboptimal solutions. Instead, we introduce two
novel sampling procedures that achieve a certain “checkpoint dis-
jointness”, under some assumptions, and are therefore optimal.

5.1 Radius Sampling
Radius Sampling (RS) interprets the marginal probabilities as

“distances”, and places a security ring around the source. In this
way, it avoids sampling multiple times on “critical paths”, in a way
we make precise now. For any h ≥ 0, we define the ring of radius
h around s as Rh := {e = (u, v)|du ≤ h < dv}, i.e., the set of
edges from a node with probability of capture at most h from s to
a node with probability of capture more than h from s.

We define α :=
∫∞
0
|Rh|dh (a normalization constant), and the

density function φ(h) := |Rh|
α

. Notice that

α =
∑

e=(u,v)(dv − du) ≤
∑

e xe ≤ r. (8)

Our algorithm works as follows: Choose a radius h from [0,∞]
according to the density function φ. Now, choose r of the edges in
Rh uniformly at random (or all edges in Rh if |Rh| ≤ r). Place
checkpoints on these edges. We call the resulting set LR. Notice
that both h and LR are random variables, and LR is a set of at most
r edges.

THEOREM 3. If for all h, |Rh| ≥ r or |Rh| = 0, then RS
produces an optimal distribution for the defender.

Theorem 3 follows from Lemma 4 and Theorem 2 as follows: By
Lemma 4, the capture probability for any s-t path is at least dt,
i.e., RANGER’s value. Therefore, the defender’s payoff is at least
RANGER’s, which by Theorem 2 is at least the payoff with the
optimum mixed strategy.

LEMMA 4. Under the assumptions of Theorem 3, let P be any
s-v path and w the node maximizing dw among all nodes on P .
The capture probability along P is at least dw.

PROOF. We prove the lemma by induction on |P |, the number
of edges on path P . In the base case |P | = 0, the only node v with
a path from s is s itself, and the statement holds.

For the inductive step, let P be a path of length ` + 1 and e =
(v′, v) the last edge of P . Let P ′ = P \ {e} be the path of length `
from s to v′, and w′ the node on P ′ maximizing dw′ . By Induction
Hypothesis, Prob[LR ∩ P ′ 6= ∅] ≥ dw′ .

We distinguish two cases. If dw′ ≥ dv , then

Prob[LR ∩ P 6= ∅] ≥ Prob[LR ∩ P ′ 6= ∅]
≥ dw′ ≥ dv,

implying the claim.
If dv > dw′ , then consider the event E = [h > dw′ and e ∈

LR]. E is the event when we include e in LR and h is sufficiently
large that no edge from P ′ can also be sampled. The probability of
E is ∫ dv

dw′
Prob[e ∈ LR | h = x]φ(x)dx

=
∫ dv

dw′
r

|Rx| ·
|Rx|

α
dx =

∫ dv

dw′
r
α

dx ≥ dv − dw′ .
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Here, we substituted the definitions of the sampling process, then
used that r

α
≥ 1 from Equation (8), and that Prob[e ∈ LR | h =

x] = r
|Rx| using the assumption of Theorem 3.

Whenever LR intersects P ′, by definition, we must have that
h ≤ dw′ (because no edge e′ ∈ P ′ is in Rh for h > dw′ ). Thus,
the events E and [Rh ∩ P ′ 6= ∅] are disjoint, and

Prob[Rh ∩ P 6= ∅] ≥ Prob[[Rh ∩ P ′ 6= ∅] ∪ E ]
= Prob[Rh ∩ P ′ 6= ∅] + Prob[E ]
≥ dw′ + (dv − dw′)
= dv.

The penultimate step used the induction hypothesis as well as the
inequality Prob[E ] ≥ dv − dw′ derived above.

To implement RS, we need to find dv values to each node, deter-
mine the edges and weights for each Rh, and sample according to
the above procedure. Each step takes time polynomial in n. Thus,
we have a polynomial-time procedure that optimally solves a graph-
based security game under the conditions of Theorem 3. Previously
known techniques either required time exponential in the graph size
or can not provide quality guarantees. However, since we cannot
guarantee performance when Radius Sampling’s condition is not
met, we also explore another sampling algorithm.

5.2 Comb Sampling
Now, we consider a somewhat simpler case for the defender: the

attacker only observes marginal distributions and approximates the
capture probability on any path by adding the probabilities. This
may occur because observing the full joint probability distribu-
tion is much more time- and resource-intensive than observing the
marginals. When only able to observe marginals, adding probabili-
ties is a reasonable and conservative approximation for the attacker.

Comb Sampling (CS) is based on two ideas: (1) If the marginals
of the joint distribution match RANGER’s xe values, then an at-
tacker summing probabilities will choose the target t and a path P
that is the best path for the attacker to use to reach t as calculated by
RANGER. (2) If the edges on P are chosen mutually exclusively,
then the capture probability on P matches that of RANGER.

Let e1, . . . , e|P | be the edges on the path P (in arbitrary order),
and e|P |+1, . . . , em the remaining edges, in arbitrary order. For
each 1 ≤ j ≤ m, let Xj =

∑
i<j xi, and define the interval

Ij = [Xj , Xj + xj). Because
∑

i xi = r (w.l.o.g.), the Ij form a
disjoint cover of the interval [0, r). We now generate a deployment,
LC , as follows: Pick a number y ∈ [0, 1) uniformly at random, and
include in LC all edges ej such that y + k ∈ Ij for some integer k.
In other words, include exactly the edges which “own” the intervals
containing the points y, y + 1, y + 2, . . . , y + r− 1. This samples
exactly r edges.

LEMMA 5. Given a marginal distribution ~x, CS will exactly
meet all marginal probabilities, xe.

PROOF. Consider any edge ej , and two cases. If Ij ⊆ [k, k+1)
for some k (i.e., Ij contains no integer point), then ej is included if
and only if k + y ∈ Ij , which happens with probability |Ij | = xj .
On the other hand, if Ij = [Xj , k) ∪ [k, Xj + xj), then ej is
included if and only if y+k−1 ∈ [Xj , k) or y+k ∈ [k, Xj +xj);
because xk ≤ 1, this happens with probability (k −Xj) + (Xj +
xj − k) = xj .

Lemma 5 ensures that the attacker will follow the path predicted
by RANGER. Now consider P . If

∑
e∈P xe ≥ 1, then for any y,

some edge e ∈ P will be included, so the attacker is always cap-
tured. This correctly matches the dt value produced by RANGER,

which would also be 1 by Constraint 5. Otherwise, an edge from
P is included if and only if y <

∑
e∈P xe, which happens with

probability
∑

e∈P xe, i.e., the sum of marginals on P . Combined
with Lemma 5, this guarantees that RANGER’s reward is achiev-
able using CS if the defender faces an approximating attacker. The
sampling time is clearly polynomial in the graph size. Thus, we
have a polynomial-time procedure to optimally defend against an
approximating attacker.

6. EXPERIMENTS

6.1 Quality Comparison
Our first evaluation studies the quality of solutions generated by

Radius and Comb Sampling in the general case, against both exact
and approximating attackers, as defined in the introduction. Neither
method is guaranteed to achieve the optimal value against an exact
attacker in all cases, so we are interested in whether these meth-
ods give good approximations. We compare them against DOBSS,
which computes the optimal solution against an exact attacker. DOBSS
may not be optimal against an approximating attacker, so we also
report the quality of DOBSS against approximating attackers, la-
beled DOBSS Marginal. As a benchmark, we include a simple
Independent Sampling (IS) strategy, wherein for each checkpoint,
edge e is selected independently with probability xe

r
.

We generate random graphs that are representative of the do-
mains where our methods are most relevant. First, we test on ran-
dom geometric graphs to estimate performance for road network
domains. Then we test on scale-free graphs as an analogy for sub-
way networks. For each graph type, we generate 500 instances each
of 4, 5, and 6 nodes, zero-sum games and report results in Table 1.
Every graph has one source, between 1 and |V | − 1 targets with
values from -1 to -10 for the defender when successfully attacked,
and 1 to 3 checkpoints. The payoffs for capture are all 0. Graphs
were kept simple so DOBSS could solve them within a reasonable
time limit.

For each graph, we run each sampling method on the marginals
produced by RANGER and calculate the actual capture probabili-
ties for the joint distribution generated. Using the true capture prob-
abilities, we select an optimal target for the attacker and compute
expected payoffs based on this choice. We compare these rewards
against DOBSS to evaluate the quality of our methodology.

For DOBSS Marginal, we calculate the marginal probabilities
from the joint distribution given and calculate the path to each tar-
get with the least (approximate) probability of capture by summing
the marginals along each path. Taking the (approximate) expected
reward for attacking each target, we can determine an approximat-
ing attacker’s optimal action and the corresponding reward for the
defender.

For Independent Sampling, the actual probability of capture is
1− (1− p/r)r , where p is the sum of RANGER’s marginal prob-
abilities on the edges on the path P . To see this, recall that since r
checkpoints are placed independently, and the probability that the
jth checkpoint is not on P is 1 −

∑
e∈P xe/r = 1 − p/r, the

probability that there is no checkpoint on P is (1 − p/r)r . Thus,
the probability for capture is 1− (1− p/r)r .

For Radius Sampling, we find all rings Rh and the probability
for selecting each. Then, we calculate the probability of selecting
edges within each ring. From these probabilities, we then obtain
the marginal probabilities for each edge; when the conditions of
Theorem 3 are violated, these marginal probabilities might be less
than RANGER’s values. Finally, we add the marginal probabilities
on any path to find the actual probability of capture.

For Comb Sampling, recall that we have a joint probability dis-
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tribution. For each path, we determine which joint actions place a
checkpoint on the path and sum the probabilities associated with
these actions. In general, this would be an exponential procedure,
since there are exponentially many possible joint actions and ex-
ponentially many paths that must be calculated. However, Comb
Sampling produces a joint distribution using only O(m) joint ac-
tions, making experiments relatively efficient. In practice, we could
randomize the order in which the xe’s are processed to create a
more complex joint distribution, but experimental evaluation would
become computationally infeasible.

For each of the sampling methods, we report the expected de-
fender reward based on the exact attacker’s action as determined
by the procedures outlined previously. The DOBSS value is sim-
ply the expected defender reward calculated by the corresponding
MILP.

Table 1 shows the number of cases where a difference in quality
of more than 0.001 exists between methods. Empirically, RANGER
computes very good estimates of the optimal reward value, never
differing from DOBSS for more than 5% of cases. Unsurprisingly,
Independent Sampling frequently results in suboptimal distribu-
tions (44%–78%). Remarkably, CS attains the optimal expected
reward in every single one of the 3,000 graphs tested. RS also
performs very well, never differing from DOBSS for more than
11% of the games. DOBSS Marginal never differs from DOBSS
or RANGER, indicating that DOBSS remains optimal against an
approximating attacker (not shown). However, as runtime experi-
ments will show, DOBSS is completely incapable of solving rea-
sonable game sizes.

Random Geo. Scale-Free
Nodes 4 5 6 4 5 6

RG > DOBSS 12 8 5 0 4 22
IS < DOBSS 220 283 280 389 347 247

CS < DOBSS 0 0 0 0 0 0
RS < DOBSS 0 0 3 0 29 53

Table 1: Results by number of cases (RG - RANGER).

6.2 Mumbai
As a real-world trial, we use our algorithms to create security

policies for the southern tip of Mumbai, shown in Figure 1, which
was an area of heavy terrorist activity in 2008. The region is mod-
eled as a graph with 35 nodes and 58 edges. Attackers can poten-
tially enter from any entry node, chosen based on historical and
likely entry points. A total of four target nodes are chosen based
on historical attacks, marked with black circles in Figure 1. These
are held constant throughout testing. Payoffs are decided as in the
Quality Comparison experiments.

Figure 2(a) shows the averaged defender rewards obtained across
eight configurations, each with their own setup of target values and
sources, with each configuration being run with checkpoints vary-
ing from 2 to 10. Figure 2(b) shows results averaged across a differ-
ent set of eight configurations, each with their own setup of target
values and 4 checkpoints, with each configuration being run with
the number of sources increasing from 1 to 7.

DOBSS is unable to solve even the simplest case within the 20-
minute limit; thus, we include only Comb Sampling and Radius
Sampling’s expected reward, Minimum Cut, as well as three natural
defense strategies, Uniform Random, Entry-Incident and Weighted-
Target-Incident. Minimum Cut, as introduced by [16], contracts all
sources into a super-source and all targets into a super-target and
finds the minimum cut on the resulting graph, uniformly random-

Figure 1: Target layout for southern Mumbai.

izing resources across it. This effectively ignores target value vari-
ation, but is extremely efficient. Uniform Random places check-
points uniformly randomly across all edges in the graph. Entry-
Incident places checkpoints on edges incident to entry nodes with
equal probability. Weighted-Target-Incident places checkpoints on
edges incident to target nodes, weighted according to their payoff.
The y-axis shows the expected reward in Figure 2(a) and 2(b). The
x-axis of Figure 2(a) shows the number of checkpoints allowed and
the number of sources in Figure 2(b). RANGER ran in ≈ 0.2 sec-
onds in all trials.

Throughout the tests, the two sampling methods developed here
outperformed all others, with RS performing worse than CS when
its optimality condition was violated more severely. Minimum Cut,
which does not prioritize higher value targets, performs worse than
the Uniform Random strategy in some situations, which sometimes
happens to place more coverage on higher value targets simply be-
cause there are more roads to them.

RANGER actually exploits resources differently and to better
effect, which we explore in Figure 3(a) and 3(b). Data was used
from the games in Figure 2(b). Figure 3(a) shows the average num-
ber of edges with non-zero marginal probability in Entry-Incident
and RANGER strategies as the number of sources increases (other
methods would be a constant value). As can be seen, RANGER ac-
tually uses fewer edges than Entry-Incident as the number of entry
points increases, but uses them to much better effect.

Figure 3(b) shows the standard deviation of marginal probabil-
ities of edges. As expected, Entry-Incident remains constant at
0. RANGER’s results vary from 0 (with only one source) to 0.2,
which is actually a standard deviation of 20% in marginal probabil-
ity on edges. Although we cannot provide guarantees on the per-
formance of Radius or Comb Sampling against an exact attacker
in general, the techniques yield non-trivial mixed strategies of high
quality in practice that outperform the sensible alternatives explored
here.

6.3 Runtime Comparison
We have discussed the exponentially smaller solution space RANGER,

RS, and CS operate in; we now show runtime comparisons to ver-
ify our conclusions empirically. Specifically, we evaluate the run-
time performance of RANGER against the fastest-known exact al-
gorithm for solving general Bayesian Stackelberg games, DOBSS
[13], as well as a faster solver for security games, ERASER [10].
DOBSS serves as a benchmark, since it provides the optimal so-
lution against exact attackers. ERASER exploits structural proper-
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(a) Avg reward by checkpoints.

(b) Avg reward by sources.

Figure 2: Rewards in Mumbai domain.

ties that exist in many security domains to create a compact game
representation. However, in order for the solution to be correct, it
also requires that defender actions be independent from each other,
which is not the case in our domain, since placing two checkpoints
on one path will violate this assumption. Nevertheless, ERASER
serves as another approximation algorithm that runs much more ef-
ficiently than DOBSS, so we compare RANGER’s runtime against
it.

Experiments were run on quad-core Intel 3.0GHz processors with
3GB of RAM. Each approach was run 100 times on each problem,
and we report the average time. All algorithms were given a maxi-
mum time of 20 minutes.

Figure 4 shows the scaling of each method’s runtime with re-
spect to n. In these experiments, we use complete graphs (3 to 8
vertices) and random geometric graphs (4 to 12 vertices), each with
one source, one target (value -1 to -10 for defender), and two check-
points. The x-axis shows the number of vertices in the graph, and
the y-axis shows runtime in seconds. Each result is an average of
10 trials. Unsurprisingly, DOBSS and ERASER scale poorly and
are only able to solve the problem with up to 7 vertices for com-
plete graphs and 8 (DOBSS) and 11 (ERASER) vertices on random
geometric graphs. RANGER is capable of solving games with 400
vertices within the time limit (not shown).

7. CONCLUSIONS
In this work, we provide three primary contributions. First, we

develop a linear program, RANGER, to efficiently create optimal
marginal distributions for placing checkpoints on the edges of a
graph. We prove that the reward found by RANGER is an over-

(a) No. edges used.

(b) Standard dev. of Prob.

Figure 3: RANGER strategies in Mumbai domain.

estimate of the true optimal reward. Second, we introduce Radius
Sampling, which we show produces optimal joint distributions un-
der specific conditions. Third, we develop Comb Sampling, which
we prove guarantees optimality against an approximating attacker.
We complete the discussion by providing experimental verification
of the high quality of our techniques on random graphs as well as a
real-world domain.

The techniques introduced here can be put into direct use by city
officials such as those in Mumbai, where terrorist attacks of the
form we model here are very real and occur with tragic regular-
ity. We show that RANGER strategies implemented using either
Radius or Comb Sampling far outperform the simpler alternatives
explored. Although we cannot know the current method used by
Mumbai police, we offer an efficient, high-quality solution tech-
nique based on game-theoretic foundations and hope to transition

(a) Complete graphs. (b) Random geometric graphs.

Figure 4: Runtimes for RANGER, ERASER, and DOBSS.
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this theory into practice in the near future.

8. FUTURE RESEARCH
While RANGER and Comb/Radius Sampling can be used im-

mediately, we see a series of open research questions that could
potentially improve upon these results for real-world deployment.
One direction would be the generalization to general-sum domains,
since it is a subject of debate whether real-world scenarios are al-
ways best modeled as zero-sum games.

Also, perhaps one can prove NP-hardness of the problem of find-
ing optimal defender strategies in either our restricted games or
in the general-sum cases. Assuming that no efficient algorithm
can handle all inputs, it would then be desirable to identify condi-
tions under which either optimality or approximation factors can be
guaranteed. Even without guarantees, other practical and efficient
heuristics may be of interest to warrant deployment in practice.

Another highly pertinent extension would be to introduce a “prob-
ability of capture” for each checkpoint, instead of assuming that a
checkpoint will always capturing an attacker using the edge, as we
do in our work. This would require major alterations in sampling,
since our sampling techniques have focused on never placing two
checkpoints along a single s-t path, which may no longer be desir-
able. All of these directions are critical in effectively implementing
game-theoretic methods in real-world security domains such as the
Mumbai example presented here and we hope to pursue them to
further improve existing security practices.
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ABSTRACT
Game theoretic methods for making resource allocation decision
in security domains have attracted growing attention from both re-
searchers and security practitioners, including deployed applica-
tions at both the LAX airport and the Federal Air Marshals Ser-
vice. We develop a new class of security games designed to model
decisions faced by the Transportation Security Administration and
other agencies in protecting airports, ports, and other critical in-
frastructure. Our model allows for a more diverse set of security
activities for the defensive resources than previous work, which
has generally focused on interchangeable resources that can only
defend against possible attacks in one way. Here, we are concerned
in particular with the possibility that adversaries can circumvent
specific security activities if they are aware of common security
measures. The model we propose takes this capability into ac-
count and generates more unpredictable, diverse security policies
as a result—without resorting to an external value for entropy or
randomness.

Solving these games is a significant computational challenge, and
existing algorithms are not capable of solving realistic games. We
introduce a new method that exploits common structure in these
problems to reduce the size of the game representation and enable
faster solution algorithm. These algorithms are able to scale to
make larger games than existing solvers, as we show in our ex-
perimental results.

Categories and Subject Descriptors
I.0 [Computing Methodologies]: General

General Terms
Game Theory, Security

Keywords
Game Theory, Stackelberg, Security, Resource Allocation

1. INTRODUCTION
Security officials face many difficult decisions in how to provide
security for critical infrastructure, high-profile events, and other
potential targets of criminal or terrorist attacks. Game theory is in-
creasingly viewed as a powerful tool for modeling these decisions,

due in part to the ability of these models to account for adaptive ad-
versaries and to identify optimal randomized strategies for security
forces. This basic idea has been applied in several contexts, includ-
ing autonomous robot patrolling [1, 3], scheduling checkpoints and
canine patrols at the Los Angeles International Airport (LAX) [14],
and scheduling Federal Air Marshals (FAMS) on flights [8]. The fi-
nal two examples are real-world software systems that are deployed
to make critical resource allocation decisions using game-theoretic
reasoning.

Our work in this paper is motivated by the challenges of a different
class of security allocations problems faced by agencies in charge
of security at airports, ports, and other large physical areas. We de-
velop a new class of game models that offer a richer model of the
possible security strategies for the defender, allowing the specifi-
cation of both the area(s) that are defended along with the activity
that is executed by the security resource. An important aspect of
this model is that it represents asymmetric knowledge between the
attacker and defender. While we have a detailed understanding of
the possible security policies, we have less detail about all of the
possible attacker strategies—in reality, it is difficult if not impossi-
ble to predict all of the possible attack scenarios a sophisticated at-
tacker might use. Instead, we introduce the possibility for attackers
to circumvent specific security measures into the model, at some
cost. As we show in our analysis, randomized policies are much
more difficult for the attacker to plan around, increasing the value
of unpredictable activities. Previous models have directly added
values for ”entropy" as part of the objective function; in our model,
the value for randomizing among similar activities is driven by the
circumvention capability of the adversary.

Another way that our model generalizes previous work is by allow-
ing multiple resources to be assigned to the same physical area (or
target), increasing the level of protection afforded to this area. In
addition, the most general form of our model allows for different
levels of effectiveness to be associated with different activities, so
some are more likely than others to prevent attacks. This is used
in particular to model the effects of executing activities such as pa-
trols in physically adjacent areas. While the main protective effect
is in the area directly being patrolled, there may be some visibility
and capability to respond to incidents in nearby areas, providing a
reduced level of protection for those areas as an additional benefit.

17



The additional richness of this model comes at a computational
cost, and computing solutions to this model using existing algo-
rithms is not feasible. In particular, the standard Stackelberg ap-
proach is capable of representing these games only by enumerating
an exponential number of strategies for both the attacker and de-
fender. While similar issues have been addressed in recent work
on algorithms for the FAMS game [8], these methods cannot be di-
rectly applied here because they are not designed to handle cases
where resources may carry out different activities and provide vary-
ing levels of protection. We develop a novel compact representation
for this game based on identifying classes of strategies that can be
treated symmetrically for the purposes of computing an optimal so-
lution. By exploiting these symmetries we are able to solve much
larger game instances than previous methods, which we demon-
strate in our experimental results.

2. RELATED WORK
There is work on resource allocation for security settings that uses
both game-theoretic approaches as well as more standard optimiza-
tion frameworks. Our work focuses on developing more detailed
models of the possible security measures than previous game-theoretic
approaches. A particularly unique aspect of our model is the generic
capability that attackers have to circumvent specific security mea-
sures.

There are three main areas of related work. The first apply opti-
mization techniques to model the security domain, but do not ad-
dress the strategic aspects of the problem. These methods provide
a randomization strategy for the defender, but they do not take into
account the fact that the adversaries can observe the defender’s ac-
tions and then adjust their behavior. Examples of such approaches
include [13, 15] which are based on learning, Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Pro-
cesses(POMDPs). As part of this work, the authors model the pa-
trolling problem with locations and varying incident rates in each
of the locations and solve for optimal routes using a MDP frame-
work. Another example is the ”Hypercube Queueing Model" [9]
which is based on queueing theory and depicts the detailed spa-
tial operation of urban police departments and emergency medical
services. Such frameworks can address many of the problems we
raise, including different area values and increasing uncertainty by
using many possible patrol routes. However, they fail to account for
the possibility that an intelligent attacker will observe and exploit
patterns in the security policy. If a policy is based on the historical
frequency of attacks, it is essentially a reactive policy, one that an
intelligent adversary can exploit.

A second set of work uses Stackelberg games to model a variety of
security domains. Game-theoretic models have been applied in a
variety of security settings, such as protecting critical infrastructure
[6, 11, 14]. Lawrence [18] applies Stackelberg games in the context
of screening visitors entering the US. They have also been used for
studying missile defense systems [4] and for studying the develop-
ment of an adversary’s weapon system [5]. Other recent work is on
randomized security patrolling using Stackelberg games for generic
”police and robbers" scenarios [7] and perimeter patrols [1]. Our
work differs from the previous work in that it allows for a more
fine-grained representation of security domains. A representation
that allows for different levels of protection from security measures
and unique security activities that are no longer interchangeable.
It also allows for adversary models that do not explicitly represent
modes of attack, as in much of the previous work, but still manages
to capture some of the adversary’s capabilities.

The final set of related work is the application of game theoretic
techniques that are not based on Stackelberg games to security ap-
plications. Security problems are increasingly studied using game-
theoretic analysis, ranging from computer network security [17, 10]
to terrorism [16]. Babu et al [2] have worked on modeling pas-
senger security system at US airports using linear programming
approaches, however, their objective is to classify the passengers
in various groups and then screen them based on the group they
belong to. Thus, although game theory has been used in security
domains in the past, our work focuses on extending these domains
to relax some of the previous assumptions that have been made.

3. MOTIVATING DOMAINS
Our work here is motivated by a large number of security domains
where the challenge is to protect a large physical environment from
attackers using limited security resources. Such domains include
examples like railroad and subway systems, power generation fa-
cilities, shipping ports, and airports. In any of these domains there
exist a wide variety of possible security measures that could be im-
plemented to provide protection for the facility, including activities
such as perimeter patrols, screening inbound vehicles, or verify-
ing the credentials of employees or passengers. The organizations
tasked with providing security for these domains include local law
enforcement, port authorities, and the Transportation Security Ad-
ministration (TSA). These organizations face the challenging prob-
lem of maximizing the protection of the critical infrastructure using
a limited number of available resources.

Assigning resources is complicated by the fact that there are many
different areas of a large facility where resources could be allo-
cated. For example, in an airport there are public areas (e.g., tick-
eting and check in areas), boarding areas, as well as secured areas
such as the aircraft runways. Some of these areas are physically
distant, while others may be adjoining or accessible through other
areas. In addition, these areas may have different values from a se-
curity perspective, since they have different numbers of people and
some may have other important assets (e.g., aircraft or expensive
machinery).

There is also a wide variety of different kinds of tasks or activities
that security forces could perform. Each type of activity may be
able to prevent different kinds of harmful actions or events. For
example, a security activity might be screening baggage for harm-
ful substances, patrolling the perimeter for unauthorized entrants,
or verifying the identify of passengers. These activities may have
different effects on protecting different areas of the facility. For
example, if passengers are screened at the check-in area then this
may also help protect the individual terminals since it can stop a po-
tential threat from entering the terminal area through the check-in
area. Although a security activity may protect more than one area
at a time, the level of protection it provides to each area may vary.
Returning to our check-in area example, although screening pas-
sengers at the check-in area may protect terminals from unwanted
passengers, there may be other threats to the terminals like a worker
who enters from a different area. Thus screening only helps par-
tially protect the terminal area, and different combinations of secu-
rity activities may provide additional protection against a broader
range of threats. We will refer to the combination of a security ac-
tivity and the area where it is performed as a security "operation."

The goal of an attacker is to find a successful strategy to attack some
area of the facility. This decision depends both on the goals of the
attacker and on the security measures taken by the security forces.
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Areas that have less security will be less costly to attack, but they
may also not be desirable depending on the overall objective of the
attacker. To increase the chances of success an attacker may also try
to specifically circumvent particular kinds of security measures that
the attacker believes are likely to be in place. This could also take
the form of choosing a particular type of attack vector that will not
be detected or prevented by known security measures. However,
this becomes increasingly difficult as the number and variety of
security activities taking place in any given area increases.

Based on these domains we are interested in, we develop a game
model to capture the salient features of these domains. Our base
model is a Stackelberg game, similar to previous models discussed
in Section 2. However, we extend these models to incorporate deci-
sions about both location and the types of security activities being
carried out, as well as to incorporate the possibility that attackers
can circumvent specific security measures at some additional cost.
We begin by introducing a basic version of the model, and then de-
scribe a compact representation of this model that allows for more
scalable solution methods. We then present an extension to this
model that allows greater flexibility in modeling different levels of
protection for different types of security activities.

4. SECURITY GAMES WITH
COMPLEX ACTIONS

We begin with a high-level description of our game model before
giving a more formal definition. Our game model has two players,
an attacker and a defender (i.e., the security forces). The defender
is trying to prevent attacks on a large physical space—such as an
airport or port facility—that can be partitioned into a number of
smaller areas. To prevent attacks the defender is able to execute
various actions (i.e., ”operations") using security resources; these
actions are associated with a specific area(s), and perform a partic-
ular kind of activity.

The attacker’s goal is to successfully attack one of the areas in the
facility, but to do so the attacker must also avoid any security activ-
ities being performed in the area. As the defender allocates more
resources to protect one area, it becomes more difficult for the at-
tacker to successfully attack this area. In our model, areas may have
different characteristics, including the payoff each player receives
if there is a successful attack on the area, or a failed attack attempt
in the area. The defender’s actions also have different effects on
each area, providing different degrees of protection in different ar-
eas. It may also be more or less difficult for attackers to circumvent
security measures in different areas.

Real-world terrorist attacks are based on careful planning and of-
ten use surveillance or other means to gather detailed informa-
tion about security procedures. To model this, previous work has
adopted Stackelberg game models where the defender moves first
and commits to a (randomized) strategy for deploying security re-
sources. The attacker is able to observe this strategy and plan the
best possible attack, based on this knowledge. A standard solution
concept for these game is a Strong Stackelberg Equilibrium (SSE)
in which the defender chooses an optimal mixed strategy, assum-
ing that the attacker will choose an optimal strategy in response.
We adopt this Stackelberg framework and solution concepts for the
model and algorithms presented in this paper.

In the remainder of this section we define the possible strategies for
both the defender and the attacker, and then describe how payoffs
are assigned for the possible outcomes of the game. We initially

assume for expository purposes that each operation affects exactly
one area, and that all operations are identical in how effective they
are at preventing attacks. We relax both of these assumptions in
Section 6.

4.1 Defender Strategies
We denote the defender by Θ, and the set of defender’s pure strate-
gies by σΘ ∈ ΣΘ. In our model the defender is able to execute
a variety of security activities called operations, which we denote
by O = {o1, . . . , om}. Each individual operation has two compo-
nents. The first is the type of activity that the operation represents,
and the second is the area(s) where the activity is performed. For
now, we assume that each operation affects exactly one area from
the set of areas denoted by A = {a1, . . . , an}.

The defender has limited resources available for running defensive
operations, and so is able to run a maximum of K operations on
any day. An assignment of K resources to a set of K operations
represents a single strategy σΘ ∈ ΣΘ. For example, if there are
three operations, O = {o1, o2, o3} and two resources available,
one possible pure strategy for the defender is to assign these two
resources to o1 and o3. The defender’s mixed strategies δΘ ∈ ∆Θ

are the possible probability distributions over ΣΘ.

4.2 Attacker Strategies
The attacker is denoted by Ψ, and the set of pure strategies for the
attacker is given by σΨ ∈ ΣΨ. Similarly, the attacker’s mixed
strategies are probability distributions over the pure strategies and
are denoted by δΨ ∈ ∆Ψ. Each pure strategy for the attacker cor-
responds to selecting a single area ai ∈ A to attack. In principle,
the attacker will also choose a specific mode of attack. However,
in security domains it is typically not feasible to enumerate all pos-
sible modes of attack, and attackers often develop new or modified
versions of attacks that have not been seen before. This is particu-
larly the case when security measures are known and predictable,
so that attackers are able to specifically plan countermeasures to
circumvent the security procedures.

Rather than try to enumerate specific attack scenarios and run the
risk of failing to include important possibilities, we model the at-
tacker’s strategies at a higher level of abstraction. In addition to
selecting an area to attack, the attacker chooses a subset of the pos-
sible operations that could be run in that area to avoid, or circum-
vent. Circumventing operations will increase the attacker’s chances
of success, but comes with a fixed cost that is a parameter of the
model. This cost could capture a variety of different things, such as
using more sophisticated technology or additional people to launch
the attack, or switching to a less ideal means of attack that is less
destructive. For example, if the defender is searching baggage for
harmful substances (the operation), but not screening passengers,
the attacker could choose to use a vest bomb as their mode of at-
tack which would avoid the baggage screening. Formally, a pure
strategy for the attacker consists of an area ai and a subset of the
operations in O to circumvent. It is only necessary for the attacker
to circumvent operations that affect area ai.

4.3 Payoff Definition
Payoffs for each player are defined over all possible joint pure-
strategy outcomes: ΩΘ : ΣΨ × ΣΘ → < for the defender and
similarly for the attacker. The payoff functions are extended to
mixed strategies in the standard way by taking the expectation over
pure-strategy outcomes. The first component of the payoff de-
pends on which area the attacker chooses to attack, and whether
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or not the attack was successful. We define four values for each
area: V d

Θ(ai) and V a
Θ(ai) for the defender and V d

Ψ(ai) and V a
Ψ(ai)

for the attacker. Here d signifies the area being successfully de-
fended while a signifies the area being successfully attacked so
V d

Θ(ai) > V a
Θ(ai) for the defender while V d

Ψ(ai) < V a
Ψ(ai) for

the attacker.

The probability of success or failure depends on both the operations
the defender is running in the attacked area, and the set of opera-
tions the attacker is circumventing. We define λ(ai, σΘ) to be the
set of operations oi ∈ σΘ that affect area ai (which might be the
empty set). For now, we assume that an attack is successful if and
only if λ(ai, σΘ) ⊆ σΨ. This assumes that every operation has a
100% chance of preventing the attack unless it is circumvented by
the attacker.

After the attack is determined to be successful or not the payoff
also depends on which operations the attacker has chosen to cir-
cumvent. We introduce this cost as a function C(ai, σΨ) which is
the cost of circumventing the set of operations chosen in σΨ for
the attacked area. The larger the set of operations σΨ contains the
larger the cost becomes, so it is more difficult to successfully attack
areas that are more heavily defended. We include the area because
circumventing certain operations may be easier in some areas than
in others depending on factors like layout, daily activities in that
area, and the number of people who are regularly present in that
area. This cost is deducted from the attacker’s payoff and added
to the defender’s overall payoff, resulting in the following overall
payoffs for both players in the case of a successful attack:

V a
Θ(ai) + C(ai, σΨ) (1)

V a
Ψ(ai)− C(ai, σΨ) (2)

The payoff for a failed attack is identical except for substituting V a
Θ

with V d
Θ for the defender and the same for the attacker. To further

explain the game representation we have just outlined and how pay-
offs are calculated in this game we will turn to a concrete example.
In this example there are two areas, A = {a1, a2}, and four opera-
tions O = {o1, o2, o3, o4}. Here o1 and o2 affect only a1, and o3

and o4 affect only a2. For the follower we set V a
Ψ(a1) = 5, and

V d
Ψ(a1) = −1 for the first area and V a

Ψ(a2) = 10, and V d
Ψ(a2) =

−5 for the second area. For the defender we set V d
Θ(a1) = 2,

and V a
Θ(a1) = −10, for the first area and V d

Θ(a2) = 5, and
V a

Θ(a2) = −20 for the second area. Finally we set the costs as
C(a1, o1) = C(a1, o2) = 2 and C(a2, o3) = C(a2, o4) = 3.
Figure 1 shows a physical representation of this game with cor-
responding payoffs. In our example there will be 2 resources to
assign, K = 2. We show the possible outcomes of this game in
normal-form in Table 1.

In Table 1 the first value represents the defender’s payoff and the
second value represents the attacker’s payoff. The attacker’s ac-
tions are represented first by the area selected for the attack and
then by the operations avoided. For instance, the second column
represents the attacker choosing area a1 and avoiding operation o1

where the third column represents the attacker choosing area a1

and avoiding operation o2. To illustrate how these values are trans-
lated into the table lets look at the case where the defender chooses
o1, o3 and the attacker attacks area a1 while avoiding o1. Since the
attacker avoided all the operations we were running in that area he
succeeds in his attack, thus he receives V a

Ψ(a1) or 5 points. How-

Figure 1: Game Example

ever, the cost to avoid o1, or C(a1, o1), is 2 so the attacker only
receives 3 points (5 - 2). On the defender’s side we go through
similar logic to arrive at a payoff of -8 (-10 + 2).

a1 : ∅ a1 : o1 a1 : o2 a2 : ∅ a2 : o3 a2 : o4

o1, o2 2, -1 4, -3 4, -3 -20, 10 -17, 7 -17, 7
o1, o3 2, -1 -8, 3 4, -3 5, -5 -17, 7 8, -8
o1, o4 2, -1 -8, 3 4, -3 5, -5 8, -8 -17, 7
o2, o3 2, -1 4, -3 -8, 3 5, -5 -17, 7 8, -8
o2, o4 2, -1 4, -3 -8, 3 5, -5 8, -8 -17, 7
o3, o4 -10, 5 -8, 3 -8, 3 5, -5 8, -8 8, -8

Table 1: Example payoffs for sample game

a1 : ∅ a1 : γ1 a2 : ∅ a2 : γ2

γ1, γ1 2, -1 4, -3 -20, 10 -17, 7
γ1, γ2 2, -1 -2, 0 5, -5 -4.5, -5
γ2, γ2 -10, 5 -8, 3 5, -5 8, -8

Table 2: Example compact version

Given this setup we can construct a standard Stackelberg game.
Namely, we have outlined the strategy space, ΣΘ, for the defender
to be the set of all possible combinations of K operations and the
strategy space, ΣΨ, for the attacker to be the set of all possible cir-
cumvention strategies for each area. We have also outlined how
payoffs are determined based on the strategy chosen by the de-
fender and the attacker. Particularly, the attack fails or succeeds
based on whether the attacker has circumvented the necessary op-
erations at the area he chooses to attack and the cost of the attack
is factored into both the defender’s and attacker’s payoffs irrespec-
tive of whether the attack succeeds or fails. Given the normal-form
representation of any of these games similar to that shown in Table
1, this game can be solved using the fastest known general Stackel-
berg solver, DOBSS [12].

5. COMPACT REPRESENTATION
Although setting up our new problem as described is solvable us-
ing a general Stackelberg solver, it does not scale well as the size
of the game increases. Both the attacker and defender strategy
spaces grow combinatorially as the number of defender operations
increases. We introduce a compact representation that exploits sim-
ilarities in defender operations to reduce the number of strategies
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that must be enumerated and considered when finding an optimal
solution to the game.

5.1 Exploiting Identical Operations
First, we identify operations that provide coverage to the same ar-
eas, and have the same circumvention costs; so far, all operations
within a given area are identical. Let γi ∈ Γ represent the sets of
operations that can be grouped together because they have identical
properties. The key is that each of these operations will have the
same effect on the payoffs, so we can reason about them as a group
and only consider the number of operations of each type that are
selected by the defender or circumvented by the adversary. We can
show that in the optimal solution, the selection probabilities and
circumvention strategies take a simple form. In particular, we now
argue that it is optimal for the defender to distribute probability uni-
formly at random across all operations within a set γi, so that all
operations are chosen with equal probability in the solution. Given
this, we only need to know how many operations are selected from
each set in order to compute the expected payoffs for each player
in the optimal solution.

PROPOSITION 1. Selecting each operation oj ∈ γi with equal
probability provides the maximum expected payoff for the defender.

Proof Sketch: Let the vector X = 〈x1, x2, . . . , xj〉 represent the
total probability with which each operation associated with a given
area is selected according to some mixed strategy δ. Without loss
of generality, assume that this vector is sorted in descending order
such that x1 ≥ x2 ≥ · · · ≥ xn. The attacker strictly prefers to
circumvent operations that are selected with higher probability, so
the attacker will always choose to circumvent operations x1 . . . xm

for any number of circumvented operations m. Now, consider the
alternative defender strategy δ̂ with uniform coverage probabilities
x̂1 = x̂2 = · · · = x̂n = (

Pn
i=1 xi)/n. For any m operations

that the attacker could circumvent,
Pn

i=m+1 xi ≤
Pn

i=m+1 x̂i

because the vectors have the same sum and we have eliminated
the m maximum elements of X . Therefore, the attacker succeeds
no more frequently against strategy δ than δ̂, and the defender’s
expected payoff is at least as great for the uniform strategy δ̂. �

A strategy σΘ ∈ ΣΘ can now be represented by the number of
resources assigned to each set of identical operations γi. For exam-
ple, if there are two sets γ1 and γ2, and the defender has 2 available
resources, the possible strategies are to assign both to γ1, one to
each set, or both to γ2 (assuming at least two operations in each
set). The original strategy space consists of all possible ways to
select two operations from n possible operations, which is much
larger than the compact strategy space as n grows large.

We now define define λ(γi, σΘ) to be number of resources assigned
to γi in the strategy σΘ. We also use the notation Υai to represent
the set of all γi that affect area ai. Finally, we define QΘ to be the
vector of resource assignments over Γ where QΘ

i is the number of
resources assigned to γi.

Given that the defender strategy uniformly distributes resources
among all operations oj ∈ γi we also know that it does not matter
which specific operations the attacker chooses to circumvent from
the set γi. For any given number of operations circumvented, the
expected payoff is identical regardless of which specific operations
within the set are chosen. Therefore, we can use a similar compact

representation for the attacker strategy space as for the defender,
reasoning only over the aggregate number of operations of each
type rather than specific operations. Specifically, a strategy σΨ is
represented by which area the attacker chooses to attack and then
by how many operations from each set γi the attacker circumvents.
Similar to the defender, this is a much smaller strategy space than
the original strategy space which enumerates all possible unique
circumvention strategies. We define QΨ to be the vector of the
number of operations circumvented over Γ where QΨ

i is the num-
ber of operations circumvented from the set γi.

A concrete example of this representation is presented in Table 2,
for the same game shown in Table 1. In this representation there
are only 3 pure strategies for the defender: assign both resources
to γ1 operations, assign one resource to γ1 and one to γ2, or as-
sign both resources to γ2. Similarly, for the attacker there are now
only 2 circumvention options per area: circumvent no operations
or circumvent one operation of the appropriate set γi. We will now
explain how payoffs are calculated in this new compact version and
how these payoffs map back to the full representation.

5.2 Computing Payoffs in the
Compact Representation

We have defined a compact representation for both the defender
and attacker strategies. It remains to describe how payoffs are cal-
culated for combinations of these strategies, and how these payoffs
reflect the payoffs in the original game. To compute the payoffs
for a combination of strategies we must first calculated the prob-
ability that an attack succeeds. For any given defender strategy
the defender resources allocated to each operation type (QΘ

i ) are
uniformly distributed over the operations in γi. In addition, the
attacker will receive an identical payoff for any set of operations
circumvented within γi. Therefore, we can select an arbitrary pure
strategy from the full representation for the attacker which circum-
vents each fixed number of operations; we will refer to this strategy
as τ .

We now describe how to compute the expected payoffs for both
players for attacker strategy τ by computing the probability that the
attacker will succeed against the defender strategy. Let ξi ∈ Ξi rep-
resent the possible combinations of operations in γi ∈ Υai , where
ai is the area attacked in τ . The attack succeeds if and only if the
operations circumvented in τ are a superset of the operations in ξ.
For each ξ we compute the number of times the attacker fails, fi,
by counting the occurrences where all operations in ξ are not cir-
cumvented in τ . The attacker succeeds in all other cases, denoted
by wi. The attacker’s overall probability of failure taking into ac-
count all types of operations is given by ε = Πn

i=0fi/(fi + wi),
and corresponding probability of success is 1 − ε. We can now
compute payoffs for both defender and attacker:

(1−ε)∗V d
Θ(ai)+ε∗V a

Θ(ai)+
X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj)∗QΨ
i (3)

(1−ε)∗V d
Ψ(ai)+ε∗V a

Ψ(ai)−
X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj)∗QΨ
i (4)

We note that it is also possible to quickly detect situations where the
attacker cannot possibly succeed because the number of operations
circumvented for some type is less than the number of operations
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run by the defender for this type. In these cases, the above equa-
tions simplify to:

V d
Θ(ai) +

X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj) ∗QΨ
i (5)

V d
Ψ(ai)−

X

QΨ
i ∈σΨ,oj∈γi

C(ai, oj) ∗QΨ
i (6)

Looking back at Table 1 we can provide some additional insight
into why this compact representation works. Notice that regardless
of whether the defender chooses operation o1 or o2 he will receive
identical payoffs. For example, if the defender chooses operation
o1 the reward value if the attacker just avoids o1 is -8 and if the
attacker just avoids o2 it is 4. Similarly, if the defender chooses op-
eration o2 their reward value if the attacker just avoids o2 is -8 and
if the attacker just avoids o1 it is 4. Given that the attacker’s strategy
is to optimize against the defender’s strategy and that resources are
split equally among o1 and o2, the attacker is indifferent between
avoiding just o1 or just o2 since both yield identical payoffs.

6. EXTENSION TO MULTIPLE LEVELS OF
PROTECTION

Up to this point we have assumed that each operation affects ex-
actly one area, and that every operation is able to prevent any at-
tack if it is not circumvented by the attacker. In this section we
relax these assumptions and allow for a more general model of the
effects of operations on the success or failure of an attack. We al-
low each operation to affect an arbitrary number of areas, and to
prevent attacks in each area with a different probability. The abil-
ity to represent operations that affect different areas is useful for
representing patrols in adjacent areas, or for representing security
measures that may not be directly applicable to a single physical
area, but has a broad effect across many different areas.

We define a function S(ai, oj) ∈ [0 . . . 1] that expresses the proba-
bility that operation oj will prevent an attack in area ai. A value of
0 represents an operation that has no effect on a particular area, and
a value of 1 represents perfect protection. As before, any operation
can be circumvented by the adversary to mitigate the protective ef-
fect of the operation. The main difference in this model is that
we must now consider a definition of operation types that accounts
for the effectiveness of operations in different areas. Operations
may only be collapsed in the compact representation if they pro-
vide identical coverage in every area. Given that restriction, we
can extend Proposition 1 by a similar argument (omitted here) to
show that it is optimal to randomize uniformly across operations
that are identical in this respect.

Extending our model to this more comprehensive model in both the
full representation and compact representation requires only a min-
imal change to the payoff calculations. Specifically, the total prob-
ability of successfully preventing an attack is computed by multi-
plying together the 1− S(ai, oj) values for all of the operations in
σΘ that are not circumvented in σΨ for the area ai that is attacked
and then subtracting this value from 1. Specifically, the multipli-
cation of these values, 1− S(ai, oj), represents the chance that all
operations failed to catch the adversary and the chance of success
is easily determined by subtracting this value from 1. Denoting this
value by Z we have the revised equations:

(1− Z) ∗ V d
Θ(ai) + Z ∗ V a

Θ(ai) +
X

oi∈σΨ

C(ai, oi) (7)

(1− Z) ∗ V d
Ψ(ai) + Z ∗ V a

Ψ(ai)−
X

oi∈σΨ

C(ai, oi) (8)

Computing the payoffs for the compact representation in this case
requires one additional manipulation. First, we must compute the
probability that each operation is circumvented for each set of iden-
tical operations γi, based on the attacker strategy. This probability
of circumvention is factored into the computation of the overall
probability of capture by scaling each S(ai, oj) in the computa-
tion by the probability that oj will be circumvented by the attacker.
Given this scaling term, the process for computing the payoffs is
the same as described previously.

7. EVALUATION
In this section we provide empirical results to demonstrate the ben-
efits of our compact representation on scalability. The effectiveness
of this representation depends primarily on the number of unique
types of operations that are present in the original game; in the
worst case every operation is unique in some way and in that case
the compact representation is identical to the full representation.
Our compact representation is most effective in cases where each
operation affects relatively few areas, and the effectiveness of op-
erations (in terms of the probability of preventing an attack) can
be categorized into a small number of discrete levels of protection.
This maximizes the chance that there will be identical operations
which can be merged in the compact representation. In principle it
would also be possible to merge similar operations with some loss
of solution quality, but we defer investigation of this method for
approximation to future work.

We present simulation results focusing on the computational effi-
ciency of our methods, and particularly the benefits of the compact
representation in cases where there are identical operations. All ex-
periments are run on a system with an Intel 2 GHz processor and
1 GB of RAM. We used a publicly available linear programming
package called GLPK to solve optimization problems as specified
in the original DOBSS procedure. The solver was allowed to use up
to 700 MB of memory during the solution process. For larger game
instances, solving the problem with the full representation runs out
of memory and solutions cannot be found. In the results presented
below we exclude results for cases where the full representation
was not able to produce a result using the allotted memory.

To test the solution methods we generate random game instances
by randomly selecting payoff values and the circumvention costs
for each area. For each experiment we generated 20 random game
instances and averaged the results (there is little variance in the run-
times for different problem instances). We consider three different
scenarios. The first scenario shown in Figure 2 has a single area,
and the defender is allowed to allocate up to 5 resources to run op-
erations. We increase the number of different operations available
to protect this area along the x-axis. For the compact representation
we vary the number of unique types of operations to show how this
impacts the efficiency of the solution method. Results are shown
for 1, 2, and 4 unique operation types, however, we only show the
results in the 4 unique operation types case up to 10 operations. It is
clear that more operations in this case would have taken a substan-
tial amount of time. As shown in Figure 2, the full representation is
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unable to find a solution within the memory limit for games with 8
or more operations, while the compact representation is able to run
up to 20 operations in less than 1 second in the ideal case where
there is a single operation type.

The next scenario presents results for the case where there is an
increasing number of areas, and each area has exactly 3 operations
associated with it. There are 5 resources available for the defender,
and each operation provides maximum protection for the area it is
associated with. This implies that there is one unique operation
type for every area. Examining Figure 3, we show the improve-
ment of our compact representation over the full representation.
For more than 4 areas, the full representation failed to achieve a so-
lution within the memory bounds. For 5 areas, the compact repre-
sentation runs much faster than the full representation, with a total
runtime of less than 1 second versus the 177 seconds required by
the full representation to find a solution for the case with only 4
areas. Even if the number of operations associated with each area
is a relatively small constant our compact representation provides
substantial benefits. As the number of similar operations associated
with an area increases, this advantage grows (as shown in our first
experiment).

Finally we consider a scenario where operations are distributed ran-
domly across possible areas. Again, each operation is associated
with a single area. The total number of operations is set similarly
to the previous experiment, in that that the total number of oper-
ations is three times the number of areas. However, we randomly
assign operations to areas (with each area having at least one oper-
ation) so the number is no longer uniform. Once again the defender
has 5 resources available and each operation provides full protec-
tion to the area it is associated with. Looking at Figure 4, we see
similar benefits for the compact representation in this case as in the
previous experiment with a uniform distribution of operations.

These results show the potential benefits of the compact representa-
tion in improving scalability by exploiting similarities in the effects
of some operations. We have shown that the most important fac-
tor is the number of unique types of operations that exist and how
many of these operations there are. If the number of types is low
the compact representation performs efficiently.

Figure 2: Runtime: Increasing number of operations with 1
target and 5 resources

8. CONCLUSION
Allocating resources to defend critical infrastructure, high profile
events, and transportation systems among other things remains an
important problem in many security domains. While there are a
number of methods in use today for addressing this problem, one
notable approach that is increasingly finding more use in security
applications is that of game theory. In fact, game theory has seen
successful application at the Los Angeles International Airport and
for the United States Federal Air Marshals Services [8, 14].

Figure 3: Runtime: Increasing areas with 5 resources and 3
operations per area

Figure 4: Runtime: Increasing areas with operations randomly
distributed and 5 resources

We introduce a new form of security game that extends previous
models in several important directions. First, this model includes a
more fine-grained representation for the defender’s strategy space,
explicitly considering both the location of a security activity and the
type of activity that a security resource will perform. Second, we
allow for different levels of effectiveness for different security ac-
tions, including the possibility that an activity has different effects
across multiple locations. Previous models have also assumed that
all of the possible attack strategies for the attacker are known with
certainty, which is unrealistic in real-world security problems. In
particular, attackers can often adapt to circumvent specific known
security measures. We extend the security game model on the at-
tacker’s side to handle this possible in a generic way, allowing at-
tackers to circumvent specific security activities at some cost. This
leads to an increased value for randomness and unpredictability in
the defender’s strategy, even among actions that may be similar in
terms of the areas they affect. Solving this new class of games
presents a computational challenge that existing solution methods
are not able to handle. We address this by introducing a compact
representation for these games that exploits symmetries between
similar types of security activities, and provide experimental results
showing the resulting improvements in runtime.
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ABSTRACT
Decentralised optimisation is a key issue for multi-agent sys-
tems, and while many solution techniques have been devel-
oped, few provide support for dynamic environments, which
change over time, such as disaster management. Given this,
in this paper, we present Bounded Fast Max Sum (BFMS):
a novel, dynamic, superstabilizing algorithm which provides
a bounded approximate solution to certain classes of dis-
tributed constraint optimisation problems. We achieve this
by eliminating dependencies in the constraint functions, ac-
cording to how much impact they have on the overall solu-
tion value. In more detail, we propose iGHS, which com-
putes a maximum spanning tree on subsections of the con-
straint graph, in order to reduce communication and com-
putation overheads. Given this, we empirically evaluate
BFMS, which shows that BFMS reduces communication and
computation done by Bounded Max Sum by up to 99%,
while obtaining 60–88% of the optimal utility.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; G.2.2 [Discrete Mathe-
matics]: Graph Theory

General Terms
Algorithms, Experimentation, Theory

Keywords
Distributed constraint optimization, disaster management

1. INTRODUCTION
Multi-agent systems have been advocated as a key solution
technology for coordinating the activities of rescue forces for
disaster management. Specifically, coordination in such do-
mains can be conveniently framed as a distributed constraint
optimisation problem [13]. Many solution techniques, such
as ADOPT (Asynchronous Distributed OPTimisation) [10],
DPOP (Distributed Pseudotree Optimization Procedure) [11]
and Bounded Max Sum (BMS) [6] have been proposed to
solve such optimisation problems. Now, while complete al-
gorithms such as ADOPT and DPOP guarantee optimal
solutions, they use a lot of communication and computa-
tion. On the other hand, approximate algorithms like BMS
tend to incur a lower coordination overhead, and can provide
bounds on the quality of the approximation they give [6].

However, very few algorithms exist that reduce redundant
communication and computation when used in dynamic en-
vironments. Nonetheless, dynamism is a key issue for search

and rescue in disaster management: the environment evolves
over time, and new information becomes available as time
progresses. For example, information about civilians to res-
cue from buildings may change, and new rescue agencies can
arrive, at any time, to help with the rescue effort. In such
applications, optimal solutions are most desirable, but may
not be achievable within the available time. Thus, good
quality approximate algorithms can be used, due to their
smaller overheads, but only if they are able to produce good
quality solutions. Now, it is also important that an algo-
rithm can always recover from environmental change grace-
fully, so as not to enter an unsafe state during recovery.
This is formally known as superstabilization [4]. In more de-
tail, in order for an algorithm to be superstabilizing, it must
be super-stabilizing [3], and a pre-defined passage predicate
must hold at all times. More specifically, a self-stabilizing al-
gorithm must be distributed across a number of agents, and
must be able to return those agents to some legitimate state
after a change in the environment. This legitimate state
is defined with a legitimacy predicate, which, when invali-
dated, forces the algorithm to return the agents to a state
where the predicate holds in a finite amount of time. More
generally speaking, in a superstabilizing algorithm, the pas-
sage predicate must hold at all times, including whenever
the legitimacy predicate does not.

To date, few algorithms are suited for use in dynamic en-
vironments, and instead would need to be re-run, incurring
unneeded overheads without superstabilization guarantees.
Exceptions to this include SDPOP (Superstabilizing DPOP)
[12], which is superstabilizing, but requires a prohibitive
amount of communication and computation on large scale
scenarios. Another algorithm that partially fits our require-
ments is the Fast Max Sum (FMS) algorithm [13], which
reduces the communicational and computational impact of
a change in the environment. However, FMS is only proven
to converge to an optimal solution on specific1 problem in-
stances, and is therefore not general enough to be applied to
more realistic arbitrary disaster management environments.

Against this background, in this paper, we propose a novel
algorithm for performing superstabilizing distributed con-
straint optimisation in dynamic environments. In more de-
tail, our algorithm provides approximate solutions with qual-
ity guarantees for constraint graphs with arbitrary topolo-
gies2, while reducing communication and computation. In
particular, this paper advances the state of the art in the

1Where the underlying constraint graph contains no cycles.
2Even those in which the underlying graph contains cycles
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following ways: first, we present iGHS, an iterative variant
of the GHS algorithm (named after the authors Gallager,
Humblet and Spira) [7], which computes a maximum span-
ning tree of the constraint graph in BMS. Second, we present
Bounded Fast Max Sum (BFMS): an efficient, superstabiliz-
ing constraint optimisation algorithm, which combines iGHS
with principles from FMS and BMS.

The rest of this paper is structured as follows. In Section 2
we discuss the relevant background for our work. Next, we
formulate our problem in Section 3, and present our iGHS
algorithm in Section 4. We present BFMS in Section 5, and
empirically evaluate it in Section 6. We discuss work related
to iGHS in Section 7, and, in Section 8, we conclude.

2. BACKGROUND
Here, we present the necessary background for our work.
We begin with a discussion of Max Sum and two partic-
ular variants that are useful in applying Max Sum to ar-
bitrary dynamic environments: first, Fast Max Sum, used
to reduce overheads caused by recomputation in dynamic
environments, and second, Bounded Max Sum, which uses
approximation to allow application of Max Sum to arbitrary
environments. Finally, we discuss GHS, which is a key el-
ement of Bounded Max Sum, used to preprocess the con-
straint graph.

2.1 Max Sum
The Max Sum algorithm belongs to the GDL (Generalised
Distributive Law) framework [1], and has been shown to be a
very useful technique for distributed constraint optimisation
[5]. In more detail, Max Sum provides good quality approx-
imate solutions to DCOPs (Distributed Constraint Optimi-
sation Problems) requiring very low computation and com-
munication. This is achieved by using message passing over
a factor graph representation (see [8]) of the dependencies
between agents’ utilities in the global utility function. More
specifically, a factor graph is a bipartite, undirected graph
consisting of variable nodes and function nodes, where func-
tion nodes are connected to variable nodes they depend on.

However, while Max Sum has been proven to converge to
an optimal solution on tree-structured factor graphs, it uses
redundant computation in dynamic environments, and lacks
optimality guarantees on cyclic graphs [14]. In the former
case, Max Sum would have to be re-run after every change
in the environment, and in the latter, very limited theoreti-
cal results relative to convergence and solution quality exist.
As such, Fast Max Sum (FMS) [13] and Bounded Max Sum
(BMS) [6] were presented in order to combat these problems:
FMS reduces overheads incurred after a change in the envi-
ronment, and BMS gives solutions with quality guarantees
on cyclic graphs. Given this, we elaborate further on FMS
and BMS in the rest of this section.

2.1.1 Fast Max Sum
Fast Max Sum (FMS) [13] provides two main improvements
to Max Sum: (i) a reduction of message size, and (ii) a re-
duction of redundant communication and computation after
a change in the graph. These improvements can be gained in
certain scenarios, such as rescue scenarios, where each vari-
able represents an agent, and each factor a target to rescue.
In such cases, a variable’s domain is the set of tasks that it
must choose between, and each task’s dependencies are the
variables whose domain contains them.

Next, we explain how FMS reduces unneeded communica-
tion and computation after a change in the underlying graph:
be it addition or removal of a function, or a variable. Put
simply, a variable in FMS will only send a message in re-
sponse to a received message if the values given in the re-
ceived message are different to those it previously received
from that factor. In order to do this, FMS adds storage
requirements to Max Sum, requiring each variable to store
their previous value, as well as the last message they re-
ceived on each of their edges, compare to it, and update it,
when messages are received. Then, a variable will only send
a new message to a function if and only if its previous values
for that node have changed. For a more detailed example of
the execution of FMS, we refer the reader to [13].

Nevertheless, FMS can only produce provably optimal solu-
tions in certain cases,3 and is therefore not general enough
for use in all environments. As such, we look at Bounded
Max Sum, which provides approximate solutions but guar-
antees convergence and solution quality.

2.1.2 Bounded Max Sum
Bounded Max Sum (BMS) [6] produces bounded approxi-
mate solutions by eliminating cycles in the factor graph (see
Section 3). More specifically, low-impact dependencies are
found and removed by constructing a maximum spanning
tree of the factor graph using the GHS algorithm [7] and
then Max Sum is run on the resulting tree. Each node in the
tree keeps track of which dependencies have been removed
and, by using this information, can compute an approxima-
tion ratio of the optimal solution.

While BMS is not explicitly superstabilizing, we could make
it so by introducing storage at each factor, in order to main-
tain information on the system state during recovery from
a change in the environment. Despite this, however, BMS
could still incur redundant computation and communication
after such a change in the environment, as the GHS algo-
rithm and Max Sum algorithms would need to be re-run.
Now, as explained above, FMS would reduce overheads in
the latter part of the algorithm, but not the former. As
such, next, we detail the GHS algorithm.

2.2 GHS
The GHS algorithm [7] is a distributed technique to find
the minimum spanning tree (MST) of any given weighted
undirected graph, using only local communication and low
computation at each node.

The basic premise of the GHS algorithm is that the nodes of
a graph are formed into a number of graph fragments, which
gradually join on their minimum-weight edges, in order to
eventually form one large graph fragment, containing the
MST of the graph. This is done through localised message
passing. For a more detailed discussion of the operation of
the algorithm, please refer to [7].

While the GHS algorithm is adequate for static problems,
such as those BMS was designed for, when a change is made
to the graph, the algorithm must be completely re-run. To
avoid this, it is important to operate such an algorithm over
a defined subset of the graph whenever a change occurs.
To this end, we have developed a novel algorithm which we

3As with Max Sum, where the constraint graph contains no
cycles.
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present in Section 4. In order to do this, we formulate our
problem in the next section.

3. PROBLEM FORMULATION
In this section, we formally describe the decentralised coor-
dination problem that we address in this paper. We focus on
a task allocation problem: specifically, an environment con-
taining a number of agents, A = {a1, . . . , a|A|}, who must
complete a number of tasks, T = {t1, . . . , t|T |}. The set
of tasks which an agent a ∈ A can potentially complete is
denoted Ta ⊆ T. Similarly, the set of agents which can
complete a task t ∈ T is denoted At ⊆ A.

This problem can be conveniently represented with a factor
graph (see [8]), which is a bipartite, undirected graph FG =
{N , E}, where N is the set of nodes, such that N = VN ∪
FN , where VN is a set of variable nodes, and FN is a set
of function nodes. In addition, E is a set of edges, where
each edge e ∈ E joins exactly one node in VN to exactly one
node in FN . An example factor graph formulation of our
scenario is given in Figure 1.

1

2

3

1 2

Figure 1: An example scenario containing 2 rescue
agents (black stars) and 3 tasks (white triangles),
formulated as a factor graph, with agents as vari-
ables (circles), and tasks as factors (squares).

In our problem, we have a set of variables, x = {x1, . . . , xm},
controlled by the set of agents A. Each agent owns precisely
one variable,4 so we denote the variable belonging to agent
a ∈ A as xa. This variable represents the target of the
agent: that is, the task that the agent must complete, and
as such the domain of xa is Ta.

Next, we define a set of functions, F = {F1, . . . , Fn}, each
representing a task t ∈ T. A function Ft(xt) is dependent
on the set of variables which can potentially take the value
t, or more formally, xt = {xa|a ∈ At}. Thus, Ft(xt) denotes
the value for each possible assignment of the variables in xt.

Given this, we aim to find the state of each variable in x
which maximises the sum of all functions in the environment
(known as social welfare):

x∗ = arg max
x

X
t∈T

Ft(xt) (1)

Specifically, the factor graph consists of a function node
FN ∈ FN for each F ∈ F and a variable node V N ∈ VN
for each x ∈ x. We assume that each agent a ∈ A only has
control over, and knowledge of, its own local variable xa, and
thus one variable node in the factor graph. The decision as
to which agent computes for shared functions has no impact
on the correctness of our approach, and as such any policy
can be used to decide this (e.g. the agent with the lowest

4This is not a limitation of our solution approach, but a
feature of our reference domain.

ID computes for shared functions).5 Thus, we assume that
each agent may compute any number of functions in F, but
that each function F ∈ F is computed by one agent a ∈ A
only. Now, as mentioned earlier, each function F ∈ F repre-
sents one task in the task space, t ∈ T. Hence, each function
node in the factor graph represents one task, and so, each
function node Ft(xt) will be connected to the variable nodes
representing the variables xt.

4. IGHS
As previously mentioned, it is not ideal to completely re-
calculate the MST of an environment whenever the environ-
ment changes, as this is expensive in terms of communication
and computation. Hence, to avoid such issues, upon certain
types of graph change, we only find the spanning tree of a
small part of the graph at a time. This allows us to reduce
communication and computation overheads.

4.1 The Algorithm
The general idea of iGHS (iterative GHS) is to run GHS
only on subgraphs of the whole problem. Specifically, given
a spanning tree, the whole factor graph, and a node to add,
we take a subgraph of the graph and run GHS on that in or-
der to find a MST of this subgraph. We choose the subgraph
by using a variable k, which defines the depth of nodes in
the graph we consider, measured from the node to be added.
This is illustrated in Figure 2, where part (a) shows the orig-
inal spanning tree, with node x to be added, and parts (b)
and (c) highlight the nodes which are included in subgraphs
with k = 1, and k = 2, respectively.

x
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d e f

g h i

(a) Original
Spanning Tree.
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d e f

g h i

x

(b) k = 1

x

a b c

d e f

g h i

(c) k = 2

Figure 2: The effect of k on the size of the subgraph.
Thick lines are spanning tree branches, thin lines are
edges in the graph but not the spanning tree.

Finding the MST of the subgraph in order for the rest of the
graph to remain an MST is a challenge. In more detail, if two
or more nodes in the subgraph have spanning tree branches
to nodes not in the subgraph (we call these frontier nodes:
they are shown in Figure 2 as nodes with double outlines),
then joining these two frontier nodes in the MST could cause
a cycle in the spanning tree as a whole, thus invalidating the
tree. We can see how this would occur by considering nodes
d and e in Figure 2(c): both nodes have a spanning tree
branch in the remainder of the graph, so making a spanning
tree branch either on edge (a, d) or edge (d, e) would connect
d and e, thus creating a cycle in the rest of the graph. In
order to combat this, we identify the frontier nodes, and
ensure that we only connect to one of these nodes, on one
edge. We can then guarantee we have not introduced a cycle.

iGHS operates in two phases: (1) a flooding phase which
determines which nodes and edges are in the subgraph to be
5An allocation that balances the computational load among
agents might be desirable, but is beyond the scope of the
current paper.
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Algorithm 1 Phase 1 of the iGHS algorithm, at a node n.

Require: possEdges = adj(n), lastCount = −∞,
inEdges, exEdges = ∅

1: At starting node, given k:
2: lastCount = k;
3: Send Flood(k − 1) to all n′ ∈ possEdges
4: On receipt of Flood(d) on edge j:
5: if d > lastCount then
6: lastCount = d; inEdges = inEdges ∪ j;
7: possEdges = possEdges \ j; exEdges = exEdges \ j;
8: if d < 0 then // Node is not in the subgraph
9: Send External on edge j, then halt.

10: else // Node is in the subgraph
11: Send Flood(d− 1) on all e ∈ {possEdges \ j}
12: if possEdges = ∅ then Send FloodAck on edge j, then halt.
13: else Put message on end of queue.
14: On receipt of External on edge j
15: exEdges = exEdges ∪ j; possEdges = possEdges \ j
16: On receipt of FloodAck on edge j
17: inEdges = inEdges ∪ j; exEdges = exEdges \ j; possEdges =

possEdges \ j;

considered, and (2) a phase based on GHS, which establishes
the MST, and adds the minimum weight frontier edge (i.e.,
edge joining to a frontier node) to the MST.

4.2 Phase 1
Algorithm 1 gives pseudocode for the flooding phase of our
algorithm. In this phase, each node identifies which of its ad-
jacent edges in the graph are within the subgraph (inEdges),
and which are not (exEdges). This is done by initially
adding all of a node’s adjacent edges, adj(n), into possEdges,
which denotes that they could belong to the subgraph.

In more detail, the flooding phase begins with the node to
be added informing its neighbours of the value of k. More
specifically, this node sends Flood(k−1) messages to all of its
neighbours (line 3). Now, when a node n receives a Flood(d)
message, it will propagate further Flood(d − 1) messages
along edges it is unsure of the status of (line 11), unless it
receives a Flood message on edge j containing a value less
than 0. If this happens, the node sends an External message
on edge j (line 9), informing the node at the other end that
j is in exEdges (line 15).

Now, in order for a node to classify an edge into inEdges,
the node must have received either a Flood message (line 6)
or a FloodAck message on that edge (line 16). FloodAck
messages are sent when a node has classified all of its edges
into inEdges or exEdges (line 12), and so, we can see that
they are sent from the nodes that are furthest away from the
new node, back toward the node to be added. The algorithm
stops when the node to be added has received a FloodAck
message from each of its neighbours. Thus, when the node
to be added has received FloodAck messages on each of its
edges, we know that every node in the subgraph is aware of
which of its edges are in the subgraph, and which are not,
and phase 1 of the algorithm is complete.

4.3 Phase 2
We give the pseudocode for phase 2 of iGHS in Algorithm
2. For brevity, we omit the sections (lines 3, 9, 14, 20, 35)
of the algorithm that are repeated from GHS and focus only
on the areas in which we have made changes.

Now, we can classify nodes into frontier nodes and non-
frontier nodes: if, for a node n, exEdges 6= ∅ and the
previous status of at least one of the edges in exEdges is
BRANCH (i.e., it was a branch in the spanning tree pre-
dating this computation), then n is a frontier node.

Algorithm 2 Phase 2 of the iGHS algorithm, at a node n.
Require: inEdges, exEdges, frontier
1: Procedure wakeup()
2: bestFrontierEdge = nil; bestFrontierWeight =∞
3: if frontier = false then Proceed as GHS wakeup()
4: On receipt of Connect(L) or Test(L, F ) on edge j
5: if frontier = true then // j is a frontier edge.
6: SE(j) = REJECTED
7: Send Frontier on j
8: else // j is an edge in the subgraph.
9: Proceed as GHS Connect(L) or Test(L, F )

10: On receipt of InstConnect(L) on edge j
11: SE(j) = BRANCH
12: Procedure test()
13: if there are adjacent edges in state BASIC and not in exEdges

or frontierEdges then
14: Proceed as GHS test() procedure.
15: On receipt of Frontier on edge j
16: SE(j) = REJECTED;
17: frontierEdges = frontierEdges ∪ j
18: bestFrontierEdge = mine∈frontierEdges w(e)

19: bestFrontierWt = weight of bestFrontierEdge
20: if FN = nil then Proceed as last received GHS Connect
21: else test()
22: Procedure report()
23: if findCount = 0 and testEdge = nil then
24: SN = FOUND
25: Send Report(bestWt, bestFrontierWt) on inBranch
26: On receipt of Report(w, fw) on edge j
27: if j 6= inBranch then
28: findCount = findCount− 1
29: if w < bestWt then bestWt = w; bestEdge = j;
30: if fw < bestFrontierWt then bestFrontierWt =

fw; bestFrontierEdge = j;
31: report()
32: else if fw > bestFrontierWt and w =∞ then
33: ChangeFrontierRoot()
34: else
35: Proceed as GHS Report(w)
36: ChangeFrontierRoot()
37: if SE(bestFrontierEdge) = BRANCH then
38: Send ChangeFrontierRoot on bestFrontierEdge
39: else
40: SE(bestFrontierEdge) = BRANCH
41: Send InstConnect(L) on bestFrontierEdge

Given this, we now go into more detail on Algorithm 2.
When a node’s status is SLEEPING, and it receives a mes-
sage, it runs the wakeup() procedure (lines 1–3), initialising
its variables, and tries to connect to one of its neighbours,
if it is not a frontier node. When a node receives a con-
nection attempt from its neighbour on edge j (line 4), the
algorithm will proceed in one of two ways: if the node is a
frontier node, then it marks j as not in the spanning tree
and sends a Frontier message along j (lines 5–7), and if the
node is not a frontier node, then it proceeds as it would in
GHS (line 8). When a node receives a Frontier message
along j (line 15), it marks j as not in the spanning tree (line
16), adds j to its list of frontier edges (line 17), and updates
its best frontier edge and weight values (lines 18–19), before
carrying on as if edge j did not exist (lines 20–21).

Now, when a node has connected on its minimum-weight
edge, it tries to connect on each of its other edges, in order
of weight (see lines 12–14). However, if a node has no more
unclassified edges left, then it runs the procedure report()
(line 22), and informs its parent in the tree of the lowest
weight frontier edge it has (lines 23–25). When the parent
receives this report (line 26), it decides which of its neigh-
bours has the lowest-weight frontier edge, and informs its
own parent (lines 27–31). However, if the report message
is received by the root of the graph (line 32), then the re-
ceiving node can be sure that its best frontier edge leads to
the spanning tree’s best frontier edge. As such, the receiv-
ing node sends instruction to connect along the best frontier
edge (line 33). Finally, if a node receives an instruction to
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join on its best frontier edge (line 36), it determines whether
its best frontier edge points further down the tree (line 37),
or is the edge to connect on (line 39), and either passes the
message on (line 38), or connects on the best frontier edge
(lines 41, 10–11).

4.4 Properties of iGHS
Having presented our algorithm, we now show that it is cor-
rect, and superstabilizing.

Correct. In order to prove the correctness of iGHS, we
must show first, that it cannot create a cycle in the overall
spanning tree of the graph, and second, that it will make a
minimum spanning tree in the subgraph.

First, given that GHS is correct [7], and cannot create cycles,
we know that iGHS will not make a cycle in the subgraph it
runs on. Thus, it is sufficient for us to show that, in joining
our MST to the spanning tree of the rest of the graph, we
cannot create a cycle. This is because if a node is connected
to a tree-structured graph on a single edge, then it is im-
possible for that node to have created a cycle in the overall
graph. Now, as we are sure that we make a spanning tree
across all edges but those that connect to frontier nodes, and
we connect that tree to the rest of the graph on a single edge,
we can guarantee that our algorithm can, indeed, not make a
cycle in the graph overall. Second, we can guarantee that the
spanning tree produced by running iGHS on the subgraph
is minimum due to the properties of the GHS algorithm.

Superstabilizing. In order to show that iGHS is super-
stabilizing, we define the following predicates: legitimacy :
when the algorithm is complete, the spanning tree produced
contains no cycles, passage: at no time during recovery from
a perturbation, are any cycles inadvertently formed. We can
say that iGHS is superstabilizing with respect to these pred-
icates: first, because GHS does not form any cycles in its
operation, and second, because iGHS is correct.

Now that we have ascertained these properties, we present
Bounded Fast Max Sum, which combines iGHS and Fast
Max Sum in order to solve distributed constraint optimisa-
tion problems on arbitrary graphs.

5. BOUNDED FAST MAX SUM
Here, we introduce the Bounded Fast Max Sum algorithm,
which consists of three main procedures running sequentially
after a node is added to the graph:

1. Efficient, superstabilizing spanning tree gener-
ation: using iGHS (Section 4) to re-calculate the max-
imum spanning tree around the added node.

2. Fast Max Sum, to calculate the optimal assignment
of variables in the spanning tree. Only the nodes who’s
utility changes as a result of the addition need resend
their Max Sum messages through the tree: if their
change in utility does not change, then the decision
rules in Fast Max Sum will ensure messages are not
transmitted unnecessarily.

3. WSUM and SOLUTION propagation, in order
to calculate the quality of the solution found.

Now, while adding a node to the graph is always handled in
the same manner, this is not the case for removing nodes.
In more detail, we must consider both circumstances under
which a (function or variable) node can be removed from the
graph: first, physical disconnection, such as when a rescue
agent is malfunctioning or disappears, and second, when a
task has been completed. To support the first case, we in-
troduce contingency plans. Each time a node n is certain of
the status of each of its incident edges (i.e. when they have
all been marked BRANCH or REJECTED), it chooses its
lowest weighted, and hence, most important, BRANCH edge
and informs the node at the other end (n2) that n2 is n’s
contingency. Then, if node n is removed from the graph, n2

will instigate the iGHS algorithm, and maximise the span-
ning tree around itself. The second case (a task being com-
pleted) is slightly different, in that the factor node for that
task will not be physically removed from the graph. Instead,
the factor node acts as a ‘handler’ for iGHS, by setting the
weight of each of its incident edges to 0 (as their utility
would be 0 anyway), and instigating execution of iGHS.

In terms of how many nodes can be added and/or removed
simultaneously, the iGHS algorithm imposes a restriction
on both. More specifically, as iGHS has a set of values at
each node which are used in the spanning tree formation, we
must ensure that no one node is involved in more than one
instance of iGHS at a time, so that these values are not being
overwritten by multiple iGHS instances. Hence, we can say
that if two or more nodes are to be added to and/or removed
from the graph simultaneously, they must be of distance at
least 2k+ 1 away from each other, to avoid overlap in iGHS
instances. We next detail the execution of BFMS.

5.1 The Algorithm
As in BMS, each dependency link eij in the factor graph FG
is weighted as below:

wij = max
xi\j

»
max

xj

Fi(xi)−min
xj

Fi(xi)

–
(2)

This weight represents the maximum impact that variable
xi can have over function Fj . Thus, by not including link
eij in the spanning tree, we say that the distance between
our solution and the optimal is at most wij .

Now, once each link has been weighted, our iGHS algorithm
is started (see Section 4 for more details). The outcome of
the convergence of this algorithm is, initially, a maximum
spanning tree.6 Following this, after every addition to the
graph, the spanning tree around the change is maximised,
thus iteratively improving a section of the graph.

Next, we run Fast Max Sum on the resulting spanning tree,
beginning at the leaves, and propagating up the tree, with
each node waiting to receive messages from all of its chil-
dren before calculating and sending its next message. These
messages then propagate back down the tree from the root
to the leaves in a similar manner, at which point the algo-
rithm converges, and a variable assignment x̃ can be com-
puted. Functions with removed dependencies are evaluated
by minimising over the removed dependencies, as in BMS.

Finally, the algorithm enters the WSUM and SOLUTION
propagation phase, which is the same as that of BMS. More

6The maximum spanning tree can be obtained by using
iGHS and negating edge weights
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specifically, once the leaves have received the Fast Max Sum
messages, they can compose new WSUM and SOLUTION
messages. If the leaf node is a function, WSUM is the sum
of the weights of its removed dependencies, and SOLUTION
is Ft(x̃t). If the leaf is a variable, the WSUM and SOLU-
TION messages are empty. When a node receives WSUM
and SOLUTION from all its children, it can process them
according to whether it is a function node or a variable node.
If the node is a variable node, these messages are the sum of
messages from its children. If the node is a function node,
the messages are the sum of messages from its children, plus
its own values for the removed edge weights (for WSUM)
and Fi(x̃i) (for SOLUTION). Once these messages reach
the root, the root propagates them back down, so every node
is aware of the total weight removed, W , and the solution
value, Ṽ =

P
t∈T Ft(x̃t).

Now the agents have all information to compute the approxi-
mation ratio, as follows: ρ(FG) = 1+(Ṽ m+W−Ṽ )/Ṽ where

FG is the factor graph the algorithm has been run on, Ṽ m is
the approximate solution value, and Ṽ is the actual solution
value.Now, as the approximation ratio tends to 1, this in-
dicates improvement in the solution quality guarantees, be-
cause this indicates that the total weight of removed edges is
small. Thus, in order to help this, we wish to keep the value
of W as low as possible, by only removing low-weight edges
(i.e., edges that have low bearing on the overall solution).
We can see that the value of k given to iGHS has a bearing
on the approximation ratio, too — higher values of k opti-
mise larger sections of the graph. This means iGHS is more
likely to remove the lowest weight combination of edges.

5.2 Properties of BFMS
In order to verify that that BFMS is superstabilizing, we
must first show that FMS is superstabilizing. We do this
subject to the following predicates: legitimacy : U(x) =
maxx

P
t∈T Ft(xt), where U(x) is the total utility of assign-

ment x, and passage: the previous assignment of variables
is maintained until a new solution has been computed.

Proposition 1. Fast Max Sum is superstabilizing on tree
structured graphs, because it is self-stabilizing on tree struc-
tured graphs, and, during stabilization after a change in the
graph, the previous assignment of variables is maintained
until a new solution has been computed.

Proof. First, FMS is an extension to Max Sum, which is
proven to converge to an optimal solution on tree structured
graphs. Second, when a change occurs in the graph, FMS is
run again, and therefore, provided the change did not intro-
duce a cycle into the graph, FMS is guaranteed to converge
to the optimal again, reaching a legitimate state within a
finite amount of time. This is because FMS does not change
the messages sent, it just stops duplicate messages being
sent when values at some nodes have not changed as a re-
sult of the graph change. FMS is superstabilizing because it
has storage at each variable node in order to maintain a pre-
vious assignment during recalculation, and so, the passage
predicate always holds.

Given this, BFMS is also superstabilizing, because FMS and
iGHS (see Section 4) are. As BFMS combines these two al-
gorithms, we can deduce that BFMS is superstabilizing.

Next, we empirically evaluate BFMS, and compare it to
BMS, in order to show the improvements BFMS gives.

6. EMPIRICAL EVALUATION
In order to empirically evaluate Bounded Fast Max Sum,
we ran two types of experiment, intended to measure our
performance in terms of approximation quality, robustness
and utility gained. We compare Bounded Fast Max Sum to
Bounded Max Sum (BMS), and a greedy version of Bounded
Fast Max Sum (G-BFMS), in which an added node will con-
nect to the rest of the spanning tree on its best-weight edge.

The first experiment intends to show that our algorithm is
robust to changes in the graph. In more detail, we com-
pared BFMS with k = 2, k = 3 and k = 4 to BMS, and G-
BFMS. More specifically, we ran these algorithms on a series
of 50 randomly generated graphs, where, initially, |A| = 5
and |T | = 5. In addition, we compared results found on
graphs with task nodes of degree δt = 3, to those with agent
nodes of degree δa = 3. We used a random look-up table,
drawn from a uniform distribution, as the utility function of
each task in order to evaluate our algorithm in a general set-
ting. Given this, we ran experiments where we added agents,
high-weighted tasks (where, for all values, ut(a) ∈ [0.5, 1]),
and low-weighted tasks (where ut(a) ∈ [0, 0.5]) in order to
demonstrate the impact that k has on the quality of the ap-
proximation in these situations. Now, for each experiment,
we first ran one of the algorithms, and alternated adding
new agents and tasks, one at a time,7 to the environment.
We repeated this process 10 times, recording a number of
values after each algorithm run, and calculating the mean of
each value at each step, with 95% confidence intervals (which
we have plotted on our graphs). In addition, we ran experi-
ments where we added only agents to the environment, to see
if adding only one type of node would show a different trend
to alternating types. During these experiments, we recorded
a number of values.8 Firstly, we recorded two values from
the preprocessing phase of the algorithms: namely, the mean
total size of preprocessing messages sent (PTNS), and mean
total preprocessing storage used (TSU). The smaller these
values are, the better. In addition, we recorded some values
from the message passing phase of the algorithms: mean
computation units used at each node (MCU), mean total
size of messages sent, in bytes (TSS), and the mean approx-
imation ratio obtained (AR). The values of MCU and TSS
should, preferably, be small, and the AR should be as close
to 1 as is possible.

Given that FMS has been shown to outperform Max Sum
in terms of MCU, TNS and TSS [13], we hypothesise:

Hypothesis: Bounded Fast Max Sum has lower MCU, and
TSS than Bounded Max Sum. In addition, Bounded Fast
Max Sum has lower PTNS than Bounded Max Sum.

We found from our experiments that varying the degree of
tasks and agents had no real effect on the performance of our
algorithm. In addition, we found that using high or low util-
ity values of added tasks made little difference to the results
either, and for this reason, we present here the results for
high-valued utility functions, and δa = 3. We can see from
Figure 3(a) that alternating adding agents and tasks leads
to faster deterioration in the approximation ratio when tasks

7As mentioned in Section 5, iGHS is only guaranteed to work
if simultaneously added nodes are at least 2k+1 nodes apart.
The evaluation with multiple nodes is beyond the scope of
this paper.
8Some of these are typical measures used in the DCOP com-
munity [10], approximation ratio comes from BMS [6].
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(a) Mean Approximation Ratio: al-
ternating.

(b) Mean Approximation Ratio:
adding only agents.

(c) Mean preprocessing messages
sent.

(d) Mean computation units used. (e) Mean total size of messages sent. (f) Mean total storage used.

Figure 3: Experiment 1 results.

are added. This is because functions have more impact on
the approximation ratio than extra variables, and thus will
degrade it further when added. Given this, when we only
add agents (Figure 3(b)), we see a plateau in BFMS for both
values of k, after adding around 5 tasks, where G-BFMS’s
approximation ratio continues to degrade. Figures 3(a), (b)
and (c) show the effect that the value of k has on preprocess-
ing messages sent and approximation quality: whilst k = 2
requires 28–53% fewer preprocessing messages than BMS, it
produces approximation ratios within 81–94% of BMS. In-
creasing k to 3 gains approximation ratios within 88–100%
of BMS, but reduces the saving in preprocessing messages
sent to only 1–7% of BMS. Hence, it can be seen that higher
values of k do achieve better approximation ratios, but at
the expense of sending more preprocessing messages. Now,
Figure 3(d) and (e) show the marked reduction in compu-
tation and message size gained by the use of FMS: up to a
maximum of 99% over BMS. Finally, Figure 3(f) shows the
extra storage at each node needed by iGHS, which, whilst
linear in nature, is higher than that of BMS.

It can be seen in Figures 3(c) and (f) that G-BFMS uses
very little additional storage and preprocessing messages af-
ter a change in the graph. This is because the decision made
is entirely local to the node to be added, and, as such, no
storage is needed, and only 1 message needs to be sent to
confirm the chosen edge forming part of the spanning tree.

Next, our second experiment intends to evaluate the per-
formance of our algorithm in a real scenario, and, as such,
we used our own flooding simulator (based on that used in
[13]) to compare utility gleaned by BFMS (using k = 2 and
k = 3), G-BFMS and BMS in comparison to using BMS with
complete information about all tasks to appear (denoted
BMS-OPT). To do this, we set A such that |A| = 10 and var-

ied the starting set of tasks to be completed, T , in increments
of 5, such that |T | ∈ {0, 5 · · · , 30}. Each task was given a
deadline dt, and a workload wt, which indicate when the task
will expire, and how long it will take to complete, respec-
tively. We also generated a list of 10 tasks which were added
to the environment, one at a time, every |T | timesteps: thus,
when we say BMS-OPT had full information, we mean that
BMS-OPT was given the set T and the complete set of tasks
that would be added over time at the start of the simulation.
We randomly generated 50 instances of agent and task posi-
tions for each amount of tasks, drew the deadline of each task
from a uniform distribution dt ∈ U(0, 10×|T |) and drew the

workload from a uniform distribution as wt ∈ U(0, 10×|T |
2

).
We ran the three algorithms on each of the 50 instances, over
10×|T | time steps, running each algorithm at each time step.
We show the mean total number of tasks completed by each
algorithm in Figure 4, along with 95% confidence intervals.

Figure 4: Mean total tasks completed.

We can see from Figure 4 that BFMS with k = 2 and k = 3
completes within 96–100% of the tasks as BMS, and that
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performance of BFMS with k = 3 is very similar to that of
BMS. In addition, we found that BFMS took a much smaller
amount of time to converge to a solution at every time step,
compared to BMS and OPTBMS which took far longer.

7. RELATED WORK
Using the GHS algorithm [7] as a starting point, we looked
into work similar to iGHS in order to locally optimise a span-
ning tree, without affecting the whole graph. We found some
work into distributed dynamic MST algorithms: for exam-
ple, Cheng et al.’s Dynamic MST protocol [2], which finds
the MST of the entire graph. However, these algorithms do
not suit our purpose, for we wish to reduce computation and
communication done by the algorithm overall, and hence,
the amount of spanning tree changed must be limited.

Given this, some work closer to ours is that of localised
spanning tree calculation, which is of particular interest in
wireless ad-hoc networks [9]. In such domains, low power
consumption and memory limit the scope of potential algo-
rithms to those that are localised and power-efficient. In
addition, localised minimum spanning tree algorithms such
as that of [9] are often constrained by bounds on node de-
gree (i.e., the number of outgoing links from each node), and
minimising the length of each links between nodes, in order
to conserve precious resources. Fortunately, our domain is
not so limited in terms of node degree (in fact, large node de-
grees would help to increase solution quality), or link length:
we can assume that, if links are present in the graph of the
scenario, then they are available to be chosen in the MST.

The work of Li et al. is similar to ours, in that their Incident
MST and RNG Graph (IMRNG)9 method finds the MST
of nodes within two ‘hops’ from each node in the graph.
However, the mechanism is, in a sense, locally centralised,
in that each node finds out the weights of its neighbouring
links through message passing, before calculating the MST
locally, and informing its neighbours of the result. Our al-
gorithm is not centralised in this way, as iGHS and FMS are
both entirely distributed, in that removing a node will not
cause either algorithm to collapse. In addition, the mecha-
nism is heavily constrained in order to be compatible with
ad-hoc networks, forcing node degree to be at most 6, and
fixing the hop count to 2, whereas we allow k (our measure
of hop count) and node degree to take any value.

8. CONCLUSIONS AND FUTURE WORK
We have presented an efficient, dynamic, superstabilizing
algorithm for distributed constraint optimisation, which is
able to provide approximate solutions with quality guaran-
tees, whilst reducing redundant computation and commu-
nication in dynamic environments. Our main directions for
future work are to consider how the algorithm could adapt
to areas of varying communication, and to enable any num-
ber of nodes to be added and/or removed simultaneously.
More specifically, we are interested to find out if dynami-
cally varying the value of k in response to varied available
bandwidth could optimise our solution quality in environ-
ments where communication capabilities can vary. Second,
our algorithm is constrained in the number of nodes that
can be added or removed at any one time, not allowing at
simultaneous addition and/or removal of nodes which are
less than 2k + 1 from each other. Thus, we will endeavour
to reduce, or possibly remove, this limit.

9RNG: Relative Neighbourhood Graph
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ABSTRACT
A Distributed Constraint Optimization Problem (DCOP) [7, 6] is a
formal framework that can model many cooperative multi-agents
domains. The Divide-and-Coordinate (DaC) framework [11] is
one of the few general frameworks for solving DCOPs that pro-
vides bounds on solution quality for incomplete algorithms. In this
paper, we formulate a novel DaC algorithm, the so-called Egalitar-
ian Utilities Divide-and-Coordinate (EU-DaC) algorithm. The in-
tuition behind EU-DaC is that agents would get closer to the agree-
ment, that is to the optimal solution in DaC, when they communi-
cate their local utilities for their decisions instead of their preferred
decisions. We empirically show how this new algorithm outper-
forms DaCSA [11], the other DaC algorithm proposed so far, in all
instances. We also show that it is very competitive when compared
with bounded MGM k-optimal algorithms [5, 4], eventually outper-
forming them on some problem topologies. Our results also show
how bounds provided by the DaC framework are much tighter than
2-optimal and 3-optimal bounds.

1. INTRODUCTION
In many cooperative multi-agents domains, such as sensor networks
[13], distributed scheduling [10], and the configuration of power
networks [10] a set of agents choose a set of individual actions
whose rewards are dependent on the actions of other agents. A
Distributed Constraint Optimization Problem (DCOP) [7, 6] is a
formal framework proposed to model these cooperative networks
where agents need to coordinate in a decentralized manner to find
the joint action that maximize their joint reward.

Since solving a DCOP is NP-Hard [7], complete algorithms that fo-
cus on obtaining optimal solutions (e.g. ADOPT [7], OptAPO [6])
are usually unsuitable for dynamic and/or large-scale problems due
∗This work has been funded by projects IEA (TIN2006-15662-
C02-01), Agreement Technologies (CONSOLIDER CSD2007-
0022, INGENIO 2010) and EVE (TIN2009-14702-C02-01,
TIN2009-14702-C02-02). Meritxell Vinyals is supported by the
Spanish Ministry of Education (FPU grant AP2006-04636). JAR
thanks JC2008-00337.

to their computational and communication costs. Because of the
unaffordable price of optimality, researchers have also formulated
incomplete algorithms (e.g. DSA [13], DBA [13], max-sum [3]),
which provide locally optimal solutions and only require a small
amount of computation and local communication per agent. How-
ever, although these algorithms scale very well to large networks,
they can converge to very poor solutions or even fail to converge.
Another limitation is that they do not provide any quality guaran-
tee on their solution, leaving agents with high uncertainty about
the goodness of their decisions. As argued in [11, 9], quality guar-
antees can make a significant difference on incomplete algorithms
because they allow agents to reason if it is worth investing more
resources on improving their current decisions, to trade-off quality
versus cost, by providing a bound on their maximum error. Some
works [9, 11] have started to make headway on this direction by
defining general frameworks that can provide quality guarantees
over DCOP solutions even for incomplete algorithms.

On the one hand, there is the k-optimality framework [9] which de-
fines quality guarantees for k-optimal solutions: solutions that can
not be improved by changing any group of k or fewer agents de-
cisions. The Maximum Gain Message algorithms [5, 4], namely
MGM-2 and MGM-3, are DCOP approximate algorithms that con-
verge to 2-optimal and 3-optimal solutions respectively.1 On the
other hand, Vinyals et al. [11] recently proposed the Divide-and-
Coordinate (DaC) framework. In DaC agents iteratively divide an
intractable DCOP into simpler local problems that can be individ-
ually solved by each agent and thereafter coordinate to reach an
agreement over their assigments. As shown in [11], the DaC frame-
work provides an upper bound on the quality of the optimal solu-
tion that agents can use to return per-intance quality guarantees.
The Divide-and-Coordinate Sugradient Algorithm (DaCSA) [11]
is a computational realization of the DaC framework, a bounded
approximate DCOP algorithm in which agents coordinate by ex-
changing their preferred decision. However, several works [3, 12]
have shown that communicating the utility of variables assignments
instead of only the preferred assignments can lead to benefits in
terms of solution quality.

It is this issue that we address in this paper, and to this end, we
present a novel DaC algorithm, the Egalitarian Utilities Divide and
Coordinate algorithm (EU-DaC). Agents running EU-DaC coordi-
nate by exchanging the local utilities of their variables assigments
with their neighbours. Concretely, this paper makes the following
contributions:

1MGM-1 is a k-optimal algorithm but no guarantees are given in
the k-optimal framework for k=1.
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• We formulate a novel computational realization of the DaC
approach for which agents: (1) coordinate with their direct
neighbours by exchanging their local utilities for shared vari-
ables assignments; and (2) update their local problems with
the aim of getting closer to the utilities of their neighbours.

• We empirically evaluate the quality solutions of EU-DaC on
different network topologies against state-of-the-art algorithms
that provide quality guarantees (DaCSA, MGM-2 and MGM-
3). Our empirical results show how EU-DaC outperforms
DaCSA in all tested scenarios confirming the advantatges of
communicating utilities instead of simply decisions. More-
over, it also shows that EU-DaC is competitive when com-
pared with k-optimal algorithms (MGM-2 and MGM-3): EU-
DaC solutions quality is similar to k-optimal algorithms and
better on structured topologies.

• We experimentally compare the quality guarantees given by
the different benchmarked algorithms: DaC quality bounds
(EU-DaC and DaCSA) and k-optimal quality bounds (3-optimal
for MGM-3 and 2-optimal for MGM-2). Results show that
the bounds provided by EU-DaC are much tighter than k-
optimal bounds, which for k = 2 and k = 3 are very loose.

This paper is structured as follows. In section 2 we give an overview
of DCOPs and of the DaC framework. Next, in section 3 we de-
scribe our decentralised coordination algorithm, the EU-DaC al-
gorithm. In section 4 we present our empirical evaluation of EU-
DaC with respect to other state-of-the-art approximate algorithms
with quality guarantees. Finally, we draw some conclusions and set
paths to future work in section 5.

2. DCOP AND DIVIDE-AND-COORDINATE
2.1 DCOP Definition
A Constraint Optimization Problem (COP) consists of a set of vari-
ables, each one taking on a value out of a finite discrete domain.
Each constraint (or relation) in this context determines the utility of
every combination of values taken by the variables in its domain.
The goal of a COP algorithm is to assign values to these variables
so that the total utility is maximized.

Let X = {x1, . . . , xn} be a set of variables over domains
D1, . . . ,Dn. A utility relation is a function r : Dr → R+ with
domain variables {xi1 , . . . , xiq} in Dr = Di1 × . . . × Diq , that
assigns a utility value to each combination of values of its domain
variables. Formally, a COP is a tuple Φ = 〈X ,D,R〉 where: X is
a set of variables; D is the joint domain space for all variables; and
R is a set of utility relations. The objective function f is described
as an aggregation over the set of relations. Formally:

f(d) =
X
r∈R

r(dr) (1)

where d is an element of the joint domain space D and dr is an
element of Dr.

The goal is to assess a configuration d∗ with utility f∗ that max-
imizes the objective function in equation 1. A DCOP [7, 6] is a
distributed version of a COP where: (1) variables are distributed
among a set of agents A; and (2) each agent receives knowledge
about all relations that involve its variable(s). Although an agent
can be in charge of one or more variables, hereafter, we assume
that each agent ai is assigned a single variable xi. Moreover, we

focus on binary DCOPs (those whose utility relations involve at
most two variables). Therefore, we will refer to unary constraints
involving variable xi ∈ X as ri, and to binary constraints involving
variables xi, xj ∈ X as rij .

X1

X2 X3

a1

a2 a3

r12

r23

r13

xi xj   rij
0   0   0
0   1   10
1   0   10
1   1   10

Reward table of 
binary constraints

x1  r1 
0    0
1   -5

x2  r2 
0    0
1   -10

x3  r3 
0    0
1   -2

Figure 1: Example of a DCOP constraint graph .

DCOPs are usually represented by their constraint graphs, where
nodes stand for variables and edges link variables that have some
direct dependency (appear together in the domain of some relation).
Figure 1 shows an example of a binary DCOP in which agents
choose values from {0, 1} represented by its constraint graph. For
instance, note that relation r12 is known by agent a1, that controls
variable x1, and agent a2, that controls variable x2. In this context,
the neighbours of some agent a are those that share some constraint
with a. Thus, in figure 1, a2 and a3 are neighbours of a1 because
a1 shares relation r12 with a2 and relation r13 with a3. Each rela-
tion shows its rewards in a table. Thus, agent 3 has a reward of -2
to set its variable to 1 and each pair of agents have a reward of 10
when they set at least one of their variables to 1.

2.2 Divide-and-Coordinate framework
This section defines the Divide-and-Coordinate (DaC) framework,
first introduced elsewhere [11]. The DaC framework is an approach
that allows agents to distributedly solve a DCOP by exploiting the
concept of agreement. The key idea behind the DaC approach is
the following: since solving a DCOP is NP-Hard, we can think
of dividing this intractable problem into simpler subproblems that
can be individually solved by each agent. Therefore, in the DaC
framework, agents start with the so-called divide stage in which
they distributedly break the original problem into subproblems and
individually solve them. Figure 2 shows an initial division in which
each agent creates its local subproblem from its local relations. If
a relation is shared among multiple agents, they split the relation
by dividing the rewards in equal parts. Thus, the local problem of
agent a1 is composed of its local relation over its variable x1 and all
binary relations that include its variable, namely r12 and r23 with
splitted rewards (table on the left shows rewards for binary rela-
tions). Naturally, when solving individual subproblems agents may
assign different values to their sharing variables getting in conflict
about their values. For instance, in the example of figure 2 variable
x1 is assigned by the three agents independently getting in conflict
agent a1 and a2 over the value of its assignment.

Thus, agents proceed to coordinate, in the so-called coordinate
stage, by exchanging some coordination information, namely {Ψ}
about their disagreements with their neighbours. Agents subse-
quently employ such information to update their underlying local
subproblems to create a new division, in the next divide step, that
brings them closer to an agreement. Thus, in example of figure
2, when coordinating agents a1 and a2 will exchange information
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about their conflict over x1 that will use to update their local sub-
problems.

X1

X2 X3

x1  r1 

a1

xi xj   rij
0   0   0
0   1   5
1   0   5
1   1   5

0    0
1   -5

r13r12
X2

X1 X3

x2  r2 

a2

0    0
1   -10

r23r12
X3

X1 X2

x3  r3 

a3

0    0
1   -2

r23r13
Reward table 
of binary 
constraints

x1=0, x2=1, x3=1

f1 = 10

x1=1, x2=0, x3=1

f2 = 10

x1=1, x2=1, x3=0

f3 = 10* *
*

Local
Solutions

Solution values

Figure 2: Subproblems for the DCOP in figure 1, divide step
(t = 0) .

The DaC framework allows agents to distributedly provide bounded
solutions for DCOPs by making use of the following two properties
(described in [11]):

(Proposition 1) the sum of the solutions of individual agents’ sub-
problems is always an upper bound on the quality of the global
(optimal) DCOP solution.

(Proposition 2) if all agents reach an agreement on a joint solu-
tion when optimizing their local subproblems, such a solution is
the optimal one.

Thus, to solve a DCOP by DaC, agents update their local subprob-
lems by exchanging information with their neighbours, exploring
the space of valid divisions, to find a division such that the solution
of individual subproblems agree (since they know by proposition 2
that this will be the solution of the DCOP). However, even when
agents do not agree on their assignments, they can provide with
bounded anytime solutions by generating assignments closer to the
agreement (that are expected to be better than randomly generated)
bounded by the upper bound on its quality of proposition 1.

The DaC framework is an abstract approach that can result in dif-
ferent bounded approximate algorithms for DCOPs because the in-
formation that is exchanged among agents in the coordinate step
and how agents use such information to update their problems in
the divide step is not specified. The DaC framework only requires
that after each agent updates each underlying problem the set of
problems still are a original division of the DCOP. Thus, in [11],
Vinyals et al. formulated the first DaC algorithm, the Divide-and-
Coordinate Subgradient algorithm (DACSA) where agents coordi-
nate by exchanging their preferred decisions on a formalism based
on Lagrangian dual decomposition and subgradient methods.

Next, we will formulate a novel particular computational realiza-
tion of the DaC approach.

3. EGALITARIAN UTILITIES DIVIDE-AND-
COORDINATE

In this section we formulate the so-called Egalitarian Utilities Di-
vide and Coordinate algorithm (EU-DaC), a novel computational
realisation of the DaC approach where agents coordinate by ex-
changing their max-marginal utilities to set their shared decision
variables to particular values. Several work in optimization [3, 12]

have shown that agents lead to better solutions when they explic-
itly communicate their utilities for taking particular decisions than
when they simply exchange their preferred decisions.

In the DaC algorithm proposed so far, DaCSA [11], agents coordi-
nate by communicating their preferred decisions. Here we propose
a new DaC algorithm, EU-DaC, that has each agent: (1) exchanges
its local utilities for its shared variables with its neighbours (co-
ordinate stage); and (2) updates its local problem with the aim of
approaching its local utilities for its shared variables to its neigh-
bours’ utilities (divide stage) .

The intuition behind the EU-DaC is the following: when agents
have the same utilities for setting their shared variables to particular
values, they agree on their local assignments2. As explained in
section 2.2, in the DaC framework this agreement situation also
implies that they have found a DCOP solution.

In EU-DaC agents will start by exchanging their max-marginal util-
ities over their shared variables with their neighbours. The max-
marginal utilities of an agent as to set some decision variables to
particular values is the best utility given by its local subproblem Φs
when restricted to assignments that satisfy this condition. More for-
mally, the max-marginal utility of an agent as for setting a subset
of decision variables Xρ ⊆ Xs to some values dρ ∈ Dρ, namely
Usρ(dρ), is defined as:

Usρ(dρ) = max
d∈DXs\Xρ

fs(dρ; d) (2)

where fs is the local objective function of as. Take as example
figure 3(a) that shows agents’ utilities exchanged during these co-
ordinate step given subproblems of figure 2. Observe that agent
a1 exchanges with its neighbour a2 a message that contains its lo-
cal utilities for their shared variables, namely x1 and x2. In the
example, agent a1 assesses its local max-marginal utilities for its
variable x1 as:

U1
1 (0) = max

d∈D23
r1(0) + r12(0, d) + r13(0, d) = 10

U1
1 (1) = max

d∈D23
r1(1) + r12(1, d) + r13(1, d) = 5

Hence, agent a1 reports a local max-marginal utility of 10 when
setting its variable x1 to 0 and a local max-marginal utility of 5
when setting it to 1.

Once received these max-marginal utilities, agents proceed to use
these information to update its local subproblems in order to get
utilities closer to those reported by their neighbours. Thus, agents
aim to finding a division of subproblems {Φ1, . . . ,Φm} such that
the set of local max-marginal utilities {Us=1,...,m} for shared vari-
ables among the different agents are equal. Formally:

U ii (k) = Uvi (k) ∀xi ∈ X ∀k ∈ Di ∀xv ∈ N(xi) (3)

Thus, with the aim of satisfying equation 3, each agent as proceeds
to update its max-marginal utilities for shared variables by adding
the difference between its own local utilities {Us} and the max-
marginal utilities reported by each of its neighbour av ∈ N(as),
namely {Uv}. Thus, each agent as updates its max-marginal utili-

2This statement is subject to having no ties in agents’ local utilities:
agent’s local utilities to set its shared variables to particular values
in their domain are all different.
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a1 a2 a3

U1 = [10 5], U2 = [5 10]
1 1

U1 = [10 5], U3 = [5 10]
1 1

U1 = [5 10], U2 = [10 0]
2 2

U2 = [10 0], U3 = [5 10]
2 2

U2 = [8 10], U3 = [10 8]
3 3

U1 = [8 10], U3 = [10 8]
3 3

(a) Coordination step (t = 0)
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f1 = 7.72* f2 = 8.32* f3 = 8.96*

(b) Divide step (t = 1)

Figure 3: EU-DaC execution

ties {Us} using the following equation:

{Us} = {Us}+
X

av∈N(as)

[{Us} − {Uv}] (4)

Each agent problem Φs can be reparameterized in terms of a set
of max-utilities over its variables, namely {Us}.3 Concretely, in
the particular case of a binary subproblem Φs = 〈X s,Ds,Rs〉
with a tree topology (as the ones shown in figure 2) they can be
represented in function of its max-marginal utilities over single and
pairwise variables as follows:

fs(d) =
X
xi∈Xs

Usi (d) +
X

rsij∈R
s

ˆ
Usij(d)− Usi (d)− Usj (d)

˜
Thus, in the example of figure 2 agent a1 can represent its objec-
tive function as f1(d1, d2, d3) = U1

1 (d1) + U1
2 (d2) + U1

3 (d3) +
U1

12(d1, d2)−U1
1 (d1)−U1

2 (d2)+U1
13(d1, d3)−U1

1 (d1)−U1
3 (d3).

Notice that, using this representation, max-marginal utilities over
single variables appear at least once in each problem where the vari-
able is included. Therefore, at each iteration t, each agent as up-
dates each subproblem by adding, for each variable in its subprob-
lem xi ∈ X s, the (weighted) difference between its max-marginal
utilities and those reported by agents with which it shares such vari-
able. Hence, the agent objective function is updated as:

f ts(d) = f t−1
s (d) + γ ·

24∆s,t
s +

X
xi∈Ns

∆s,t
i

35 (5)

3This can be proved by the junction tree theorem[2], that states that
any distribution F compiled into a junction tree can be reparame-
terized in function of the gains (max-marginals) of its cliques {C}
and separators {S}

where ∆s,t
s is the coordinator parameter related to its variable xs:

∆s,t
s =

P
xi∈Ns

ˆ
U i,ts (d)− Us,ts (d)

˜
, (6)

∆s,t
i is the coordinator parameter related to variable xi ∈ N(xs) :

∆s,t
i = U i,ti (d)− Us,ti (d), (7)

and γ ∈ (0, 1] is a damping parameter that weighs the change over
the subproblem.

Next, we describe in detail the phases that agents execute during
the EU-DaC algorithm.

3.1 Algorithm description
In this section we fully describe the EU-DaC algorithm, a bounded
anytime DCOP algorithm that computationally realises and inter-
leaves the divide and coordinate stages. On the one hand, during
each divide stage, each agent updates its local problem by adding
the difference between its local max-marginals utilities with those
of its neighbours according to equation 5. Then, each agent solves
its updated local problem to update its preferred assignments and its
assignments value. On the other hand, during the coordinate stage,
each agent exchanges its local max-martinal utilities over single
variables shared with its neighbours. In order to provide anytime
solutions even in the case of disagreement, each agent generates at
each iteration what is called a candidate solution for its variable in
the exactly the same way as in DaCSA.

Algorithm 1 presents the pseudocode for EU-DaC. In what follows
we describe the main stages of EU-DaC using the trace in figure 3
of a run over the DCOP in figure 1.

Initialization stage (lines 1-2). At the beginning of the algorithm
each agent ai creates its local problem Φ̄0

i using its local relations.
Relations shared with its neighbours (binary relations) are split in
equal parts. Notice that for binary DCOPs, these are always tree-
structured problems (acyclic). An example of these initial division
for the DCOP of figure 1 is given in figure 2.

Divide stage (lines 4-6). During a divide stage, each agent up-
dates its current local problem Φ̄ti with coordination information
to subsequently solve it. Firstly, each agent ai updates its local
subproblem by using the coordination information gathered dur-
ing the last coordinate stage, namely Ψt

i , using equation 5 (line
5,implemented in method modifySubproblem). These coordi-
nation messages contain the local max-marginal utilities of their
neighbours over their shared variables. Secondly, each agent ai
solves the acyclic COP that composes its local subproblem to ob-
tain its optimal assignments, d∗i , its value f∗i and its max-marginal
utilities to have their individual variables in each particular state,
{U i} using the max-sum solver [3] (line 6, implemented in method
solveSubproblem) 4. Notice that in the very first iteration, agent
do not have coordination information and therefore they solve the
very initial subproblem. Figure 2 shows agents’ local solutions and
their values for the initial subproblems. Observe that each agent
ai prefers to set its variable xi to 0 and the rest of variables to
1 reporting an individual utility fi of 10. Figure 3(b) shows the
same example but in the next divide step, where agents have coor-
dination information to update their local subproblems. Thus, for
instance, agent a1 creates a new subproblem that is composed of
4Although one can use other solvers such that can solve acyclic
problems performing a linear number of operations, max-sum is
useful because it returns at the same time the max-marginal utilities
over single variables
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Algorithm 1 EU-DaC(Φ, γ)

Each agent ai runs:
1: bound ← ∞; {Ψ0

i }, {∆i,0}, solution,Ci ← ∅;
bestV alue← −∞;

2: Φ
0
i ← createSubproblem(〈X i,Di,Ri〉);

3: repeat
4: /* Divide stage */
5: Φ

t
i ← modifySubproblem(Φ

t−1
i , {∆i,t}, γ);

6: (d∗,ti , f∗,ti , {U i})← solveSubproblem(Φ
t
i);

7: /* Coordinate stage */
8: for xv ∈ N(xi) do
9: Ψv

i ← makeCoordInfo(d∗,ti , f∗,ti , 〈U iv,U ii 〉, Ct−1
i , {Ψ});

10: Ψi
v ← exchangeCoordInfo(Ψv

i );
11: end for
12: {∆t+1

i } ←updateCoordParams({Ψt
i});

13: Cti ← selectCandidateSolutions(xi, Ct−1
i );

14: if betterBoundAvailable({Ψ}, bound) then
15: Update bound.
16: end if
17: if betterSolAvailable({Ψ}, bestV alue) then
18: Update solution and bestV alue.
19: end if
20: until any termination condition satisfied
21: return 〈solution, bestV alue, bound〉

its initial relations r1. r12 and r13 along with a weighted coordi-
nation parameter ∆1

i (weighted by a damping factor γ) for each
one of its variables xi ∈ X 1. Using a damping factor γ = 0.12,
agent a3 changes its optimal solution respect to the first iteration.
Moreover all agents get a lower value for their local solution than
respect to the first iteration. Notice that getting lower utilities for
subproblems’ solutions is a good indicator because their addition is
an upper bound on the optimal solution. Thus, in the DaC frame-
work when agents report lower solution values, their values and
their solutions are closer to the optimal ones.

Coordinate stage. During a coordinate stage, each agent exchanges
coordination information with its neighbours and updates its co-
ordination parameters trying to balance the disagreement among
them. Before updating the coordination parameters, each agent
ai exchanges a message Ψv

i with each one of its neighbours av
that contains its max-marginal utilities for their common variables,
namely xi and xv (lines 8-11). Figure 3(a) shows the max-marginal
utilities that are exchanged among agents during the first coordina-
tion stage in the example of figure 2. Thus, for example, agent a1

sends to a2 the max-marginal utility over its variable x1, namely
[U1

1 (0) = 10,U1
1 (1) = 5], and the max-marginal utility over x2,

namely [U1
2 (0) = 5,U1

2 (1) = 10]. Next, each agent a1 uses
the max-marginal utilities received from its neighbours to update
the coordination parameters {∆i} following the updates in equa-
tions 6 and 7 (line 12). Thus, in the example of figure 3(a), agent
a1 assesses the coordination parameters ∆1

1(0) as the difference
between the local utility of a2, U2

1 (0) = 5, and its local gain,
U1

1 (0) = 10, plus the difference between the local utility of a3,
U3

1 (0) = 8, and its local utility: ∆1
1(0) = (5− 10) + (8− 10) =

−7.

Also, in each coordinate stage, each agent ai selects what is called
a candidate solution for its decision variable xi (line 13). This
value, namely ci, does not have to be the same as the preferred

assignment of ai for xi because to generate candidate solutions
agents use the coordinate information received from its neighbours
in addition to their local assignment. Although agents can use dif-
ferent strategies to generate their candidate solutions, the intuition
is to generate assignments, in presence of disagreement, as much
close to the agreement as they can. For example, a typical strategy
is that each agent ai selects the solution ci for its variable xi that
most agents agree on. Following this strategy, in the example of
figure 2, each agent ai assigns ci to 1 as a candidate solution for
its variable xi because all neighbours assigned xi to 1 except from
ai that set it to 0. Thus, the global candidate solution selected is
c1, c2, c3 = 1. In contrast, in the next coordination step agents a1

and a2 will select as candidate solutions c1 = c2 = 0 (see figure
3(b) ), two of the three agents assigned x1 and x2 to 0. One can
use different strategies simultaneously to generate the selected val-
ues. That is why we use Ci to note the set of candidate solutions
(one for each strategy) for variable xi. Finally, each agent commu-
nicates the candidate solution for its variable to its neighbours as a
coordination information using the messages exchanged during the
next coordinate stage (line 9-10).

Calculate bound and anytime solutions. In order to allow agents
to return bounded anytime solutions from the optimal we need to
provide agents with a protocol that allows them to distributedly
evaluate their candidate solutions and assess the bound. By any-
time we mean that agents in EU-DaC hold the best assignment that
was generated throughout the search. However it does not mean
that solutions will always increment their quality or that the opti-
mal solution will be found if is given more time because EU-DaC
can converge to a local optimum. In a distributed environment, each
agent ai only knows for each iteration its local solution f∗i and the
local value for the candidate solution fi({C}i). Thus, in the exam-
ple of figure 2, agent a1 only knows for the first iteration the value
of its local solution, namely f∗,11 = 10, and its local value for the
candidate solution, namely f1(c1 = 1, c2 = 1, c3 = 1) = 5.
Thus, agents need a protocol that allows them to distributedly as-
sess the value of the candidate solution, defined as the sum of
all local candidate solutions values, and the bound, defined as the
sum of the optimal value of all subproblems. With that purpose,
as in DaCSA, EU-DaC implements the protocol detailed in [14]
that allows agents to calculate these aggregations of data and syn-
chronize their bound and anytime solutions updates. This proto-
col requires no additional network load (it uses the coordination
messages Ψ already exchanged during the coordination stage to
propagate their data) and small (linear) additional space. When
all agents have received the coordination information related to the
aggregated data for an iteration, they use it to update the bound
(lines 14-16) and the anytime solution (lines 17-19), if applies.
Thus, in the example of figure 2, agents will have, after a num-
ber of propagation cycles, the value of the candidate solution for
the first iteration f(c1 = 1, c2 = 1, c3 = 1) = 13 and the value
of the bound bound = 30. Thus, agents will update to solution
[c1 = 1, c2 = 1, c3 = 1] with a quality guarantee that the current
solution has at least 13/30 · 100 = 43.33% of the quality of the
optimal solution. In the next iteration (see figure 3(b)), agents re-
ceives the value of the candidate solution for the second iteration
f(c1 = 0, c2 = 0, c3 = 1) = 18 and a bound = 25. Thus, agents
update their best solution to [c1 = 0, c2 = 0, c3 = 1] with a quality
guarantee of 18/25 · 100 = 75%.

Termination conditions. At each iteration, each agent checks if
some termination condition is satisfied. Typical termination condi-
tions for EU-DaC are: (1) the gap between the bound and the value
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of the anytime solution is lower than a threshold; (2) max-marginal
utilities are equal across agents (equation 3 is satisfied); or (3) the
number of current iterations exceeds a maximum. Notice that un-
like DaCSA, in EU-DaC agents can detect convergence even in the
case when they have not found the solution. Thus, if condition (2)
is satisfied it means that the max-marginal utilities are equal across
agents but contains ties, so EU-DaC will not be able to improve
after that point.

4. EMPIRICAL EVALUATION
In this section we provide an empirical evaluation of EU-DaC on
different network topologies where agents have highly-coupled de-
pendencies. Moreover we benchmark EU-DaC against other DCOP
algorithms that can also provide quality guarantees: DaCSA [11]
and bounded k-optimal Maximum-Gain-Message (MGM) algorithms
[5, 4], namely MGM-2 and MGM-3 5, by comparing their solution
quality over time and the accurancy of their quality guarantees.

Firstly, we describe the different network topologies and how we
generate the relations’ weights in section 4.1. Next, we analyze our
empirical results over these datasets in section 4.2.

4.1 Problem generation
Following [11], we perform our comparison on different network
topologies where agents have highly-coupled dependencies. Thus,
in our experiments we analyze three network topology alternatives:

Regular grids The constraint graphs are created following a rect-
angular grid where each agent is connected to its four closer
neighbors.

Small-world We generate constraint graphs that show the small-
world effect using the model proposed in [8]. The graphs
are created by starting from a ring, where each node its con-
nected to its two closer neighbours and adding a small num-
ber of random edges. In particular, for each node we use a
probability p = 0.3 of adding a new edge that connects it to
another random node.

Random networks The constraint graphs are created by randomly
adding three links for each variable.

As in [11], we are interested in evaluating our algorithm on the
presence of strong dependencies among agents. Therefore we also
generate constraint values by using mixed Ising model weights [1].
Following an Ising model, the weight of each binary relation rij , is
determined by first sampling a value κij from a uniform distribu-
tion U [−β, β] and then assigning

rij(xi, xj) =

(
κij xi = xj

−κij xi 6= xj

Note that the constraint pushes both variables to be similar when
κij is positive and forces them to be different when κij is negative.
The β parameter controls the average strength of interactions. In
our experiments we set β to 1.6. The weight for each unary con-
straint ri is determined by sampling κi from a uniform distribution
U [−0.05, 0.05] and then assigning ri(0) = κi and ri(1) = −κi.
5MGM-1 is excluded of the comparative because it is a 1-optimal
algorithm and no bound can be provided with k = 1 (see [9] )

4.2 Results
Next, we provide details on the particular parameters selected for
EU-DaC, MGM-{2,3}6 and DaCSA in these experiments.

For MGM-2 and MGM-3 we set the probability q of being an of-
ferer to .9, a value that is shown to reach the highest average so-
lution quality on the experiments reported in [5]. Regarding DaC
algorithms (EU-DaC and DaCSA), we must specify the strategy
used by agents to generate configurations at each pair of divide
and coordinate stages. We use the same two strategies proposed
in [11]: (1) each agent assigns to its variable the value in which
more agents agree on; and (2) each agent assigns to its variable the
value in which more agents agree on when the remaining variables
in its subproblem are given by the values selected by the candidate
solution in the previous iteration. For EU-DaC we set the value of
the damping parameter γ to .5. Finally for DaCSA we used the
same step-size for the subgradient step as the one reported in [11],
also using a constant step-size of .001 during the first steps when
agents do not know any subgradient value.

4.2.1 EU-DaC solution quality
Firstly, we compare these algorithms based on the solution obtained
in a number of message cycles. The number of message cycles is a
commonly used measure for algorithm efficiency in the DCOP lit-
erature [9, 7, 6]. It is specially adequate to our case because all the
algorithms benchmarked are low-overhead algorithms. To normal-
ize plots, instead of using the mean of the quality of the solutions
we plot the percent gain of EU-DaC respect each benchmarked al-
gorithm. The percent gain of EU-DaC with respect to an algorithm
A at iteration t is assessed as 100 · ( qD−qA

qA
) where qD is the value

of the solution of EU-DaC algorithm and qA is the value of the
solution of A algorithm. Thus positive values in graphs represent
positive gains of EU-DaC respect to other algorithm (higher is bet-
ter).

Figures 4 (a) (b) and (c) show the results for networks of 100 agent
networks on a small-world, regular grid and random topology re-
spectively. Each graph shows the mean among 25 instances of the
percent gain of EU-DaC respect to DaCSA, MGM-2 and MGM-3
when varying the number of message cycles.

First, observe that in all experimented topologies EU-DaC outper-
forms DaCSA, the other DaC algorithm. These results show that in-
deed when agents explicitly communicate their max-marginal util-
ities to be in a particular state instead of their decisions and try to
get balanced on them they get better results closer to an agreement.
Observe that while EU-DaC obtain higher gains, around 40− 60%
respect to DaCSA on structured topologies (small-world and ran-
dom networks, figures 4 (a)(b)) when increasing messages cycles
these gains quickly reduce to around 10%. In random networks (4
(c)), however, the gains of EU-DaC respect to DaCSA are initially
lower (around 30%) but remain more constant when increasing the
number message cycles (around 20− 30%).

Secondly, when comparing with MGM algorithms (MGM-2 and
MGM-3) we observe that EU-DaC outperforms MGM-2 in all the
scenarios and the same applies to MGM-3 on structured topolo-
gies. The gains of EU-DaC respect to MGM-2 and MGM-3 are
lower than respect to DaCSA (around 5−10%). In random topolo-
gies EU- DaC get even negative gains respect to MGM-3 on the

6For MGM-2 and MGM-3 we use the code provided in
http://teamcore.usc.edu/dcop/
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(a) Small world 100 variables
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(b) Regular grids 100 variables
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(c) Random 100 variables

Figure 4: Graphs showing the percent gain of EU-DaC with respect to DaCSA, MGM-2 and MGM-3 when varying the number of
message cycles over different topologies and with mixed Ising weights β = 1.6

long run. Thus, we can conclude that EU-DaC is very competitive
when compared with MGM-2 and MGM-3 getting similar results
and even outperforming them on some problem topologies.

4.2.2 EU-DaC bound quality
In this section we compare the quality guarantees of EU-DaC with
those of DaCSA, MGM-2 and MGM-3 by plotting the percent bound
quality of their solution when varying the number of message cy-
cles. The percent bound quality of an algorithm A is assessed as
100 · qA

ubA
where qA is the value of the solution of A algorithm and

ubA is an upper bound on the value of the optimal solution. Intu-
itively, a percent bound quality of y says that the current algorithm
solution has at least a y percent of the quality of the optimal.

Before analysing the results we should make some comments over
the quality guarantees provided by each algorithm. One the one
hand, the quality guarantees of EU-DaC and DaCSA are those
given by the DaC framework. As explained in section 2.2, DaC al-
gorithms can explicitly calculate an upper bound on the quality of
the optimal solution defined as the sum of all individual subprob-
lems solutions in a division. Then, agents assess the percent bound
quality using the value of the best evaluated candidate solution so
far and the lower upper bound among all tested divisions. Hence,
DaC quality guarantees are what are called instance-per-basis qual-
ity guarantees which depend on the specific problem instance, are
known on runtime and vary along the execution of the algorithm.
Furthermore, since agents are able to calculate the upper bound in
an explicit manner, they can give quality guarantees for every solu-
tion generated by the algorithm.

On the other hand the quality guarantees given by MGM algorithms
are those of the k-optimal framework: a worst-case bound over
k-optimal solutions. Two different quality guarantees have been
formulated for k-optimal solutions [9]: (1) general quality guar-
antees that only depend on the number of variables and number of
relations of the problem; and (2) graph-based quality guarantees
that use the knowledge of the topology to obtain tighter guaran-
tees. In our experiments, we always plot the graph-based quality
guarantees which are assured to be better than the general ones.
To assess graph-based quality guarantees agents need to solve a
linear-fractional problem. That MGM algorithms quality guaran-

tees are worst-case bounds on k-optimal solutions implies that : (a)
they have a fixed quality guarantee for any of their converged solu-
tions which can be calculated offline; and (b) they can only provide
quality guarantees for solutions generated on convergence (MGM
algorithms only achieve a k-optimal solution on convergence).

Figure 5 shows the mean of percent bound qualities provided by
DaC algorithms (EU-DaC and DaCSA) and the graph-based guar-
antees of MGM-2 and MGM-3 over their converged solutions when
varying the number of message cycles on the different topologies.
First observe that topology influences the quality guarantee of all
tested algorithms. In all cases, quality guarantees are higher on
small-world topologies than on regular grids than on random topolo-
gies. Secondly, results show that the DaC bounds are significantly
higher than k-optimal bounds. Moreover, the bounds provided by
EU-DaC are always higher (5-10%) than those provided by DaCSA.
It is not surprising since DaC quality guarantees use the quality
of the best solution, which is higher for EU-DaC, to calculate the
bound. For small-world topologies, EU-DaC gives a mean of per-
cent bound of around 85% whereas those of MGM-2 and MGM-3
are around 15% and 30% respectively. For regular grids, EU-DaC
gives a mean of percent bound of around 70%, a meaningful bound
when compared with those of MGM-2 and MGM-3 of around 15%
and 20% respectively. Finally, for random instances EU-DaC gives
a mean of percent bound of around 55% whereas those of MGM-2
and MGM-3 are around 5% and 10% respectively.

Therefore, from these empirical results we can conclude that: (1)
EU-DaC bounds (and in general DaC bounds) are meaningful enough
to provide agents with an awareness of the quality of their solution
and to trade-off quality vs resources; and (2) k-optimal guarantees
for k=2 and k=3 are very loose and considerably underestimates
the solution provided by MGM-2 and MGM-3 on the experiments
(results on solution quality show how the value of MGM-2 and
MGM-3 solutions are close to those of EU-DaC but the latter gives
much higher quality guarantees).

5. CONCLUSIONS AND FUTURE WORK
Our contribution in this paper is twofold. Our first contribution is a
novel DaC algorithm, the so-called Egalitarian Utilities Divide and
Coordinate (EU-DaC) algorithm. The DaC framework [11] is one
of the few general DCOP frameworks that can provide bounds on
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(b) Small world 100 variables
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(c) Regular grids 100 variables
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Figure 5: Graphs showing the percent bound qualities when varying the number of message cycles over different topologies and with
mixed Ising weights β = 1.6

DCOP solutions on incomplete algorithms. Unlike DaCSA [11],
the other DaC algorithm proposed so far, in EU-DaC agents coor-
dinate by communicating their local max-marginal utilities for the
different values of their decisions, instead of only their preferred
decisions. Our empirical results show how our novel algorithm
outperforms DaCSA in all experimented scenarios.

Our second contribution is to provide the first empirical compari-
son between the bounds provided by the DaC framework and those
provided by the k-optimal framework [9]. Experiments show that
DaC bounds improve the accuracy of k-optimal bounds: whereas
DaC algorithms get bounds between around 55% and 85%(varying
on the scenario), 2-optimal and 3-optimal bounds never go above
15% and 30% respectively in any scenario. Despite of these results,
as argued in [9, 4], one advantage of k-optimal bounds, not shared
by DaC bounds, is that allows to provide an offline trade-off quality
versus time.7 However, as shown in our experiments, 2-optimal and
3-optimal bounds may very loose and you may be wasting a lot of
resources when using this criteria. Therefore, it is reasonable to ar-
gue that it may be better for agents to know at runtime the bounds
on the maximum-error of their current solution instead of offline
bounds that overestimates the error of their converged solution.

As future work we plan to study some unexplored aspects of the
DaC framework to allow a broad applicability of this class of algo-
rithms. Firstly, we would like to study the privacy aspects of the
DaC framework. Although privacy aspects do not limit DaC algo-
rithms to be applied to domains in which distribution has reasons of
parallelism, communication costs and/or robustness (e.g sensor net-
works, traffic control or the configuration of power networks[10])
we still do not know its applicability to some domains, such as
distributed scheduling [10], where privacy is the main issue. Sec-
ondly, we aim at designing versions of DaC algorithms that adapts
to changes so that it can be applied to dynamic environments.
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based k-bounds to run our experiments.

6. REFERENCES
7Assuming that problem structure is known beforehand (k-optimal
bounds are reward independent)

[1] R. Baxter. Exactly Solved Models in Statistical Mechanics.
Academic Press, London, 1982.

[2] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In AAMAS, May 2008.

[4] H. Katagishi and J. P. Pearce. Kopt: Distributed dcop
algorithm for arbitrary k-optima with monotonically
increasing utility. In Ninth DCR Workshop (CP-07), 2007.

[5] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for dcop: A graphical-game-based approach. In
ISCA PDCS, pages 432–439, 2004.

[6] R. Mailler and V. R. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
AAMAS, pages 438–445, 2004.

[7] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraint optimization with
quality guarantees. Artif. Intell., 161(1-2):149–180, 2005.

[8] M. Newman and D. Watts. Renormalization group analysis
of the small-world network model. Phys. Lett. A.,
263:341–346, 1999.

[9] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In
IJCAI, pages 1446–1451, 2007.

[10] A. Petcu and B. Faltings. Distributed constraint optimization
applications in power networks. International Journal of
Innovations in Energy Systems and Power, 3(1), 2008.

[11] M. Vinyals, M. Pujol, J. A. Rodriguez-Aguilar, and
J. Cerquides. Divide and Coordinate: solving DCOPs by
agreement. In AAMAS, 2010. To appear.
http://www.iiia.csic.es/publications/list/author/278.

[12] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Map
estimation via agreement on (hyper)trees: Message-passing
and linear programming. CoRR, abs/cs/0508070, 2005.

[13] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparison and applications to constraint optimization
problems in sensor networks. Artif. Intell., 161(1-2):55–87,
2005.

[14] R. Zivan. Anytime local search for distributed constraint
optimization. In AAMAS, pages 1449–1452, 2008.

40



Real-Time agent reasoning: a temporal bounded CBR
approach

Martí Navarro
Departamento de sistemas
informáticos y computación
Universidad Politécnica de

Valencia
mnavarro@dsic.upv.es

Dr. Vicente Botti
Departamento de sistemas
informáticos y computación
Universidad Politécnica de

Valencia
vbotti@dsic.upv.es

Dr. Vicente Julián
Departamento de sistemas
informáticos y computación
Universidad Politécnica de

Valencia
vinglada@dsic.upv.es

ABSTRACT
The main problem in the development of appropriate agent
architectures in real-time environments lies in the delib-
eration process where it is difficult to integrate complex
bounded deliberative processes for decision-making in a sim-
ple and efficient way. With this in mind, a temporal bounded
deliberative case-based behaviour for agents in real-time en-
vironments is presented in this paper. More specifically, tra-
ditional CBR cycle has been modified as an anytime algo-
rithm facilitating complex deliberative processes for agents
in real-time environments.

1. INTRODUCTION
Nowadays, MAS paradigm tries to move Computation to a
new level of abstraction: Computation as interaction [18]
where large complex systems are viewed in terms of the ser-
vices they offer, and consequently in terms of the entities or
agents providing or consuming services [17]. An interaction-
based vision of a system tries to model the system behaviour
through the invocation of services among the entities in that
system. This vision can be very complex in specific environ-
ments for current MAS technology. For example, in real-
time environments the responsibility acquired by any entity
or agent for the accomplishment of a required service under
possibly hard or soft temporal conditions notably increases
the complexity of the development of systems of this kind.

Agents which work in the above-mentioned environments,
must fulfil specific restrictions, which implies the need for
specific agent architectures. A Real-Time Agent (RTA) can
be defined as an agent with temporal restrictions in, at least,
one of its responsibilities (goals, services, tasks, ...) [13].
The RTA may have its interactions bounded, and this mod-
ification will affect all interaction processes in the multi-
agent system where the RTA is located. The main problem
with the architecture of a RTA lies in the deliberation pro-
cess. This process probably needs to use AI techniques as
problem-solving methods to compute more intelligent ac-
tions, which requires an efficient integration of high-level,
deliberative processes within reactive processes. When us-
ing AI methods in real-time environments, it is necessary
to provide techniques that allow their response times to be
bounded. These techniques are mainly based on well-known
Real-Time Artificial Intelligence System (RTAIS) techniques
[10]. But, complex AI techniques are difficult to bound.
Therefore, it would be interesting to integrate these com-
plex deliberative processes for decision-making in real-time

agents in a simple and efficient way. Intelligent agents may
use a lot of reasoning mechanisms to achieve these capabil-
ities. For example, planning techniques [19] or Case-Based
Reasoning (CBR) techniques [2]. In the specific case of CBR,
the applications of this technique for controlling some as-
pects of the deliberative process of agents in MAS devel-
oped for specific purposes are many [2]. The main assump-
tion in CBR is that similar problems have similar solutions.
Therefore, when a CBR system has to solve a new prob-
lem, it retrieves precedents from its case-base and adapts
their solutions to fit the current situation. CBR can thus
be very suitably applied in agent reasoning, where similar
problems should have similar solutions. However, few of
the existing approaches cope with the problem of applying
CBR as a deliberative engine for agents in MAS with real-
time constraints. With this in mind, this work presents a
temporal bounded deliberative case-based behaviour as an
anytime solution [6]. This approach facilitates the addition
of deliberative capabilities in a real-time agent, allowing the
development of agent architectures with both real-time and
deliberative capabilities.

The rest of the paper is structured as follows: section 2
analyses related work; section 3 focuses on how to add a
temporal bounded CBR in real-time agents; an application
example and the analysis of the results obtained are shown
in section 4; finally, conclusions are described in section 5.

2. BACKGROUND
Over the last few years different works have appeared in
the literature that are aimed at developing mechanisms to
support real-time agents. Along these line, some architec-
tures have been proposed for real-time agents, and research
in scheduling agent tasks within the architecture has been
carried out. Much of the real-time agent scheduling work
relies on the assumption that in order to perform a task,
an agent or set of agents may have multiple ways of solving
the same problem, each with varying time requirements to
compute the result, and with a variation in the quality of
the results produced. Typically, the more time available to
solve the problem, the higher the quality of the result. This
proves very useful in real-time agent scheduling because it
allows for a trade-off between the quality of the result and
the amount of time required in order to meet specified time
constraints. Garvey et al. in [9] presents a design-to-time
scheduling algorithm for incremental decision-making that
provides a hierarchical abstraction of the problem solving
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processes, which describe alternative methods for solving
a specific goal depending on the amount of time available.
This algorithm is extended in [29] to develop a more general
model that can take into account any scheduling criteria,
such as time, cost, and quality, and it can use uncertainty
as part of the decision-making process. An example of the
use of the design-to-criteria model is the DECAF architec-
ture [11] which incorporates scheduling algorithms based on
this model.

In addition, other works have tried to design new specific
agent architectures for real-time environments, such as the
ARTIS agent proposal [3]. The ARTIS architecture is an
extension of the blackboard model, which has been adapted
to work in hard real-time environments. Moreover, the AR-
TIS Agents can work together using the SIMBA architecture
allowing for the development of multi-agent systems which
work properly in social real-time domains [27]. Other agent-
related works in real-time systems are: The ObjectAgent
Architecture, developed by Pinceton Satellites in 2001 [28],
used to control little mono-function satellites launched; the
real-time multi-agent system presented by DiPippo et al. [7]
providing a middleware that works as a multi-agent platform
taking into account the system temporal constraints used for
the communication among agents KQML with an extension
where the temporal restrictions and the service quality pa-
rameter can be reflected. Finally, another example is the
work of Prouskas et al. in [25] where they define time-aware
agents as agents capable of operating in two temporal dimen-
sions: agent-agent and human-agent, seamlessly combining
the predictability and reliability of small-scale real-time ex-
changes with the fuzzy temporal requirements of large-scale
human interactions.

Analysing these works one of the main problem detected is
the necessity to integrate, in a bounded way, a new complex
deliberation process in these kinds of agents. As mentioned
in the introduction, one of the most well-known AI tech-
niques that agents can use in order to reason is the CBR
methodology. A CBR system provides agent-based systems
with the ability to reason and learn autonomously from the
experience of agents. The integration of CBR systems and
MAS has been studied taking many different approaches.
Therefore, the literature of this scientific area reports re-
search on systems that integrate a CBR engine as a part of
the system itself [14], other MAS that provide some or all of
their agents with CBR capabilities, or even the development
of BDI agents following a CBR methodology [4]. Some ex-
amples of multi-agent CBR systems are: the technique called
Negotiated Case Retrieval [24], the Federated Peer Learning
framework [23], the Collaborative CBR (CCBR) [15], the
Multi-CBR (MCBR) [16], and finally, a distributed learn-
ing methodology that combines individual and cooperative
learning in a MAS framework [26]. Cited above are out-
standing examples of systems that join research efforts and
results of both CBR and MAS together. In addition, the ap-
plications of CBR to control some aspects of the deliberative
process of agents in MAS developed for specific purposes are
many. Most are not intended to cope with the problem of
applying CBR as deliberative engine for agents in MAS with
real-time constraints. In fact, in the systems reviewed, the
concept of real-time is understood as doing things quickly.
However, in real-time multi-agent systems this concept im-

plies always guaranteeing and meeting deadlines. In accor-
dance with this, the employment of a temporal bounded
CBR in the agent deliberation process is still an open topic.
The next section presents a temporal bounded agent rea-
soning process based on a modification of the classic CBR
cycle.

3. TEMPORAL BOUNDED CBR-BASED
AGENT REASONING

The use of CBR techniques as a reasoning mechanism in
real-time agents needs the adaptation of these techniques to
be executed guaranteeing real-time constraints. This section
explains how to develop temporal bounded CBR-based tech-
niques in order to be integrated inside of a real-time agent
architecture. This approach will enable more efficient execu-
tion time management, according to the agent’s goals. The
main problem is that CBR systems are highly dependent
on their application domain. Therefore, designing a general
CBR model that might be suitable for any type of real-time
domain (hard or soft) is, to date, unattainable. In real-time
environments, the CBR phases must be temporal bounded
to ensure that solutions are produced on time. We therefore
present some guidelines with the minimum requirements to
be taken into account in order to implement a CBR method
in real-time environments.

As a first step, we propose a modification of the classic CBR
cycle in order to adapt it to be applied in real-time domains.
The typical four CBR phases are grouped into two stages
defined as: the learning stage, which consists of the revise
and retain phases and the deliberative stage, which includes
the retrieve and reuse phases. Both phases will have their
own execution time scheduled. Therefore, the designer can
choose to either assign more time to the deliberative stage
or keep more time for the learning stage (and thus, design
agents that are more sensitive to updates). These new CBR
stages must be designed as an anytime algorithm [6], where
the process is iterative and each iteration is time-bounded
and may improve the final response.

In accordance with this, the operation of our Temporal Bounded
CBR cycle (TB-CBR) is the following. Firstly, the main dif-
ference that can be observed between the classic CBR cycle
and the TB-CBR cycle is the starting phase. Our real-time
application domain and the restricted size of the case-base
(as explained in the following sections) gives rise to the need
to keep the case-base as up to date as possible. Commonly,
recent changes in the case-base will affect the potential so-
lution that the CBR cycle is able to provide for a current
problem. Therefore, the TB-CBR cycle starts at the learn-
ing stage, checking if there are previous cases waiting to be
revised and possibly stored in the case-base. In our model,
the solutions provided at the end of the deliberative stage
will be stored in a solution list while feedback about their
utility is received. When each new CBR cycle begins, this
list is accessed and while there is enough time, the learning
stage of those cases whose solution feedback has been re-
cently received is executed. If the list is empty, this process
is omitted. After this, the deliberative stage is executed.
Thus, the retrieval algorithm is used to search the case-base
and retrieve a case that is similar to the current case (i.e. the
one that characterizes the problem to be solved). Each time
a similar case is found, it is sent to the reuse phase where it is
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transformed into a suitable solution for the current problem
by using a reuse algorithm. Therefore, at the end of each
iteration of the deliberative stage, the TB-CBR method is
able to provide a solution for the problem at hand, although
this solution can be improved in following iterations if the
deliberative stage has enough time to perform them (as an
anytime behaviour). Hence, the temporal cost of executing
the algorithm (or cognitive task) is greater than or equal to
the sum of the execution times of the learning and deliber-
ative stages (eq. 1):

tcognitiveTask ≥ tlearning + tdeliberative

tlearning ≥ (trevise + tretain) ∗ n (1)

tdeliberative ≥ (tretrieve + treuse) ∗m

where tlearning and tdeliberative are the execution time of the
learning and deliberative stages; tx is the execution time of
the phase x and n and m are the number of iterations of the
learning and deliberative stages respectively.

The Temporal Bounded CBR algorithm (TB-CBR) is shown
in Figure 1. This algorithm can be launched when the
real-time agent considers it appropriate and there is enough
time to execute it. The real-time agent indicates to the
TB-CBR the maximum time (tcognitive, where tcognitive >=
tcognitiveTask ) that it has available to complete its execu-
tion cycle. How this time is calculated is out of the scope of
this paper. There are different techniques for dynamically
obtaining the slack time in systems of this kind, for instance
see [8]. The time tmax must be divided between the learn-
ing and the deliberative stages to guarantee the execution
of each stage. The distributeT ime(tcognitive) function is in
charge of completing this task. Using this function the de-
signer must specify how the real-time agent acts in the envi-
ronment. The designer can assign more time to the learning
stage if it desires a real-time agent with greater capacity to
learn. On the contrary, the function can allocate more time
to the deliberation stage. Regardless of the type of agent,
the distributeT ime function should allow sufficient time for
the deliberative stage to ensure a minimal answer. The any-
time behaviour of the TB-CBR is achieved through the use
of two loop control sequences. Through the loop associated
with the learning stage is analysed a result obtained in pre-
vious execution and decides if this results must be stored in
each iteration. The loop involved in the deliberative stage
improves the solution obtained in each iteration. The loop
condition is built using the enoughT ime function, which de-
termines if a new iteration is possible according to the time
that the TB-CBR has to end each stage.

The first phase of the algorithm executes the learning stage.
This stage is executed only if the real-time agent has the so-
lutions of previous executions stored in the solutionQueue.
The solutions are stored just after the end of the delibera-
tive stage. On the other hand, the deliberative stage is only
launched if the real-time agent has a problem to solve in
the problemQueue. This configuration allows the agent to
launch the TB-CBR in order to only learn (no solution is
needed and the agent has enough time to reason about pre-
vious decisions), only deliberate (no previous solutions to
consider and there is a new problem to solve) or both.
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Figure 1: Temporal Bounded CBR algorithm

3.1 Data Format considerations
The design decision about the data structure of the case-
base and the different algorithms that implement each CBR
phase are important factors for determining the execution
time of the CBR cycle. The number of cases in the case-
base is another parameter that affects the temporal cost of
the retrieval and retain phases. Thus, a maximum number
of cases in the case-base must be defined by the designer.
Note that, the temporal cost of the algorithms that imple-
ment these phases usually depends on this number. For
instance, let us assume that the designer chooses a hash ta-
ble as a data structure for the case-base. This table is a data
structure that associates keys to specific values. Search is
the main operation that it supports in an efficient way: it
allows access to elements (e.g. phone and address) by using
a hash function to transform a generated key (e.g. owner
name or account) to a hash number that is used to locate
the desired value. The average time to make searches in
hash tables is constant and defined as O(n) in the worst
case. Therefore, if the cases are stored as entries in a hash
table the maximum time to look for a case depends on the
number of cases in the table (i.e. O(]cases)). Similarly, if
the case-base is structured as an auto-balanced binary tree
the search time in the worst case would be O(log n).

In any case, the retrieval and retention time can be reduced
by using an indexing algorithm. These algorithms organize
the case-base by selecting a specific feature (or set of fea-
tures) from the cases, grouping together those cases that
share the same values for these features. This reduces the
search cost for similar cases (for retrieval or prior to the in-
troduction of new cases in the case-base) to a specific set of
cases with the same index as the current case [22]

3.2 Learning stage
This stage begins with the revise phase. During this phase,
the accuracy of the final solutions obtained in previous ex-
ecutions of the TB-CBR cycle is checked. The algorithm
only checks one solution per iteration, fixing the potential
problems that it had in cases of erroneous results. The out-
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come of this phase is used to update the case-base. Thus,
the maximum temporal cost of this phase is bounded by
the worst-case execution time (WCET) of the revision algo-
rithm:

trevise = WCET (frevision(solution)) (2)

Note that, in order to guarantee a known maximum exe-
cution time, this check must be performed automatically by
the computer without human interference. This WCET does
not depend on the number of stored solutions or the number
of cases in the case-base and again, is fixed by the selected
algorithm. In our TB-CBR proposal, this phase is imple-
mented by an analysesResult function which determines if
the solution is correct or not, and if it has to be included in
the case-base.

After the revise phase, one of the most important phases in
the TB-CBR cycle begins: the retain phase. In this phase it
is decided whether a checked solution should be added as a
new case in the case-base. Here, maintaining the maximum
size of the case-base is crucial, since the temporal cost of
most retention algorithms depends on this size. If there is
a case in the case-base that is similar enough to the current
case, this case (its problem description and solution) is up-
dated if necessary. On the contrary, if there is not a case
that represents the problem solved, a new case is created
and added to the case-base. Maintaining the maximum size
of the case-base could entail removing an old case from it.
This decision should be taken by the retention algorithm.
Nevertheless, the maximum temporal cost that the retain
phase needs to execute one iteration is its WCET.

tretain = WCET (fretention(solution, case− base)) (3)

The retain phase is built by the retainResult function which
includes the solution in the case-base if it is sufficiently sig-
nificant. In order to do so, the function determines if the
solution entails adding a new case in the case-base or if a
similar case exists. If the solution has a similar case in the
base-case, the similar case is update with the new data that
the TB-CBR can extract from the solution. If the solution
entails adding a new case and the case-base is full, the al-
gorithm extracts a case from the case-base that it considers
outdated or useless to make space for a new case. Otherwise,
the new case is added to the case-base.

3.3 Deliberative stage
The deliberative stage begins with the retrieve phase. In this
phase the retrieval algorithm is executed to find a case that
is similar to the current problem in the case-base. In order to
bound the temporal cost of the algorithm and to ensure the
adequate temporal control of this phase, the execution time
of the algorithm is approximated to its WCET. Thus, the
temporal cost of the execution of this algorithm will never
exceed the WCET. Since WCET depends on the structure
of the case-base and its number of cases, the designer must
calculate this WCET and use this time to estimate the time
needed to execute an iteration of the retrieval algorithm.

tretrieve = WCET (fretrieval(currentCase, case− base))
(4)

The execution of the retrieval algorithm will provide a unique
case similar to the current problem (if it exists in the case-
base). This result is used as input for the reuse phase.

However, in the following iterations of the deliberative stage
more similar cases can be retrieved with the intention of pro-
viding a more accurate solution to the problem. This func-
tionality must be done in the proposed TB-CBR algorithm
by means of the adaptProblem function, where the problem
is adapted to the correct format, and by the search function,
which searches for similar cases in the case-base.

After this, the reuse phase begins. In this phase, the selected
case obtained from the retrieve phase is adapted to be used
as a potential solution to the current problem. Thus, this
case is stored in a list of selected cases. Each time the reuse
phase is launched, the adaptation algorithm searches this list
and produces a solution by adapting a single case or a set of
cases to fit the context of the current problem to be solved.
Therefore, the execution time of this algorithm depends on
the number of cases that it is working with.

treuse =


WCET (fadaptation(firstCase))

fadaptation(listOfCases)
(5)

As shown in equation 5, to guarantee that the RTA assigns
enough time to execute the cognitive task, the designer must
know the WCET to execute the adaptation algorithm in the
first iteration (with one case). Thus, the RTA can estimate
if the deliberative stage can be completed and provide at
least one solution. In order to control the execution time of
the adaptation algorithm in subsequent iterations, the RTA
must be able to stop the execution of the algorithm if it
realises that the time assigned to complete the deliberative
stage will be exceeded. Then, the RTA provides the best
solution from among the solutions completed in previous
iterations. This solution is stored in a list of solutions to be
verified in the learning stage. This phase is implemented in
the TB-CBR by means of the adaptSolution function.

4. APPLICATION EXAMPLE
In order to evaluate the proposed algorithm, this section
presents an application example of a MAS including agents
with real-time constraints which incorporate a temporal bounded
CBR deliberative process. The problem to solve is a part
of the automated management of the internal and exter-
nal mail (post mail, non-electronic) in a department plant.
The system must be able to request the shipment of a let-
ter or package from an office on one floor to another office
on the same floor, as well as the reception of external mail
at a collection point for subsequent distribution. Once this
service has been requested, mobile robots must gather the
shipment and address it to the destination. Note that each
mail or package distribution must be ended before a maxi-
mum time, specified in the shipment request. Three types
of agents have been defined: the Interface agent, is in charge
of gathering user requests, the Floor agent, which gathers
the requests and distributes the work among the available
robots, and the Robot agent which is in charge of control-
ling a physical robot and managing the mail list that this
robot must deliver. The Robot agent must satisfy critical
time restrictions since the tasks that control the robot sen-
sors/effectors have temporal constraints. Furthermore, this
agent periodically sends data about its position and state
to the Floor agent. This data is used by the Floor agent
in order to select the most appropriate agent to send a new
delivery/reception request to.
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The Robot agents must incorporate temporal bounded rea-
soning techniques to estimate the appropriate paths to the
different target positions they need to achieve. Moreover,
a Robot agent receives delivery/reception requests, and it
must be able to commit itself or not to such requests. In
order to solve this problem we have defined a module which
allows the agent to estimate whether it can commit itself.
This module, called Temporal Constraint Analysis mod-
ule, has been added to the Robot agent and incorporates a
Temporal-Bounded CBR following the previously proposed
algorithm. The next section explains in detail the definition
of this module.

4.1 Temporal Constraint Analysis Module
The Temporal Constraint Analysis (TCA) module must de-
cide if a Robot agent has enough time to perform a specific
service. To carry out the decision-making process regard-
ing whether or not to contract a commitment to perform
the service, the TCA module has been enhanced with a TB-
CBR according to the previously presented algorithm. This
new TB-CBR copes with a typical planning problem, where
a path must be built as a temporal ordering of a set of ac-
tivities. Therefore, it is necessary to address the problem
as a planning process where the final plan (solution) is pro-
duced by the adjustment of plans stored in the case-base.
The cases of the TB-CBR module are structured as follows:

C =< I, F,Nt, Ns, T > (6)

where I and F represent the coordinates of a path from
the initial position I to the final position F that the robot
travelled (one or several Nt times) straight ahead in the past,
Ns stands for the number of times that the robot successfully
completed the path within the case-based estimated time
and T shows the series of time values that the robot spent to
cover that route. Note that only straight routes are stored
as cases, since we assume that they are the quickest way
between two points. Therefore, the TB-CBR estimates the
duration of new paths by means of a function t : T → f(T )
computed over the temporal values of similar previous paths.
The expected time Ts to perform a path that consists of
a collection of known sub-paths is the aggregation of the
estimated time for each one of these sub-paths:

Ts =

IX
i=0

ti (7)

Finally, the series of observed execution times could also al-
low the TB-CBR to estimate a success probability P (Ts) for
a request to be performed within a specified time. This is in-
teresting data for agents, which could use this probability to
make strategic decisions about their potential commitments.
Setting a confidence factor (CF) that represents a minimum
threshold for the success probability, agents would commit
themselves to fulfilling a delivery/reception mail request if:

∃Ts/P (Ts) ≥ CF ∧ Ts ≤ deadline (8)

Thus, agents with riskier strategies could undertake com-
mitments with lower confidence values than more cautious
agents. The following subsections present the selected case-
base format and the operation of each stage.

4.1.1 Data format

analysis- retain-
search()

adapt-

Result() Result() Solution()

Asymptotic
O(1) O(n) O(n) O(1)

cost

case-base
wcet wcet wcet wcet

size

50 1 609.20 448.83 1

60 1 665.39 511.27 1

70 1 731.59 525.36 1

80 1 864.64 687.76 1

90 1 929.12 753.20 1

100 1 1025.61 847.98 1

Table 1: Asymptotic and temporal costs analysis in the

case of study (all times in nanoseconds)

A Hash table has been chosen as a case-base structure as
mentioned in section 3.1. The WHAT tool [21] has been
used in order to obtain the worst-case execution time of
the different functions of the algorithm which involve access
to the case-base. This tool has been adapted to be used
in Real-Time Java language over SUSE Linux Enterprise
Real Time 10 as a real-time operating system. The results
of this analysis can be seen in Table 1. The table shows
the temporal behaviour of the different functions according
to the number of cases stored in the case-base. The times
obtained have been used in the temporal analysis of the
different parts of the algorithm (in the enoughTime function,
for example).

4.1.2 Learning stage
As shown in the previous section, the TB-CBR starts with
the learning stage (revision and retention phases). Once the
Robot Agent has finished the shipment service, it sends a re-
port to the TCA module with the coordinates of each path
that it finally travelled straight ahead on, and the time that
it took to do so. The TCA stores this information until the
revision phase is launched. Thus, the manager can check
the performance of the TB-CBR by comparing the time es-
timated by the algorithm and the time that the robot finally
took to complete the journey. To do this, the analysisResult
function, previously defined, has been implemented. Note
that if we were in a static domain, the agent could try to per-
form the shipment by following the same route that ended
successfully in the past. However, due to the fact that some
new obstacles could be found along the route, the design
decision to report the specific paths that the Robot Agent
has travelled along has been taken.

The second step of the reasoning cycle considers the ad-
dition of new knowledge in the case-base of the TB-CBR.
As pointed out before, the size of the case-base must be
controlled and therefore, only useful cases should be added
(and correspondingly, out-of-date cases must be eliminated).
Therefore, decisions regarding the addition of a new case in
our model is crucial. In this example, the retainResult func-
tion has been implemented to include a simple but effective
procedure by defining a threshold α below which two points
must be considered to be nearby in our shipment domain.
Let us consider a new case c with coordinates (xc

i , y
c
i ) (initial

point) and (xc
f , y

c
f ) (final point) to be added in the case-base.

Following an Euclidean approach, the distance (dissimilar-
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ity) between case c and each case z of the case-base can be
computed with:

dist(c, z) = max (
p

(xc
i − xz

i )2 + (yc
i − yz

i )2,q
(xc

f − xz
f )2 + (yc

f − yz
f )2)

(9)

So, the new case will be included in the case-base iff:

∀z ∈ caseBase / dist(c, z) > α (10)

In this case, the new case < (xc
i , y

c
i ), (xc

f , y
c
f ), 1, 1, time >

will be added to the case-base (’1’ values stand for this first
time that the path has been successfully travelled along).
Note that the addition of new cases is always conditioned to
the existence of ‘free space‘ in the case-base. Otherwise, a
maintenance cycle will be triggered, deleting, for instance,
those old cases that have low usage. If a similar case in the
case base has been identified, the number of times that the
agent has travelled the path that represents the case (N ) will
be increased by 1 and the time taken to travel the current
path will be added to the time series of that case.

4.1.3 Deliberative stage
Firstly, the TB-CBR must adapt the problem to the case-
base structure, implementing the adaptProblem function pro-
posed in the general algorithm. After this, the TB-CBR, by
means of the search function, searches its case-base to re-
trieve a case that represents a similar path along which the
Robot Agent travelled in the past. Then, for each retrieved
case, the algorithm uses a confidence function to compute
the probability of being able to travel from an initial point to
a final point in an area without diverting the agent’s direc-
tion. It is assumed that the probability of the shortest paths
being affected by unpredictable circumstances which could
deviate the agent from its route is lower and hence, they
are preferred to longer ones. In the best case, there will be
a case that covers exactly, or very approximately, the same
path along which the agent has to travel. Therefore, the
time needed to perform the shipment can be estimated by
using the time taken in the previous case. Otherwise, the
route could be covered by aggregating a set of cases and es-
timating the global time by adding the time estimation for
each sub-case. If the route can somehow be composed using
the stored cases, the next confidence function will be used:

ftrust(i, j) = 1− distij
maxDist

∗ Ns

Nt
where distij ≤ maxDist

(11)
where distij is the distance travelled Nt times between the
points < i, j >, Ns represents the number of times that the
robot has travelled along the path within the case-based es-
timated time and maxDist specifies the maximum distance
above which the agent is unlikely to reach its objective with-
out finding obstacles. In the worst case, the agent would
never have travelled along a similar path and hence, cannot
be composed using the cases stored in the case-base. If this
is the case, a confidence function that takes into account the
distance that separates both points will be used:

ftrust(i, j) =

8><>:
1− distij

const1
if 0 ≤ dist ≤ dist1

1− const2 ∗ distij if dist1 < dist ≤ dist2
distij

dist2ij
if dist2 < dist

(12)
where const1 and const2 are normalisation parameters de-
fined by the user, distij is the Euclidean distance between

the initial and final points of the path < i, j > and dist1
and dist2 are distance bounds that represent the thresholds
that delimit near, medium and far distances from the initial
point. This function computes a smoothed probability of
the robot being able to travel along its path straight ahead.
As the distance between the initial and final point increases,
the confidence in travelling without obstacles decreases.

Once the probability of reaching the robot’s objective is com-
puted for each case, the complete route with the maximum
probability of success from the starting point to the final
position must be selected. This route is composed using a
selection function F (n) (13), which follows an A* heuris-
tic search approach [12]. The function consists of two sub-
functions: g(n) (14) which computes the case-based confi-
dence of travelling from the initial point to a certain point n
and h(n) (15) which computes the estimated confidence level
of travelling from the point n to the final point (always bet-
ter than the real confidence level). Finally, the function T (n)
(16) checks if the Robot Agent has enough time to complete
the shipment service by travelling along this specific route.
Otherwise, the algorithm prunes the route. The function
consists of two sub-functions: time(n) (17) which computes
the case-based time of travelling from the initial point to a
certain point n and E(n) (18) which computes the estimated
travel time from point n to the final point. In (17) distmn

represents the distance between the last point m visited by
the algorithm and the current point n, Vrobot is the speed of
the robot, ftrust(m,n) corresponds to (11) or (12) (depend-
ing on the possibility of composing the route by using the
cases in the case-base) and the constant consttrust ∈ [0, 10]
shows the degree of caution of the robot agent. Bigger values
of this constant stand for more cautious agents.

F (n) = g(n) ∗ h(n) (13)

g(n) = g(m) ∗ ftrust(m,n) (14)

h(n) = 1− distnf

maxDist
where dist ≤ maxDist(15)

T (n) = time(n) + E(n) (16)

time(n) = time(m) +
distmn

Vrobot
+

consttrust

ftrust(m,n)
(17)

E(n) =
distnf

Vrobot
(18)

Finally, if the TB-CBR algorithm is able to compose the
entire route with the information stored in the case-base, it
returns the case-based probability of performing the ship-
ment service on time. Otherwise, it returns the product
of the probability accumulated to that moment and a pes-
simistic probability of travelling from the last point that
could be reached, by using the cases in the case-base, to the
final point of the route. Finally, in the event of all possi-
ble solutions computed by the algorithm exceeding the time
assigned to fulfil the service, it returns a null probability of
performing the service successfully. The bestSolution func-
tion is in charge of returning the solution obtained.

The probability returned by the TB-CBR algorithm will
be used to determine whether the agent can commit itself
to performing the delivery/reception service, or whether it
should reject the service. Each agent has a confidence value.
If the returned probability is greater than or equal to the
confidence value, then the service will be accepted for exe-
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cution. This confidence value allows different behaviours of
the agent to be defined. A cautious agent will have a high
confidence value and thus, will only accept those services
with a high probability of fulfilling the goal. On the other
hand, a fearless agent will have a low confidence value.

4.2 Tests and Results
The example has been implemented using the jART plat-
form [20] (which is specially designed for real-time multi-
agent systems) and RT-Java [1] as the programming lan-
guage. Once the example was implemented several simula-
tion tests were conducted to evaluate the proposal. A simu-
lation prototype was implemented using a Pioneer 2 mobile
robot simulation software (specifically, the Webots simula-
tor [5]). The tests were mainly conducted to show the bene-
fits and correct behaviour of the TB-CBR integrated on the
TCA module in the Robot agent. In order to compare the
obtained results, the different experiments were tested on a
system where the TCA module is included or not.

It is important to note that, in the case of the Robot agent
without the TCA module, the received mail orders are stored
in a request queue. This queue only stores up to five pend-
ing requests. When the Robot Agent receives a request, if it
has space in the queue, the Robot Agent accepts the com-
mitment associated to the request. Otherwise the request is
rejected. In each case, the mail or package distribution must
be ended before a maximum time, and the robot control be-
haviour must guarantee the robot’s integrity, which implies
hard real-time constraints. In the tests carried out, we as-
sume that all requests have the same priority. Therefore,
the number of requests successfully managed by the Robot
Agent is an adequate metric to verify the improvement made
by the use of the TCA module. If requests have different pri-
orities, this metric will not be correct. In this case, fulfilling
tasks with high priority is more important than fulfilling a
greater number of low priority tasks. The tests consisted of
groups of 10 simulations with a duration of 5 minutes. The
Floor Agent received between 5 and 30 requests during this
time. Each experiment was repeated 100 times and results
show the average value obtained.

The first set of experiments investigates the success rate of
accepted commitments according to package or mail arrival
frequency (Figure 2). This figure shows that using the TCA
module with a confidence value of 90 % is very efficient in or-
der to maintain the success rate close to 100%. In contrast,
if the Robot Agent does not use the module, the success rate
decreases as the number of requests increases. Even when
the saturation of requests in the system was very high, the
agent with the TCA module still had a success rate of ap-
proximately 90% independent of the confidence value. The
next test analyses the behaviour of the TCA module in a
Robot agent as it receives new requests by increasing the
number of queries. As shown in Figure 2, the number of
estimations that the TCA performs decreases as new re-
quests are queried. This demonstrates that as the number
of requests increases, the case-base learns the new informa-
tion properly and hence, the number of routes that can be
composed with the cases increases (and an estimation is not
necessary). Figure 3, which shows the relation between the
number of cases in the case-base and the percentage of es-
timated routes, also supports this conclusion. Finally, the
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percentage of distrust from which an agent can commit itself
to performing a service was also checked (modifying the con-
fidence factor values from 70%, 80% and 90%). As expected,
bigger confidence percentages resulted in agents committing
themselves to performing more tasks (Figure 4a). However,
in such cases the percentage of services accepted and com-
pleted on time decreases, since the agent committed itself
to the performance of a large amount of services (Figure
4b). Logically, when the confidence factor increases the ac-
ceptance percentage is lower. The results obtained in Fig-
ure 4a and Figure 4b have been merged in Figure 5, which
shows the behaviour for each confidence factor (CF ) com-
paring accepted requests fulfilled versus those not fulfilled.
We can extract that if the agent selects a high CF, it ob-
viously accepts fewer proposals but it can fulfil all of the
proposals even with high request frequencies. On the other
hand with a low CF the agent behaviour results are com-
pletely opposed. Taking these results into account, the agent
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Figure 5: Analysis of the robot agent behaviour for each

confidence factor

must dynamically vary its confidence factor. How it can be
adapted depends on the context, mainly in the current load
of the agent. With a high load the agent must increase its
CF in order to avoid possible failures in its commitments.
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On the contrary, the agent can decrease its CF, and probably
accept more requests, while the system load is not excessive.

5. CONCLUSIONS
This paper has centred on the problem of the efficient in-
tegration of high-level deliberation processes with real-time
behaviours in complex and dynamic environments. With
this idea in mind, this paper has proposed the integration of
a deliberative capacity, based on bounded case-base reason-
ing techniques, into a real-time agent. More specifically, the
work has proposed a new temporal-bounded CBR, based
in a anytime algorithm, to be integrated as a deliberative
capability inside a real-time agent architecture. A multi-
agent scenario with temporal bounded deliberative and re-
active processes has been implemented using this approach.
Specifically, an automated management simulation of inter-
nal and external mail in a department, allowing it to decide if
an agent can commit itself to performing delivery/collection
services without exceeding the maximum time assigned for
performing these services. The results are promising for de-
ployment within a real scenario in the near future and make
the proposal very suitable for application in dynamic en-
vironments, in which learning and adaptation to constant
changes is required and temporal boundaries exist.
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ABSTRACT
Creating decision support systems to help people coordinate in the
real world is difficult because it requires simultaneously address-
ing planning, scheduling, uncertainty and distribution. Generic
AI approaches produce inadequate solutions because they cannot
leverage the structure of domains and the intuition that end-users
have for solving particular problem instances. We present a gen-
eral approach where end-users can encode their intuition as guid-
ance enabling the system to decompose large distributed problems
into simpler problems that can be solved by traditional centralized
AI techniques. Evaluations in field exercises with real users show
that teams assisted by our multi-agent decision-support system out-
perform teams coordinating using radios.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Real-Time Dynamic Planning and Scheduling, Human-Agent In-
teraction, Human Guidance, Decision Support, Multi-Agent, Un-
certainty, Dynamism, Coordination

1. INTRODUCTION
Teams of people need to coordinate in real-time in many dynamic
and uncertain domains. Examples include disaster rescue, hospi-
tal triage, and military operations. It is possible to develop plan a
priori, but many parts of these plans must be left unspecified be-
cause people won’t know exactly what needs to be done until they
∗The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032. The
U.S.Government is authorized to reproduce and distribute reports
for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected
with them. Approved for Public Release, Distribution Unlimited.

are executing the plan in the field. Additionally, requirements and
tasks can evolve during execution. Our work addresses a funda-
mental multi-agent systems endeavor of creating decision support
systems that help humans perform better in these domains. The
technical challenges to compute good solutions for these problems
have been well documented [10, 7, 3].

Established approaches address subsets of the problem, but none
have adequately addressed the full problem. Classical planning
techniques can barely compute the sets of actions that each per-
son should perform for large problems involving metric resources
and cannot cope at all with uncertainty and distribution. Decision-
theoretic planning addresses uncertainty, but performance degrades
with increased distribution and scale. Distributed constraint opti-
mization techniques address distribution, but do not address tem-
poral reasoning, uncertainty or scale. In practice, it is possible
to address specific domains with custom algorithms that use pow-
erful heuristics to leverage the structures unique to that domain.
These solutions are expensive to create as even these domains in-
volve planning, uncertainty and distribution. The goal remains to
develop generic approaches that produce good solutions that help
human teams in many domains.

We introduce a new approach, STaC, based on the premise that
people have good intuitions about how to solve problems in each
domain. The idea is to enable users to encode their intuition as
guidance for the system and to use this guidance to vastly simplify
the problems that the system needs to address. The approach is
related to heuristic planning, but differs in two important aspects.
First, the goal is to capture intuition about solving specific instances
of the problem rather than providing heuristics that apply to many
instances in the domain. End-users rather than domain experts or
developers encode heuristics for the system. Second, in STaC, the
intuition is not captured by rules of what actions to take in spe-
cific situations, but rather as a decomposition of the problem into
simpler problems that can be solved independently.

The model is defined by software developers, and declares the ca-
pabilities agents possess and the capabilities that relevant actions
in the domain require in order to be performed. These capabil-
ities define the vocabulary for users to express the guidance that
encodes their intuition about how to solve a particular problem in-
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Figure 1: Field Exercise Images from Rome, NY

stance. The key to STaC is using the model and guidance to pro-
duce sufficiently smaller task structures that can be centralized so
that a single agent can determine who does what, when and where
with respect to these significantly simpler task structures. This mit-
igates the distribution challenge and enables using auxiliary solvers
based on established AI techniques which produce good solutions
at a smaller scale. These smaller task structures are solved inde-
pendently assuming that the human guidance has addressed any
significant dependencies. STaC addresses tracking the dynamism
in these task structures, the transitioning of agents assignment be-
tween these smaller task structures and the invocation of auxiliary
solvers. Given that the task structures are treated independently and
sufficiently small to be centralized, we call them sandbox reason-
ers. The sandbox reasoners required in each domain are different,
so custom code must be written for each domain. However, the
benefit of the approach is that sandbox reasoners are significantly
simpler than the custom solvers required to produce a custom solu-
tion for a domain.

The rest of the paper is organized as follows. The next sections
introduces the real-world domain where our approach was tested
followed by related work. We then describe the details of the STaC
approach and the particular sandbox reasoners used in our example
domain. We close with evaluation results, conclusions and direc-
tions for future work.

2. FIELD EXERCISES
The field exercises were based on a simulated disaster rescue do-
main. The first two exercises were held in the city of Rome, NY,
and the second three were in Stanton Wood Park in Herndon, VA.
Images of the field exercise in Rome, NY are shown in Figure 1
and a map of the sites and road network of Stanton Wood Park
are shown in Figure 2. They were organized and evaluated by
independent parties contracted by the DARPA Coordinators pro-
gram. The rules of the field exercise were created collaboratively
by the teams building coordinator agents, the independent evalu-
ation team, and subject matter experts. The specific instances or
scenarios that comprised the test problems were chosen by the in-
dependent evaluation team.

Various locations were selected as sites and a feasible road net-
work was constructed. If the site was populated, it could have in-
jured people in either critical and serious condition. Populated sites
would also have gas, power and water substations which may have
been damaged. In addition, any site could have facilities such as a
hospital, clinic, warehouse, gas main station, power main station

and water main station. A team would obtain points by rescuing
injured to hospitals or operational clinics (before a deadline associ-
ated with each injured person) and by repairing main stations and
substations. The goal of a scenario was to accumulate as many
points as possible before the scenario deadline.

The teams were composed of 8 field agents and 2 command agents.
Each agent had a different set of skills. Three specialists in gas,
power and water could perform major and minor repairs in their
respective skill area. The medical specialist could load any type of
injured person by themselves. The remaining four survey special-
ists could have any collection of skills involving minor repairs. The
field agents could move throughout the field exercise area and per-
form actions. The command agents were located at a base where
they helped to coordinate the activities of the team. The Radio
Team communicated only with radios. Our CSC Team had ruggedi-
zed tablet computers on which our agents were loaded, in addition
to radios. The tablets had cell modems and GPS.

Many outcomes were revealed during the game for which little or
no likelihood information was given a priori, i.e., no probability
distribution functions over outcomes. Teams did know the space of
possible outcomes beforehand. A survey for damage at a main sta-
tion or substation revealed the number and type of problems chosen
from a set of known possible problems. A survey for injured at a
populated site revealed the number, types and deadlines for the in-
jured at that site. As the result of a survey, any team member might
be injured, forcing them to go to an operational medical facility to
recover before proceeding with any other action. A survey could
also reveal that the vehicle of the agent doing the survey had failed
and would require a vehicle repair before the agent could travel to
any other site. While traveling, agents could encounterroad blocks
which could not be passed until fixed. Travel and repair times could
vary and repairs could fail. These dynamic and uncertain events
were planned parts of the exercise. In addition, the teams had to
address uncertainties inherent in the environment, such as noisy
radios, weather, and other activities in the public settings. Further-
more, most of these outcomes were only observable by the agent
encountering the outcome.

The independent evaluation team chose the scenario from the space
of possible exercises and informed the teams of the details below
one day prior to the test: (1) the locations of populated sites and
facilities, (2) the road network and ranges on travel times between
sites, (3) a range for the total number of injured at each site, (4) the
points for rescuing each type of injured, which could vary by type
and site, (5) the points for repairing each substation or main station,
which could vary by type and site, (6) potential problems after sur-
veys for damage and corresponding repair options, (7) ranges on
repair times, (8) likelihoods of failure for every repair activity, and
(9) the skills of the survey specialist agents. The deadlines (for the
scenario and injured) did not allow teams to do all possible repairs
and rescues. The teams had one day to form a high-level strat-
egy. The only element of uncertainty which could be modeled ac-
curately with a probability density function was (8). When a team
member completed a repair activity, they would call the evaluation
team, which would report whether the repair was successful or a
failure. The range in (3) was respected by the scenario designers,
i.e., the number of injured did not fall outside the given range.

There were many rules and couplings that forced agents to coordi-
nate. To do surveys, gas and power substations at the site had to
be off, which required agents with those skills. Two agents had to

50



Figure 2: Stanton Woods Park, Herndon, VA

be at the same location simultaneously to load a critically injured
person or repair a road block. Repair options could involve mul-
tiple tasks and require two agents with certain skills to act in syn-
chrony or in a particular sequence. Some repair options required
kits which guaranteed their success, but kits were available only at
warehouses. Agents could transport at most one entity, i.e, either a
repair kit or a single casualty. A substation was considered repaired
only if the corresponding main station was also repaired. A clinic
was not operational until all substations at the site and all corre-
sponding main stations were repaired. These are examples of rules
that, along with the dynamism and uncertainty in outcomes men-
tioned earlier, created challenging real-time real-world distributed
coordination problems.

The goal was to see if humans operating with radios and a multi-
agent decision-support system could outperform humans operating
with only radios. Although the field exercises still abstracted some
aspects of a real-world disaster scenario, we believe they closely
approximated the challenges of helping a human team solve diffi-
cult real-world problems.

3. RELATED WORK
The STaC framework was developed during the DARPA Coordi-
nators program. In the first two years, DARPA ran competitive
evaluations on simulated scenarios, and CSC, the underlying sys-
tem behind the STaC framework, won such evaluations by consid-
erable margins against two competing approaches: an MDP-based
approach [11] and an STN framework [14].

The MDP-based [11] approach addressed the infeasibility of rea-
soning over the joint state space by setting the circumstance set to
a subset of local state space that is reachable from the current lo-
cal state, unrolling the state space by doing a greedy estimation of
boundary values. It biased its local reward function on the com-
mitments made by the agents during execution. However, such ap-
proximations lose critical information, exploring state spaces that
are far from good distributed solutions.

The STN framework [14] addressed temporal uncertainty by using
a time interval (instead of a point) as the circumstance that denoted
feasible start times for a method to be executed. The system used

constraint propagation to update the start intervals of the agents’
activities during execution. A policy modification phase was trig-
gered if execution was forced outside the given set of intervals. One
of the problems of this approach is that agents tried to maintain con-
sistency and optimize their local schedules, losing information that
was needed to timely trigger policy modifications for their sched-
ules.

We encoded scenarios of the field exercise as planning problems us-
ing PDDL [5]. The motivation was to identify to the extent to which
current automated planning technology can address complex dis-
tributed, resource-driven, and uncertain domains. Unfortunately,
this proved to be extremely difficult for state-of-the-art planning
systems. From the set of planning systems tried, only LPG-TD [6],
and SGPLAN [4] solved a few simplified problems, after uncer-
tainty, dynamism, non-determinism, resource-metrics, partial ob-
servability and deadlines were removed. Planners were unable to
scale to more than 5 sites. LPG-TD produced solutions more effi-
ciently but less optimally.

In general, mixed-initiative approaches where humans and soft-
ware collaborate can often produce better solutions for complex
problems. Mixed-initiative planning systems have been developed
where users and software interact to construct plans. Users manip-
ulate plan activities by removing or adding them during execution
while minimizing the changes from a reference schedule [1, 8, 12].
However, most of these systems are centralized, so humans and
systems are fully aware of the entire plan, and of the consequences
of updating it. In our scenario, agents (including humans) have
subjective views of the world, and any decision may trigger many
unknown global effects.

Multi-agent systems for disaster domains have been studied in the
context of adjustable autonomy. The idea is to improve limited hu-
man situational awareness that reduces human effectiveness in di-
recting agent teams by providing the flexibility to allow for multiple
strategies to be applied. A software prototype, DEFACTO, was pre-
sented and tested on a simulated environment under some simpli-
fications (e.g., no bandwidth limitations, reliable communications,
omnipresence) [13]. Our work also recognizes the importance of
flexible frameworks to allow better human-agent interactions. The
test-bed presented in this paper does not make any major simplifi-
cations, being a first step toward creating multi-agent systems for
real-world problems.

4. THE STaC APPROACH
Our goal is to create a general framework for incorporating human
strategic guidance. We introduce the formalism for STaC guidance
and give an example from our domain. We then describe how this
guidance is executed with the use of Total Capability Requirement
(TCR) sets. We provide an example of a TCR set and discuss how
dynamic updates enable execution of the guidance.

4.1 STaC Guidance
We make the following assumptions about a general multi-agent
coordination problem. There are a set of agents N and a set of ac-
tions A. Agents have capabilities from a set of capabilities: Θn ∈
Θ. Each action is mapped to a capability, i.e., γ : A → Θ. An
agent can perform any action for which it has the capability.

The problem is composed of a collection of tasks T . Each task
t ∈ T is associated with a set of potential actions involved in com-
pleting it: At ⊂ A. It is not necessary that {At} be disjoint. Fur-
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thermore, for the purposes of guidance, it is not relevant how these
tasks relate to the actual reward function. It is only important that
the notion of tasks exists.

We can define a generic representation for human strategic guid-
ance as follows. Guidance is an ordered set of guidance groups:
G = {Gi}. Each guidance group Gi is associated with a subteam
of agents Si ⊂ N and an ordered set of guidance elements Ei.
Each guidance element ej

i ∈ Ei is composed of a task tj
i ∈ Ti, a

set of constraints Cj
i , and a temporal bound bj

i . The constraints Cj
i

are a collection of capability-number pairs {(θ, nθ)} where θ ∈ Θ
and nθ ∈ Z∗ is a non-negative integer. The pair (θ, nθ) indicates
that each agent in the subteam can use the capability θ at most
nθ times for the task in the guidance element. The temporal bound
bj
i ∈ {0}∪{<, >}×R+ is another constraint that can indicate that

the guidance element is only valid if the time remaining is greater or
less than some number (bj

i = 0 indicates no temporal constraint).
Thus,

G = {Gi} = {(Si, Ei)} = {(Si, {(tj
i , C

j
i , bj

i )})}
= {(Si, {(tj

i , {(θ
j,k
i , n

θ
j,k
i

)}, bj
i )})}.

We refer to this as the STaC (Subteam-Task-Constraints) formalism
for strategic guidance. One can now define a strategy composed of
a sequence of subteams, each responsible for a collection of tasks,
each of which are to be performed under some constraints. We
note that since agents will traverse the elements of this guidance in
order, STaCs are actually queues.

4.1.1 Field Exercise Example
We first defined a set of capabilities that were relevant to the field
exercise. We also associated each capability with several capability
classes for more compact expression of constraints. Below are the
set of capabilities and associated classes for actions involving gas
and injured, respectively. Capabilities and classes for power and
water are analogous to those for gas.

gas_major: gas, gas_main
gas_minor: gas, gas_main
survey_gas_main: gas, gas_main, survey
survey_gas_sub: gas, survey
turn_off_gas_main: gas, gas_main, turnoffs
turn_off_gas_sub: gas, turnoffs
pickup_gas_kit: gas, pickup
dropoff_gas_kit: gas, dropoff

load_critical: critical, injured
assist_load_critical: critical, injured
survey_injured: injured, survey
generic: injured

Consider the STaC guidance fragment below. We see an ordered set
of guidance groups, each with a subteam of agents and an ordered
set of guidance elements. The only() operator sets the capability-
number pairs for all capabilities not in the argument to zero. The
no() operator sets the capability-number pairs for all capabilities
in the argument to zero. The intent of this plan fragment is for
the survey specialist to turn off services at the substations at Site
4 and Site 3, enabling other agents to work there. The gas and
survey specialists go to the warehouse at Site 6, pick up gas kits,
then restore the gas main station and gas substation at Site 1. The
medical specialist and survey specialist are responsible for making

sure they each rescue two critically injured people before rescuing
all others. The gas and power specialist are then responsible for
doing everything except water-related actions at Site 4, but if less
than 10 minutes are left in the scenario, they switch to rescuing
injured.

survey_specialist_1:
( task_site_04, [ only( turnoffs ) ], 0);
( task_site_03, [ only( turnoffs ) ], 0);

gas_specialist, survey_specialist_1:
( task_site_06, [ only( pickup_gas_kit ) ], 0),
( task_site_01, [ only( gas ) ], 0);

survey_specialist_1, medical_specialist:
( task_site_04, [ (load_critical, 2) ],0),
( task_site_04, [ only( injured ) ],0);

gas_specialist, power_specialist:
( task_site_03, [ no(water) ], >10),
( task_site_03, [ only( injured ) ], 0);

Here, the tasks chosen for each guidance element are all those asso-
ciated with a particular site. This is not a requirement in the guid-
ance formalism. For example, the second guidance group could
have also been:

gas_specialist, survey_specialist_1:
( task_site_06, [ only( pickup_gas_kit ) ], 0),
( task_gas_main, [ ], 0),
( task_gas_substation_site_01, [ ], 0);

This would have specified a fixed ordering between repairing the
main station and the substation which did not exist in the original.
The expression of guidance is not necessarily unique and can be
tailored to the intuition and structure that the designer finds most
appropriate.

4.2 STaC Execution
While STaC guidance is compact and has intuitive meaning for a
human, the agents have no semantic awareness of what it signi-
fies beyond identifying tasks and limiting actions. This is due to
the generality of the formalism. Furthermore, the guidance does
not specify which actions to perform, which agents should perform
them, the timing of these actions or how to react to any dynamism
and uncertainty during execution. We address those challenges
here.

4.2.1 Total Capability Requirement (TCR) Sets
Given the STaC formalism, one of the key decisions that every
agent must make is when to transition from one task to another.
A simple solution is to wait until the current guidance element is
completed and then move to the next guidance element (which may
involve going to the next relevant guidance group). This approach
would lead to significant waste if the agent were unable to con-
tribute to the current guidance element.

Consider the example shown in Section 4.1.1. If the gas specialist
arrives at Site 1 first and discovers that all the repair options for
the gas main station and gas substation can be completed by the
gas specialist alone, or that there exists repair options for both the
main station and the substation that can be performed by the gas
specialist alone and are guaranteed to succeed, the gas capabilities
of the survey specialist are not needed. It may make sense for the
survey specialist to skip Site 1 and head to Site 4 to help the medical
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specialist rescue injured, even though the repairs at Site 1 have not
been completed. It is important to determine dynamically whether
the capabilities of each agent in the subteam are needed for the task
being executed in the guidance element.

Total Capability Requirement (TCR) sets are a mechanism to achieve
this. For every task t ∈ T , there is an associated TCR set Rt =
{Rt

i}, which is a set of requirements. Each requirement Rt
i =

(nt
i, Q

t
i) is a tuple of a requirement number nt

i and requirement
type Qt

i . A requirement type Qt
i = {qt

i,j} is a collection of re-
quirement elements, where each requirement element is a tuple
qt

i,j = (ct
i,j , l

t
i,j , n

t
i,j) where ct

i,j is a capability, lti,j is a location,
and nt

i,j is an element number. Thus, Rt = {Rt
i} = {(nt

i, Q
t
i)} =

{(nt
i, {qt

i,j})} = {(nt
i, {(ct

i,j , l
t
i,j , n

t
i,j)})}.

2:[(gas_minor, site_01, 1)]
1:[(gas_minor, site_01, 2)]
4:[(assist_load_critical, site_01, 2)]
1:[(power_minor, site_01, 1) (power_minor, site_03, 1)]

Consider the example above which is a possible TCR set for task_site_01.
This indicates that there are two instances of the need for a single
agent with gas minor capability, one instance of a need for two
agents with gas minor capability, four instances of a need for two
agents capable of loading a critically injured person and one in-
stance of a need for having an agent with power minor capability
at Site 1 at the same time that there is an agent with power minor
capability at Site 3. The first requirement could occur because the
gas main station has two problems, each of which could be solved
with a gas minor repair. The second requirement could occur be-
cause the gas substation has one problem that requires two agents
with gas minor skills to perform a synchronized repair. The third
requirement could be due to the discovery of four critically injured
people. The fourth requirement represents the need for remote syn-
chronization: the need for two agents at two different locations at
the same time. In the field exercise, some power substations re-
quired an agent at the substation and another at the main station
simultaneously to turn the power substation on.

If the guidance element was:
( task_site_01, [ only( gas ) ], 0 )

then only the first two requirements involving the gas minor capa-
bility would be considered when deciding whether an agent should
remain committed or released from the task. The TCR sets are
dynamically updated such that once a skill is no longer needed, as
repairs are completed or injured are loaded, the appropriate require-
ments are decremented or deleted.

4.2.2 Calculating TCR Sets
Our calculation of TCR sets can best be described in the context
of our modeling specification for the field exercise scenarios. We
used a hierarchical task network structure that was an extension of
CTAEMS [2], which is itself a variant of TAEMS [9] developed for
the DARPA Coordinators Phase 2 evaluation. The essential prop-
erty was that tasks (including the root task which represented the
overall reward function) were composed of subtasks iteratively un-
til reaching a primitive task which was composed of actions. Tasks
could also have non-hereditary relationships such as enablement
and disablement. Every task was also associated with state aggre-
gation functions that determined how the state of its subtasks (or
child actions) affected the state of the task. An example of a tem-
plate used to model power substations is shown in Figure 3. This

Figure 3: Model Template for Power Substation

also illustrates the issue of dynamism as the task node for Prob-
lems must remain without children until the power substation is
surveyed for damage. Then, the appropriate problems and repair
options are added dynamically to the model. It would be cumber-
some and practically infeasible to express every possible combina-
tion of problems and repair options that could occur. The issues are
similar when it comes to modeling the discovery of injured people.

The TCR set for a given task is calculated by applying a TCR ag-
gregation function, chosen based on the state aggregation function
associated with the task, to the TCR sets of its subtasks and en-
abling tasks. For example, a sum state aggregation function would
correspond to a union TCR aggregation function, and a sync state
aggregation function would correspond to a cross-product TCR ag-
gregation function. Thus, TCR sets would start from actions, which
are each associated capability and flow forward and up through en-
ablement and ancestral links to form TCR sets for every task. These
sets can be dynamically updated as tasks change states.

For example, once a task is completed, the TCR set can be set to
null indicating that it does not require any more capabilities. This
makes the TCR sets vanish as tasks are completed, allowing agents
to be released as soon as possible. In order to address the dynamic
nature of the model, tasks that might be expanded during execu-
tion must be marked with TCR sets that indicate reasonable upper
bounds on needed capabilities. These sets are then changed to the
actual TCR sets once outcomes has been observed in the environ-
ment. Having an HTN-based model helps to construct and manage
TCR sets, but is not necessary. As long as there exists a non-cyclic
mapping that describes the relationships of tasks to other tasks and
actions, a dynamic methodology to assign TCR sets to tasks can be
constructed.

4.3 Partial Centralization
STaC execution can be implemented such that a single agent is
responsible for choosing all actions involved with a single task-
constraint tuple of a guidance element. We create a mapping, ω :
T → N , where every task has an owner. The task owner con-
tacts agents who are responsible for related tasks and actions to
subscribe to relevant state updates. When an agent reaches a par-
ticular task-constraint tuple, it cedes autonomy to the owner of that
task until the task owner releases the agent from that commitment.
The owner agent keeps track of the set of capabilities of all agents
bound to that task as well as the TCR set of that tasks and repeatedly
solves an optimization problem to find the best set of agents to keep
for the current TCR set. If the solution is a set that is a strict subset
of the bound agents, it can release the other agents. Our optimiza-
tion problem minimized a weighted combination of the number of
agents kept and their capabilities. The key insight here is that par-
tial centralization of autonomy always occurs implicitly and thus,
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it is beneficial to align the metric for partial centralization with the
properties of the domain where it matters.

5. SANDBOX REASONING
Once the task owner has chosen which set of agents to keep, it must
then also decide, subject to the constraints in the guidance, which
actions to perform and which agents should perform to accomplish
the task. We call this process sandbox reasoning because the task
owner’s deliberation over what to do for a single task-constraint
tuple is isolated from all actions and tasks that are not related to
the task at hand. The task owner does not need to consider impact
on the future or on concurrently executing tasks. It is given a col-
lection of agents and autonomy to use them however it sees fit to
accomplish the task as well as possible. The consequences of the
interactions have, in principle, been considered and addressed by
human strategic guidance.

In creating the agent model for a field exercise scenario, we instan-
tiated structure (sometimes, dynamically during execution) from a
small set of templates. Examples include power substation restora-
tion (as shown in Figure 3) or critically injured rescue. Similarly,
the tasks in the guidance were also be a subset of tasks that make
intuitive sense to the strategy designer. In our case, the task types
involved in guidance were far fewer than the templates involved in
model generation. We believe that the notion of using templates for
generation and more significantly for guidance is a general princi-
ple that is applicable to many domains. This belief was also re-
flected in the DARPA Coordinators program and its Phase 2 eval-
uation. The main templates needed for guidance were a repair and
rescue manager. We discuss the automated reasoners in these man-
agers below.

5.1 Repair Manager
The repair manager would take as input (1) a collection of facilities
that had been damaged, (2) a set of problems for each facility, (3)
a set of repair options for each problem, (4) set of agents with (5)
associated capabilities and (6) times that they would be available
to be scheduled for activities, The output would be a policy that
yielded a collection of agent-action tuples given a simplified ver-
sion of the state. While this may seem field-exercise specific, this
reasoner had no semantic knowledge of the field exercise.

The problem was generalized as follows: Given a set of tasks {Ti},
where each task is a conjunction of a set of problems, Ti = min({Pj}),
each problem is a disjunction of repairs, Pj = max({Rk}), and
each repair is a function of actions, Rk = �({al}) where � ∈
{sync, sequence, min} is a collection of operators that require the
elements to have synchronized start times, sequential execution, or
conjunctive success in order for the repair to succeed, respectively.
Each action is associated with a capability, expected duration, and
probability of failure. We also have a set of agents where each have
an associated set of capabilities and an availability time. This is a
straightforward optimization given an appropriate objective func-
tion.

We needed a fast solution (less than five seconds) because users
needed guidance from the solver after performing a survey. Our
solution to was to build a policy based on a simplified represen-
tation of state. The state vector is indexed by all possible actions
and takes values from the set {NotStarted, Succeeded, Failed}.
The policy output given for a state is a set of agent-action pairs.

The policy is constructed by running simulation traces of the op-

timization problem. At every time step in the simulation, if there
are idle agents and no action-agent tuples for the current state in
the policy, the agents are randomly assigned to an action they can
perform and marked busy for the expected duration. These assign-
ments are then associated with the state of the simulation where ex-
ecuting actions are interpreted to have succeeded. The outcomes of
the actions in the simulation are determined using the given proba-
bility of failure. Multiple simulation runs are used to build a single
policy which receives a score based on the average idle time of all
agents. Multiple policies are generated using the same mechanism
and the policy with the best score is stored. To execute the policy,
the task owner maps the current state of the actions to the policy
state by mapping executing actions to Succeeded and schedule the
associated action-agent tuples as the next action for the agent. If
there is no agent-action tuple for the translated state or if any of the
input parameters (e.g. availability times, new tasks) change, policy
generation restarts from scratch. While this is a simple stochas-
tic sampling approach, it produces reasonable policies with very
limited computation requirements. Policy generation was typically
bounded to five seconds. Also, while the potential state space is
exponential in the number of actions, typical policies had at most
about 200 states.

The key idea is that we could create a sandbox reasoner that can
solve a generic context-independent problem which could be ap-
plied to many tasks in the guidance. One could, in theory, use an
MDP or STN-based approach if it yielded a solution within the lim-
its of bounded rationality in the domain at hand.

5.2 Rescue Manager
The rescue manager would similarly take as input a list of agents
and a set of injured with associated types and deadlines, and out-
put a set of agent-action pairs when agents became idle. We used
a simple reactive planner with a handful of simple heuristics to de-
termine when to wait for an agent to help load a critically injured
(which requires two agents to be present simultaneously) and when
to take a serious (which could be done by one agent). This also
can be formulated as a generic problem consisting of a set of tasks
with associated deadlines and durations and the tasks can be either
a singleton action or require synchronized actions by two different
agents. The rules were variations of: “If an agent is on the way and
it will arrive later than the duration of the singleton action, perform
the singleton action and return to the site, otherwise, wait for the
agent.” The variations were due to the constraints placed on the
rescue task and the number of agents available to do the rescues.

The general philosophy of the STaC approach to guidance, its exe-
cution and sandbox reasoning is to create a generic framework for
human strategic input to decompose a very difficult problem into
smaller problems that can be solved in isolation with automated
tools created to solve large classes of task structures that appear in
the guidance. Our system was completely unaware of any seman-
tics of the field exercise, and a similar approach could be used in a
completely different domain.

6. EVALUATION
Figure 4 shows the scores for the three scenarios run in Herndon.
For each scenario, the top, lighter bar shows the radio-team score,
and the bottom, darker bar shows the score of the team using the
CSC system described in this paper. The middle bar shows the
results of a simulation of the scenario using a baseline version of
the system with simple sandbox reasoners. In order to calibrate
the simulation scores, we also ran a simulation of the complete
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Figure 4: Herndon Evaluation

version of the system using the same dice rolls used in the physical
scenario. The simulation results for the full system were within 200
points of the results obtained in the field, which suggests that if the
baseline system had been used in the field, the results would also
be close to those shown in the figure.

In the baseline version, the repair manager uses a random strategy
where agents randomly select a repair task to perform from the set
of tasks that the agent is eligible to perform according to its capa-
bilities. The baseline rescue manager uses a greedy strategy where
agents select the injured with the earliest deadline that lives long
enough to arrive to the medical facility before the deadline. In the
baseline rescue manager, agents don’t wait for a partner that en-
ables loading a critically injured that they would not be eligible to
load otherwise.

The results show that more sophisticated sandbox reasoners always
resulted in better scores: 5.8%, 8.4% and 24.8% improvements.
The differences in scenarios 1 and 2 were small, and in those sce-
narios the baseline system also outperformed the radio team. In
scenario 3, the difference is more significant. This scenario empha-
sized injured, and the greedy strategy used in the simple version
of the system delayed rescuing the critically injured. Agents res-
cue seriously injured with later deadlines instead of waiting for a
partner to rescue a more valuable critically injured with an earlier
deadline.

Figure 5 shows simulation results that compare the effects of alter-
native strategies. We organized these strategies along two dimen-
sions: the number of clinics that would be made operational (0, 1
and 2), and the number of independent subteams (1, 2 and 4). In
the strategies with 1 clinic, the team repaired the clinic that was
considered most useful (closest to the most valuable injured). In
the scenarios with 2 and 4 teams, we specified the teams so that
they could perform repairs independently. In the strategies with
0 clinics, the teams performed no repairs and rescued injured to
a medical facility that was always operational and required no re-
pairs. In the strategies with 1 and 2 clinics, the agents first repair
the main stations, then the clinics and then visit the remaining sites
to rescue all injured and perform all repairs according to the fol-
lowing algorithm. First, the sites are ordered according to the total
expected number of points achievable at the site. The teams take
turns picking the next most valuable site from the ordered list until
the list is exhausted. The idea is to complete the most valuable sites
first so that when time runs out the most valuable sites have been
completed.

Figure 5 shows that in the Herndon 1 and 2 scenarios, the strate-
gies that repair 1 or 2 clinics are competitive with the radio team,
outscoring them in 11 out of the 12 strategies involved. However,
in all three scenarios, the CSC strategy used in the field was sig-
nificantly better than all the alternative strategies. The difference is
due mainly to the use of constraints. In the alternative strategies,
the agents performed all tasks at a site, whereas the strategies used
in the field used constraints to prevent agents from performing tasks
that we deemed not worthwhile. In addition, we used constraints
on the number of injured rescued to prevent agents from rescuing
all injured at a site before moving to the next site. Instead, we used
longer itineraries that visited sites multiple times in a round-robin,
so agents would rescue the most urgent injured first.

7. CONCLUSIONS AND FUTURE WORK
Our 18-month experience working on a system to compete against
radio teams in the field exercises provided significant evidence for
the benefits of our approach. Our starting point was our generic
CSC system developed during the previous two years to solve generic,
synthetically generated problem instances specified in CTAEMS.
Even though the synthetically generated problem instances were
generated according to templates that combined “typical” coordi-
nation situations, the resulting problems were not understandable
by humans. In contrast, the field exercise problems are natural, and
appeal to our lifetime of experience coordinating every day activi-
ties. Intuitions about space, distance, time, importance and risk all
came into play, enabling teams of humans to devise a sophisticated
strategy within one hour of brainstorming. It became obvious early
on that the generic CSC system would not be able to produce solu-
tions comparable to the desired sophisticated, coordinated behavior
of human-produced strategies.

Our existing system had performed extremely well in Phase 2 by
using our Predictability and Criticality Metrics (PCM) approach.
In the PCM approach, the policy modifications that agents consider
are limited to those that can be evaluated accurately through criti-
cality metrics that capture global information. These policy modifi-
cations were simple and thus the reasoners that implemented them
were simple too.

For the field exercises, we extended our approach so that policy
modifications would be constrained using the guidance provided
by the users. This guidance was in the form of a sequence of sites
to visit. The system was left to make decisions that we believed
it could evaluate accurately (e.g., how to perform repairs or rescue
injured at a single site). The system relied on the TCR set criticality
metric to determine how to move agents along the list of guidance
elements. The approach worked well. Our users outperformed the
radio team because they were able to communicate their strategy to
their agents, and the system optimized the execution of the strategy,
adapting it to the dynamics of the environment.

The field exercises in Rome, NY used a simpler language for spec-
ifying guidance. It had a single guidance group consisting of the
entire set of agents. Also, it did not support constraints to control
the capabilities within a guidance element. In that evaluation, our
system remained competitive with the radio team, but lost in two
out of the three scenarios. The final language for guidance was in-
spired by our observations of the radio-team strategies, extensive
discussions with subject matter experts and extensive numbers of
simulations. We noted that while the human team could not exe-
cute a strategy as well as we could, the space of strategies that they
were able to engage were far more sophisticated than ours. This led
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Figure 5: Baselines

to the creation of a the more sophisticated formalism for capturing
human strategic guidance.

We have taken the first step towards generic coordination technol-
ogy that end-users can tailor to specific problem instances. The
approach was validated in one domain thanks to the extensive and
expensive evaluations carried out by the DARPA Coordinators pro-
gram. In the future, we hope to be able to apply this approach to
other application domains. One key area that needs to be inves-
tigated is extensions to allow human users to make guidance ad-
justments during execution. There are situations where a series of
outcomes either invalidates an assumption when creating the a pri-
ori guidance or creates an opportunity to improve on that guidance.
Addressing this requires the ability for human users to quickly and
easily understand and modify the guidance while it is being exe-
cuted. Even more advanced steps would be evaluating and ulti-
mately generating appropriate online guidance modifications.
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ABSTRACT
This paper proposesMarket-based Iterative Risk Allocation(MIRA),
a new market-based decentralized optimization algorithm for multi-
agent systems under stochastic uncertainty, with a focus on prob-
lems with continuous action and state space. In large coordination
problems, from power grid management to multi-vehicle missions,
multiple agents act collectively in order to maximize the perfor-
mance of the system, while satisfying mission constraints. These
optimal action plans are particularly susceptible to risk when uncer-
tainty is introduced. We present a decentralized optimization algo-
rithm that minimizes the system cost while ensuring that the proba-
bility of violating mission constraints is below a user-specified up-
per bound.

We build upon the paradigm ofrisk allocation [13], in which
the planner optimizes not only the sequence of actions, but also its
allocation of risk among state constraints. We extend the concept
of risk allocation to multi-agent systems by highlighting risk as a
resource that is traded in a computational market. The equilibrium
price of risk that balances the supply and demand is found by an
iterative price adjustment process calledtâtonnement(also known
asWalrasian auction). Our work is distinct from the classical tâ-
tonnement approach in that we use Brent’s method to provide fast
guaranteed convergence to the equilibrium price. The simulation
results demonstrate the efficiency and optimality of the proposed
decentralized optimization algorithm.
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1. INTRODUCTION

1.1 Motivation
There is an increasing need for multi-agent systems that perform

optimal planning under uncertainty. An example is planning and
control of power grid systems [3]. A power grid consists of a num-
ber of generators and electric transformers whose control should be
carefully planned in order to maximize efficiency. A significant is-
sue in power grid planning is the uncertainty in demand for energy
by consumers. As the use of renewable energy, such as solar and
wind power, become more popular, uncertainty in supply increases
due to weather conditions.

Another example is the Autonomous Ocean Sampling Network
(AOSN) [18], which consists of multiple automated underwater ve-
hicles (AUVs), robotic buoys, and aerial vehicles. AOSN should
maximize science gain while being exposed to external disturbances,
such as tides and currents.

To deal with such problems, we developedMarket-based Itera-
tive Risk Allocation(MIRA), a multi-agent optimization algorithm
that operates within user-specified risk bounds. The scope of this
paper is a dynamic system with continuous state and action space
under stochastic uncertainty.

1.2 Overview

Optimization of action sequence under uncertainty, and
risk allocation.

When planning action sequence under uncertainty, there is al-
ways a risk of failure that should be avoided. However, in many
cases, performance can be improved only by taking extra risk. We
can reach a destination faster by driving at a faster speed and ac-
cepting a higher risk of an accident. Hannibal, a Carthaginian mil-
itary commander in the third century B.C., was able to frustrate
the Roman army by taking the great risk of crossing the Alps with
50,000 troops. As seen in these examples, risk and performance
are in a trade-off relationship. In other words, risk is a resource
that can be spent to improve the performance of the system.

Without taking any risk, nothing can be done; however, no one
dares to take unlimited risk. Although the sensitivity for risk varies
from person to person, everyone somehow balances risk and per-
formance to find the optimal action sequence.

There are three main ways to formulate the trade-off problem of
risk and performance; the first is to set a negative utility for failure
(i.e. penalty), and maximize the expected total utility (the utili-
tarian approach, such as MDP [2][11][12]); the second is to set
upper bound on risk and maximize performance within this bound
[13][16]; the third is to set lower bound on performance and min-
imize risk. It is up to the user to choose which formulation to use
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Goal

Walls

Planned path

Figure 1: Risk allocation in a race car path planning scenario.
A large portion of risk is allocated to the corner, since taking
a risk (approaching the wall) at corner results in greater time
saving than taking the same risk along straightaway.

according to her needs and requirements.
Our focus is on the second approach: performance maximization

with an upper-bound on risk. An example problem is to drive a
car as fast as possible while limiting the probability of a crash to
0.01%. This formulation is particularly useful for optimal planning
and control problems that involve high-impact low-probability risk
such as loss of life.

With this formulation, [13] showed that we should optimize not
only the sequence of actions but also therisk allocationin order to
maximize the performance under a risk bound .

The example shown in Figure 1 illustrates the concept of risk al-
location. A race car driver wants to plan a path to get to the goal
as fast as possible. However, crashing into the wall leads to a fatal
accident, so he wants to limit the probability of a crash to 0.01%.
An intelligent driver would plan a path as shown in Figure 1, which
runs mostly in the middle of the straightaway, but gets close to the
wall at the corner. This is because taking a risk (i.e. approaching
the wall) at the corner results in a greater time saving than taking
the same risk along the straightaway; in other words, the utility of
taking risk is greater at the corner than the straightaway. Therefore
the optimal path plan allocates a large portion of risk to the corner,
while allocating little to the straightaway. As illustrated by this ex-
ample,risk allocationneeds to be optimized across the constraints,
in order to maximize the performance.

The optimal controller then needs to generate an optimal action
sequence that abides to the allocated risk at each constraint.

Risk allocation for multi-agent system.
Past work on risk allocation [6][13][14] focused on single agent

problems.
In this work we extend the concept of risk allocation to multi-

agent systems. Figure 2 shows an example of a multi-agent system
with two unmanned air vehicles (UAVs), whose mission is to extin-
guish a forest fire. A water tanker drops water while a reconnais-
sance vehicle monitors the fire with its sensors. The loss of either
vehicle results in a failure of the mission. Two vehicles are required
to extinguish the fire as efficiently as possible, while limiting the
probability of mission failure to a given risk bound, say, 0.1%. The
water tanker can improve efficiency by flying at a lower altitude,
but it involves risk. The reconnaissance vehicle can also improve
the data resolution by flying low, but the improvement of efficiency
is not as great as the water tanker. In such a case a plausible plan
is to allow the water tanker to take a large portion of risk by flying
low, while keeping the reconnaissance vehicle at a high altitude to
avoid risk. This is because the utility of taking risk (i.e. flying low)

Forest fire

Water tanker

Reconnaissance vehicle

Figure 2: Risk allocation for multi-UAV fire-fighting system.
The water tanker is allowed to fly low since it is allocated larger
risk than the reconnaissance vehicle.

is greater for the water tanker than for the reconnaissance vehicle.
The optimal risk allocation for multi-agent systems can be found

by applying the same algorithm as the single agent problems, such
as [6][13][16], with extended state variable that include all agents.
However, this approach requires centralized computation, which
has an issue of scalability.

In this paper we propose a noveldecentralizedalgorithm that
finds the globally optimal risk allocation among multiple agents.

Market-based risk allocation using tâtonnement.
Our approach is to use the market-based mechanism. In a com-

putational market each agent demands risk in order to improve its
own performance. However, it cannot take risk for free; it has to
purchase it from the market at a given price.

Agents are price takers. Given the price, each agent computes
the optimal amount of risk to take (i.e.,demand for risk) by solving
the optimization problem where the objective function is the sum-
mation of the original cost function and the payment for the risk.
The optimal action sequence and the internal risk allocation are
also determined by solving the optimization problem, just as in the
single-agent case described before. The demand from each agent
can be seen as a function of the price of risk (demand curve). Typ-
ically, the higher the price is, the less each agent demands. Each
agent has a different demand curve according to its sensitivity to
risk. On the other hand, the supplier of the risk is the user. She
supplies the fixed amount of risk by specifying the upper-bound of
risk the system can take.

The price must be adjusted so that the total demand (aggregate
demand) becomes equal to the supply. The equilibrium price is
found by an iterative process calledtâtonnementor Walrasian auc-
tion [17] as follows:

• Increase the price if aggregate demand exceeds supply,

• Decrease the price if supply exceeds aggregate demand,

• Repeat until supply and demand are balanced.

In classical tâtonnement, the price increment is obtained by simply
multiplying the excess aggregate demand by a constant. However,
the upperbound of the constant that guarantees the convergence
is specific to a problem, and is hard to find. Slow convergence
speed is also an issue. Our method obtains the price increment in
each iteration by computing one step of Brent’s method, which is
a commonly-used root-finding algorithm with fast and guaranteed
convergence [1].

Figure 3 gives the graphical interpretation of the market-based
risk allocation in a system with two agents. Agent 1 and Agent 2
have different demand curves, since their utility of taking the same

58



D1(p)

P
ri

c
e

Quantity D, S

D2(p)

S

p* D1(p)+D2(p)

Aggregate 

demand curve

S
u

p
p

ly
 c

u
rv

ep

Demand from 

Agent 2

Demand from 

Agent 1

Figure 3: Market-based risk allocation in a system with two
agents. Note that we followed the economics convention of plac-
ing the price on the vertical axis. The equilibrium price is p?,
and the optimal risk allocation is ∆?
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?) for Agent 1 and
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?) for Agent 2.

risk is different. The aggregate demand curve is obtained by adding
the two demand curves horizontally. The supply curve is a vertical
line since it is constant. The equilibrium pricep? lies at the inter-
section of the aggregate demand curve and the supply curve. The
optimal risk allocation for the two agents corresponds to their de-
mands at the equilibrium price (∆?

1 and∆?
2 in Figure 3).

It is proven in a later section that the performance of the entire
system is maximized at the equilibrium price, although each agent
only maximizes its own utility. The only information that each
agent needs to communicate in each iteration is price and demand,
both of which are a scalar value. These are desirable features for
distributed systems.

MIRA - Decentralized optimization of risk allocation.
Our proposed algorithm, MIRA (Market-based Iterative Risk Al-

location), optimizes risk allocation between agents, internal risk
allocation of each agent, and action sequences of each agent con-
currently.

Figure 4 illustrates the Market-based Iterative Risk Allocation
(MIRA) algorithm. The tâtonnement process is repeated until it
converges to the equilibrium price. Risk is not allocated until the
algorithm converges. The optimal action sequence and the internal
risk allocation are also obtained as the by-product of the demand
optimization problem (Step 2 in the Figure 4).

Figure 5 shows how MIRA algorithm breaks down the risk for
individual constrains in each agent. The risk bound for the sys-
tem is given by the user (A). Risk is optimally allocated to agents
through tâtonnement (B). Each agent optimizes internal risk allo-
cation when computing the demand in each iteration of MIRA (C).
At the same time, the action sequence is optimized according to the
internal risk allocation (D).

1.3 Related Work
MDP-based algorithms have been mainly used to solve multi-

agent planning problems under uncertainty in discrete domains [2]
[11][12]. M-DPFP algorithm proposed by [9] can solve problems
with continuous resources. Our problem formulation is different
from MDP-based approaches in that we set an upper bound on risk
(chance constraint) and maximize performance within this bound,
instead of maximizing utility. Also, our focus is on the problem
with continuous state and action space.

Optimal control under uncertainty with chance constraint is in-
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Figure 4: Illustration of MIRA algorithm. Risk is allocated to
agents through tâtonnement; their continuous action sequences
are also optimized in the loop when computing the demand at
the given price.
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Figure 5: Distribution of risk in MIRA algorithm.

tensively researched in the robust model predictive control (RMPC)
community. Due to the difficulty of handling the chance constraint
analytically, past work used either a very conservative bound that
resulted in large suboptimality [5][19], or a sample-based method
[4] that is computationally inefficient. Based on the pioneer work
by [16] that proposed the conservative approximation of chance
constraint by decomposing it into multiple atomic chance constraints,
[13] introduced the concept of risk allocation, and developed Iter-
ative Risk Allocation (IRA) algorithm that can optimize risk allo-
cation efficiently, with substantially smaller suboptimality than the
past work [14].

Market-based approach has recently been recognized as an ef-
fective tool for distributed multi-agent systems in AI community.
Although tâtonnement has drawn less attention than auctions, it has
been successfully applied to various problems such as the distribu-
tion of heating energy in an office building[20], control of electri-
cal power flow[7], and resource allocation in communication net-
works[8]. In economics, a simple linear price update rule has long
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been the main subject of study, but the convergence of price can
only be guaranteed under a quite restrictive condition[17]. In or-
der to substitute the linear price update rule, various root-finding
methods have been employed in agent-based resource allocation
algorithms, such as the bisection method[21], Newton method[22],
and Broyden’s method[20]. However, in general, it is difficult to
guarantee quick and stable convergence to the equilibrium price.
We employ Brent’s method [1] to provide guaranteed convergence
with a superlinear rate of convergence by exploiting the fact that a
risk, which is treated as a resource in our problem formulation, is a
scalar value.

2. RISK ALLOCATION FOR
SINGLE-AGENT SYSTEMS

We will first briefly review the mathematical formulation of risk
allocation. Our focus on this paper is a problem with continuous
state space, although the concept of risk allocation can be used for
discrete/hybrid systems [13].

2.1 Formulation

Optimization of action sequence under uncertainty.
We formulate an optimization problem with a chance constraint

as follows:

min
u1:T

J(u1:T ) (1)

s.t. ∀t xt+1 = Axt +But +wt (2)

∀t umin ≤ ut ≤ umax (3)

Pr

[
T∧

t=0

Nt∧
n=1

gt,n(xt) ≤ 0

]
≥ 1 − ∆ (4)

wherext andut are the state vector and action (control input) vec-
tor at thetth time step, respectively. The disturbancewt and the
initial state estimationx0 have Gaussian distributions with known
mean and variance. Although we focus on Gaussian-distributed un-
certainty in this paper for simplicity, our algorithm can be applied
to any stochastic uncertainties with quasi-concave distribution. We
assume thatJ(·) andgt,n(·) are convex functions.

A discrete-time stochastic dynamics model of the system is given
as (2)(3), and state constraints are imposed as (4). Since violation
of any state constraint at any time step is regarded as a mission
failure, the probability of satisfying all constraints at all time steps
must be more than1−∆, where∆ is the upper bound of the prob-
ability of failure (risk bound). Given a risk bound∆, the action
sequenceu1:T := [u1 · · ·uT ]T that minimizes the costJ in (1)
is obtained as an output by solving the optimization problem. In
other words, the user can adjust the risk averseness of the system
by specifying the risk bound∆.

Decomposition of chance constraint.
The chance constraint (4) is hard to evaluate since it involves a

probability defined on a multi-dimensional distribution. We de-
compose this constraint into multiple atomic chance constraints
that only involve a single-dimensional distribution, using the fol-
lowing Boole’s inequality:

Pr

[∪
i

Ai

]
≤
∑

i

Pr [Ai] (5)

Observe that, using Boole’s inequality (5), following condition (6),
together with (7), implies the original chance constraint (4).

∀(t,n) Pr [gt,n(xt) ≤ 0] ≥ 1 − δn
t (6)

T∑
t=1

Nt∑
n=1

δn
t ≤ ∆ (7)

∀(t,n) δn
t ≥ 0 (8)

Therefore, the original chance constraint (4) can be replaced with
(6) and (7). Since we introduced new variablesδn

t , the costJ in (1)
needs to be optimized overδn

t as well as the sequence of actions
u1:T :

min
δ,u1:T

J(u1:T ) (9)

whereδ =
[
δ1
0 δ2

0 · · · δNT −1
T δNT

T

]T

.

We now have the revised constrained optimization problem de-
fined by (9) with constraints (2)(3)(6)(7).

2.2 Risk allocation
The newly introduced variableδ is the mathematical representa-

tion of risk allocation. In (6), each single constraint at each time
step has its own risk boundδn

t ; in other words,δn
t is the amount of

risk allocated to thenth constraint at thetth time step. Eq.(7) states
that the summation of all individual risk bound is upper-bounded by
the original risk bound∆; therefore risk is regarded as a resource
with total amount∆. In order to obtain the maximum performance
(minimum cost), the risk allocation needs to be optimized (9), just
as resource allocation problems.

The risk allocation optimization problem can be solved efficiently
by a two-stage algorithm called Iterative Risk Allocation (IRA)
[14]. Alternatively it can also be solved by a single shot optimiza-
tion [6]. We employ the latter approach in this work.

3. DECENTRALIZED RISK ALLOCATION
FOR MULTI-AGENT SYSTEMS

We first formulate the optimization problem under uncertainty
for multi-agent systems in a centralized manner, and then derive the
decentralized formulation using Karush-Kuhn-Tucker (KKT) con-
ditions of optimality. We will then observe that economic concepts
such as price, demand, and supply appear in the resulting formula-
tion.

3.1 Formulation

Optimization of action sequence under risk for multi-
agent system.

In a multi-agent system such as the UAV fire fighting system
illustrated in Figure 2, the failure of one agent leads to a failure of
the entire system. In a manned system, loss of one crew member is
regarded as a failure of the mission. Therefore the user wants to set
an upper-bound on the probability of having at least one agent fail.

With the same discussion as in the previous section, the follow-
ing bound is obtained by using Boole’s inequality (5):

I∑
i=1

∆i ≤ S (10)

where∆i is the upper bound on the probability of failure of the
ith agent,I is the number of agents in the system, andS is the
upper bound on the probability of failure of the entire system (i.e.
the total amount of risk the entire system is allowed to take). Note
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that∆ was a given constant in the single-agent case (4)(7), but now
each∆i is a decision variable, whileS is the new given constant,
which is specified by the user.

The performance (cost) of the entire system is defined as the sum
of the performance (cost) of all individual agents:

Jsys =
∑

i

Ji(ui,1:T ) (11)

The optimal control problem under risk for multi-agent systems
is formulated as a constrained optimization problem of minimizing
(11), subject to the constraints (2)(3)(6)(7) for each agent, and (10).

To simplify this formulation, we define a function1 J?
i (∆i), which

is equal to the minimized cost for theith agent obtained by solving
the constrained optimization problem for a single agent (9)(2)(3)(6)(7)
given∆i:

J?
i (∆i) = J(u?

i,1:T )

whereu?
1:T is the solution to the single agent optimization problem

given ∆i. An important fact is that functionJ?
i (∆i) is a convex

function. See Appendix of [15] for the proof.
Using J?

i (∆i), the optimization problem can be rewritten in a
simple form as follows:

min
∆1:I

I∑
i=1

J?
i (∆i) (12)

s.t.
∑

i

∆i ≤ S (13)

This formulation describes a centralized approach where the ac-
tion sequences and risk allocations of all agents are planned in a
single optimization problem. We will next derive the decentralized
formulation using the KKT conditions of optimality.

Decentralized optimization.
We build upon the resource allocation algorithm proposed by

[20], with an modification of using the KKT conditions for opti-
mality instead of the method of Lagrange multipliers, since risk
(resource) is bounded by inequality (13) in our problem formula-
tion.

The KKT conditions of the optimization problem (12)(13) are:2

dJ?
i

d∆i

∣∣∣∣
∆?

i

+ p = 0 (14)∑
i

∆?
i ≤ S (13)

p ≥ 0 (15)

p

(∑
i

∆?
i − S

)
= 0 (16)

wherep is the Lagrange multiplier corresponding to the constraint
(13). This is the necessary and sufficient condition for optimality,
sinceJ?

i (∆i) is convex.

1It is often not possible, and not necessary as well, to obtain the
functionJ?

i (∆i) in a closed form; in practiceJ?
i (∆i) is evaluated

simply by solving the optimization problem (9)(2)(3)(6)(7), with
an extra termp∆i added to the objective function (9).
2We assume the differentiability ofJ?

i (∆i) here; in fact, since
J?

i (∆i) is a convex function, it is continuous and differentiable at
all but at most countably many points in its domain; we can obtain
the same result for the points where it is not differentiable by using
extended KKT condition with subgradient.

Observe that (14) is also the optimality condition for the follow-
ing unconstrained optimization problem:

min
∆i

J?
i (∆i) + p∆i (17)

Therefore solving the optimization problem (12) and (13) is equiv-
alent to solvingI independent optimization problems (17) with
common parameterp, which is determined by (13), (15), and (16).
Since (17) contains only the variables related to theith agent, it
can be solved by each agent in a decentralized manner. Each agent
optimizes its internal risk allocationδ (Figure 5-C) and action se-
quenceu1:T (Figure 5-D) by solving (17).

3.2 Economic Interpretation
The economic interpretation of these mathematical manipula-

tions becomes clear by regarding the Lagrange multiplierp as the
price of risk. Each agent can reduce the cost (i.e. improve the per-
formance) by taking more risk∆i, but not for free. Note that a new
termp∆i is added to the cost function (17). This is what the agent
has to pay to take the amount of risk∆i. The agent must find the
optimal amount of riskDi(p) to minimize the cost plus payment,
by solving the optimization problem (17) with a given pricep:

Di(p) = arg min
∆i

J?
i (∆i) + p∆i. (18)

In other words,Di(p) is the amount of risk theith agent wants to
take at the given price of riskp. ThereforeDi(p) can be interpreted
as theith agent’sdemand for risk. On the other hand, the total
amount of riskS can be interpreted as thesupply of risk.

The optimal pricep? must satisfy the KKT conditions (13), (15),
and (16), with the optimal demands at the price∆?

i = Di(p
?).

Such a pricep? is called theequilibrium price.
The condition (16) illustrates the relation between the equilib-

rium pricep?, optimal demand∆?
i , and supplyS; in the usual case

where the equilibrium price is positivep? > 0, the aggregate de-
mand

∑
i ∆?

i must be equal to the supplyS; in a special case where
the supply always exceeds the demand for allp ≥ 0, the optimal
price is zerop? = 0. If the aggregate demand always exceeds the
supply for allp ≥ 0, there is no solution that satisfies the primal
feasibility condition (13), and hence the problem is infeasible. See
Figure 3 for the graphical interpretation.

3.3 Global Optimality
The optimal risk allocation to each agent is equal to its demand

for risk at the equilibrium price. This is the globally optimal solu-
tion since all the KKT conditions for optimality (13)-(16) are sat-
isfied at the equilibrium price. If the supply always exceeds the
demand for allp ≥ 0, the demand atp = 0 is the globally optimal
risk allocation.

Therefore, we must find the equilibrium pricep? that satisfies
(13)(15)(16) in order to solve the optimization problem. The next
section discusses how MIRA finds such an equilibrium price.

4. TÂTONNEMENT: PRICE ADJUSTMENT
MECHANISM

We employ an iterative process called tâtonnement to find the
equilibrium price: initialize the price with arbitrary value, and up-
date it in each iteration according to the excess demand (supply)
until the demand and supply are balanced (Figure 4).

In the real world economy the demand for a good is typically a
monotonically decreasing function of price (people want more if
price is less). This is also the case in our computational economy.
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By differentiating (14),

dp

dDi
= −d2J?

i

d∆2
i

∣∣∣∣
∆i=Di

≤ 0 (19)

The inequality comes from the fact thatJ?
i (∆i) is a convex func-

tion (See the Appendix of [15] for proof). Since demand is mono-
tonically decreasing, the equilibrium price found by tâtonnement is
the sole and globally optimal equilibrium.

The price is updated in each iteration (Step 3 of Figure 4). The
price update rule must be carefully chosen for quick and stable con-
vergence to the equilibrium. In the following subsections we inves-
tigate two update rules: linear increment and Brent’s method [1].

4.1 Linear Price Increment
The following simple price update rule is most extensively ex-

plored in the economics literatures:

pk+1 = max

{
pk + c

(∑
i

Di(pk) − S

)
, 0

}
(20)

wherepk is the price in thekth iteration.
With this update rule, the price is guaranteed to converge forsuf-

ficiently smallc > 0, if a condition called gross substitutability is
satisfied [17]. Although this update rule is commonly studied, it has
three issues when computing the equilibrium. First, the condition
for convergence (gross substitutability) is very restrictive. Second,
the constant parameterc is specific to a problem, and it is very
hard to obtain the upper bound for which the convergence is guar-
anteed. Third, the convergence is slow. In our case, where there
is a single kind of resource (risk) exchanged in the market, gross
substitutability3 is implied by the decreasing monotonicity of the
demand function. However, the other two issues still exist in our
case. We solve these issues by applying Brent’s method.

4.2 Brent’s method
Mathematically, tâtonnement can be seen as a process of finding

a root of the excess demand function:
∑

i Di(p) − S.
Brent’s method is a root-finding algorithm that achieves quick

and guaranteed convergence, by combining three methods: the bi-
section method, the secant method, and inverse quadratic interpola-
tion [1]. Another important feature of Brent’s method is that it does
not require the derivative ofDi(p), which is very hard to obtain.

As far as we know, there is only one past work [23] that applies
Brent’s method to find the equilibrium price, but in economics lit-
erature; no past research has applied Brent’s method to resource
allocation problems.

This is probably because Brent’s method can only take a scalar
variable, while resource allocation algorithms typically deal with
multiple resources (i.e. vector). However, in arisk allocation prob-
lem, risk is always a scalar value. Therefore Brent’s method can
efficiently and reliably find the equilibrium price of risk. It is pos-
sible to extend our algorithm, MIRA, to solve multi-resource allo-
cation problems by using a generalization of Brent’s method[10]
or by decomposing the market so that each market deals with only
one kind of resource[21]. However, such extensions of MIRA are
out of the scope of this paper.

4.3 MIRA algorithm
Algorithm 1 shows the entire flow of the MIRA algorithm. MIRA

has a distributed part and centralized part. The computation of de-
3In the general equilibrium theory, money is also treated as a goods;
therefore, in our case, the gross substitutability is defined as the
substitutability between risk and money.

mand (Line 5) is distributed to each agent; by solving (18), each
agent obtains the optimal demand at the price given by Line 4, as
well as its optimal sequence of actions (ui,1:T ). The computation
of price (Line 7) is centralized; the auctioneer collects the demands
from all agents (Line 6), and updates the price using Brent’s method
according to the excess demand/supply. One of the agents plays the
role of the auctioneer.

The computation time of the centralized part is substantially shorter
than the distributed part. For example, in the fire-fighter UAV sce-
nario with two agents (see Section 5.1), the computation time of
the distributed part is 13.8 seconds while the centralized part takes
only 0.046 seconds. Moreover, the number of agents does not influ-
ence the computation time of centralized part much, since Brent’s
method only takes theaggregatedemand (i.e. the summation of the
demands of all agents). Therefore, the centralized part of MIRA
does not harm the scalability of the algorithm.

The communication requirements between agents are small; in
each iteration, each agent receives a price (Line 4) and transmits its
demand (Line 6), both of which are scalars.

The centralized part of the algorithm can be distributed by mak-
ing all individual agents conduct the same computation of price up-
date simultaneously. In such case the demands of all agents must
be shared with all agents, while price needs to be shared only at the
first iteration. Although we can remove the centralized auctioneer
in this way, there is no advantage in terms of computation time.

5. SIMULATION
We implemented MIRA in Matlab. Non-linear optimization solver

SNOPT is used to compute the demandDi(p), and the Matlab im-
plementation of Brent’s method (fzero) is used to find the equi-
librium pricep?. Simulations were conducted on a machine with
Intel(R) Core(TM) i7 CPU clocked at 2.67 GHz and 8GB RAM.

5.1 Validity
We tested MIRA on the multi-UAV altitude planning problem for

the fire-fighting scenario (Figure 2). Figure 6 shows the simulation
result. Two vehicles fly at the constant horizontal speed, starting
from d = 0 at altitude0.5. The mission is to extinguish the fire at
d = 6, 7. Both vehicles minimize the flight altitude above the fire,
although the water tanker is given 100 times more penalty (cost) of
flying at high altitude than the reconnaissance vehicle. Both have
uncertainty in altitude, so flying at lower altitude involves more
risk. The total risk must be less than 0.1%.

The optimal plan allocates 99.2% of the total risk to the water
tanker, while only 0.8% to the reconnaissance vehicle. This is be-
cause the utility of taking risk (i.e. flying low) is larger for the water
tanker than for the reconnaissance vehicle. As a result, the water
tanker flies at a lower altitude.

Both vehicles optimize the internal risk allocation as well. For

Algorithm 1 Market-based Iterative Risk Allocation
1: Fix S; //Total supply of risk
2: Initializep; //Price of risk
3: while |

∑
i Di(p) − S| > ε andp > 0 do

4: Auctioneer announcesp;
5: Each agent computes its demand for riskDi(p) by solving

(18);
6: Each agent submits its demand to the auctioneer;
7: The auctioneer updatesp by computing one step of Brent’s

method;
8: end while
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Figure 6: Simulation result of flight altitude planning prob-
lem for multi-UAV fire-fighting scenario (see Figure 2). Upper
graph: Optimized altitude profile; Lower graphs: Internal risk
allocation of each vehicle.

example, the water tanker takes 99.9% of the allocated risk above
the fire, atd = 6 and7 (the middle graph in Figure 6).

The optimal action sequence is planned according to this risk
allocation; both vehicles dive before the fire, and climb as fast as
possible, after they pass the fire (the top graph in Figure 6). This
is because there is no benefit of conducting risky low-altitude flight
before and after the fire.

These results conform with intuition. The optimality of MIRA
is validated by the result that the difference in the optimized cost
between MIRA and the centralized algorithm is less than 0.01%,
which is accounted by numerical error.

5.2 Efficiency
In order to evaluate the efficiency of the MIRA algorithm, the

computation times of the following three algorithms are compared:
1) centralized optimization, 2) decentralized optimization with the
linear price update rule (classical tâtonnement), and 3) the pro-
posed algorithm, MIRA, which is a decentralized optimization with
Brent’s method.

Table 1 shows the result. The three algorithms are tested with
different problem sizes - two, four, and eight agents. Each algo-
rithm is run 10 times for each problem size with randomly gener-
ated constraints. The parameterc is set so that the price converges
in most problems. The average running time is shown in the ta-
ble. The computation of the distributed algorithms was conducted
parallelly. Communication delay is not included in the result.

The computation time of the centralized algorithm quickly grows
as the problem size increases. Decentralized optimization with a
linear price increment is even slower than the centralized algorithm,
although the growth rate of computation time is slower.

MIRA, the proposed algorithm, outperforms the other two for
all problem sizes. The advantage of MIRA becomes clearer as the
problem size increases.

A counterintuitive phenomenon observed in the result is that

Table 1: Comparison of the computation time of three opti-
mization algorithms. Values are the average of 10 runs with
randomly generated constraints.

Computation time [sec]

Number of
agents Centralized

Decentralized
(linear update) MIRA

2 13.9 80.6 6.4
4 63.8 540.5 18.1
8 318.5 797.8 37.5
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Figure 7: Convergence of different price update methods for
tâtonnement

the decentralized algorithms (MIRA and decentralized optimiza-
tion with linear increment) also slow down for large problems, al-
though not as significantly as the centralized algorithm. This is
mainly because the iterations of tâtonnement must be synchronized
among all agents. When each agent computes its demand for risk
by solving the non-linear optimization problem, the computation
time diverges from agent to agent, and from situation to situation.
In each iteration of tâtonnement, all agents must wait until the slow-
est agent finishes computing its demand. As a result, tâtonnement
process slows down for large problems, as the expected computa-
tion time of the slowest agent grows.

5.3 Convergence
Figure 7 shows the convergence of different price update algo-

rithms for tâtonnement on a problem with four agents. Three algo-
rithms are compared: Brent’s method, which is employed by our
proposed algorithm MIRA, the bisection method, which is used by
WALRAS [21], and the linear price update. The linear price update
is tested with three different settings of the parameterc in (20).

It is empirically shown from the result that increasingc makes
the linear price update method faster, but it diverges whenc is too
large. The upperbound ofc that guarantees the convergence is spe-
cific to a problem, and hard to obtain. Brent’s method achieves
the fastest converges among the three methods. Its convergence is
guaranteed without parameter tunings.

5.4 Used Parameters
The horizontal speed of the vehicles is 1 per time step. Hence,

d = t. The planning window is1 ≤ t ≤ 10. Other parameters are
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set as follows:

A =

[
1 1
0 1

]
,B =

[
0.5
1

]
,x0 =

[
0.5
0

]
,

umin = −0.2, umax = 0.2, gt(xt) = − [1 0]xt + lt

wt is sampled from zero-mean Gaussian distribution with variance

Σw =

[
0.001 0

0 0

]
.

lt is the ground level att. It is set at zero in the fire-fighter UAV
scenario, and randomly generated for the evaluation of computation
time. The cost functions are

JW = E [[100 0] (x6,W + x7,W )]

JR = E [[1 0] (x6,R + x7,R)]

in Section 5.1 (subscriptW andR indicate the water tanker and the
reconnaissance vehicle respectively), and

Ji = E

[[
1 0

]
(

10∑
t=1

xt,i)

]
in Section 5.2 and 5.3. Note that the expectation ofxt is a function
of u1:t−1. ThereforeJ is a function ofu1:T .

6. CONCLUSION
We have developed Market-based Iterative Risk Allocation (MIRA),

a multi-agent optimization algorithm that operates within user-specified
risk bounds. It was built upon the concept of risk allocation. The
key innovations presented in the paper include 1) extension of the
concept of risk allocation to multi-agent system, 2) decentralized
formulation of the multi-agent risk allocation optimization prob-
lem using market-based method, and 3) introduction of Brent’s
method to tâtonnement-based resource allocation algorithm. The
simulation result showed that MIRA can optimize the action se-
quence of the multi-agent system by optimally distributing risk. It
achieved substantial speed-up compared to centralized optimiza-
tion approach, particularly in a large problem.
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