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Abstract

We present a mathematical model for the cognitive operation of conceptual
blending that aims at being uniform across di↵erent representation formalisms,
while capturing the relevant structure of this operation. The model takes its in-
spiration from amalgams as applied in case-based reasoning, but lifts them into
the theory of categories so as to follow Joseph Goguen’s intuition for a math-
ematically precise characterisation of conceptual blending at a representation-
independent level of abstraction. We prove that our amalgam-based category-
theoretical model of conceptual blending is essentially equivalent to the pushout
model in the ordered category of partial maps as put forward by Joseph Goguen.
But unlike Goguen’s approach, our model is more suitable for a computational
realisation of conceptual blending, and we exemplify this by concretising our
model to computational conceptual blends for various representation formalisms
and application domains.

Keywords: conceptual blending, computational creativity, amalgams,
category theory, case-based reasoning

1. Introduction

Fauconnier and Turner proposed conceptual blending as a fundamental cog-
nitive operation underlying much of everyday thought and language [1, 2]. They
described it as the process by which human cognition combines particular el-
ements and relations of originally separate input mental spaces—“small con-
ceptual packets constructed as we think and talk”—that share some common
structure, into a blended space, in which new elements and relations emerge,
and novel inferences can be drawn. Turner even goes a bit further and claims
that our capacity for creating new ideas at a pace that completely outstrips any
process of evolutionary change, and which ultimately has led to human culture,
arises from our advanced ability to blend ideas, to make new ideas out of old
ones, to do conceptual blending [3].

The cognitive, psychological and neural basis of conceptual blending has
been extensively studied [2, 4, 5], and Fauconnier and Turner’s theory has been
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successfully applied for describing existing blends of ideas and concepts in a
varied number of fields such as linguistics, music theory, poetics, mathemat-
ics, theory of art, political science, discourse analysis, philosophy, anthropology,
and the study of gesture and of material culture [6]. Nevertheless, the theory
of conceptual blending has only been used in a constrained way for implement-
ing creative computational systems. The reason for this is that Fauconnier and
Turner did not aim at a computational model of conceptual blending, and thus
they did not develop the su�cient details for this cognitive operation to be cap-
tured algorithmically. Still, their theory o↵ers a useful framework for studying
creative thinking using a computational approach and that is the reason why a
number of researchers in the field of Computational Creativity have recognised
the potential value of conceptual blending for guiding the implementation of
creative systems [7–12].

These existing computational realisations of blending attempt to concretise
some of Fauconnier and Turner’s insights, and the resulting systems have shown
interesting and promising results in creative domains such as interface design
[13], narrative style [14], poetry generation [15], or visual patterns [10]. All
of these accounts, however, are customised realisations of conceptual blending,
which are strongly dependent on hand-crafted representations of domain-specific
knowledge, and are limited to very specific forms of blending. A major obstacle
for a general account of computational conceptual blending is the lack of a
mathematically precise theory that is suitable for the rigorous development of
creative systems based on conceptual blending.

The original attempt to provide both a general and mathematically precise
account of conceptual blending has been put forward by Joseph Goguen, ini-
tially as part of algebraic semiotics [16], and later in the context of a wider
theory of concepts [17]. Based on the notion of ‘pushout’ in category theory,
Goguen provided the core definitions of his theory and illustrated them on sev-
eral examples, showing the aptness of this approach for formalising information
integration [18] and reasoning about cognitive space and time [19]. As it stands,
though, Goguen’s account is still quite abstract and lacks concrete algorithmic
descriptions. Still, there are two reasons that make it an appropriate candi-
date theory on which to ground the formal model we are aiming at: First, it
is an important contribution towards the unification of several formal theories
of concepts, including the geometrical conceptual spaces of Gärdenfors [20], the
symbolic mental spaces of Fauconnier [21], the information flow of Barwise and
Seligman [22], the formal concept analysis of Ganter and Wille [23], and the
lattice of theories of Sowa [24]. This makes it possible to potentially draw from
existing algorithms that have already been developed in the scope of each of
these frameworks. Second, it covers any formal logic, even multiple logics, sup-
porting thus the integration and processing of concepts under various forms of
syntactic and semantic heterogeneity. This is important, since we cannot assume
the input spaces of the blending process to be represented in a homogeneous
manner across diverse domains. Current tools for heterogeneous specifications
such as Hets [25] allow parsing, static analysis and proof management incor-
porating various provers and di↵erent specification languages.
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In this article we present a novel mathematical theory of conceptual blending
that has its origin in the notion of ‘amalgam’ in a lattice of generalisations as
proposed in case-based reasoning (CBR) [26]. Amalgams model the combination
of two cases into new ‘blended’ cases to be used in the CBR problem-solving
process. As such, the notion of ‘amalgam’ seems to be related with, but not
identical to, conceptual blends. Both are based on the idea of combining or
fusing two or more di↵erent sources into a new entity that encompasses selected
parts of the original sources; but they di↵er in the assumptions on the entities
upon which they applied: amalgams combine ‘cases’ (expressed as terms in some
formal language), while conceptual blends combine ‘mental spaces.’

The theory we propose here is a generalisation of the original notion of ‘amal-
gam’ from CBR, so as to constitue a valid alternative to Goguen’s mathematical
theory of conceptual blending. It turns out, though, that our proposal actu-
ally has a deep connection with Goguen’s one, but unlike his original attempt,
our amalgam-based theory is more amenable to be implemented in computa-
tional systems. By developing a formal, amalgam-based model of conceptual
blending, we ultimately aim at providing general principles that may guide the
design of computational systems capable of inventing new higher-level, more
abstract concepts and representations out of existing, more concrete concepts
and interactions with the environment; and to do so based on the sound reuse
and exploitation of existing computational implementations of closely related
models such as those for analogical and metaphorical reasoning [27], semantic
integration [28], or cognitive coherence [29]. With such a formal, but compu-
tationally feasible, model we shall contribute to further bridge the existing gap
between the cognitive and theoretical foundations of conceptual blending, and
its computational realisation.

A preliminary version of our model was developed in the context of the EU
project COINVENT [30] as described in [31]. The present article, however,
extends significantly the explanation to be found in that book chapter by pre-
senting a more mature and detailed description of our mathematical model.
First, we situate our model in the wider context of the various category-theory
approaches that have been proposed for the study of human cognition (Sec-
tion 2). Next, we give the basic intuitions behind modelling conceptual blending
in category theory (Section 3) and provide our core model of conceptual blends
as amalgams, lifted into the appropriate category (Section 4). Then, we show
particular exemplifications of our framework that illustrate how blends are com-
puted by means of amalgams (Section 5). Finally, we close the article with a
discussion on related work (Section 6) and with our conclusions and reflections
about possible future work (Section 7).

2. Category-Theory Approaches to Human Cognition

Category theory was initially developed out of algebraic topology with the
objective of describing certain relationships between di↵erent mathematical en-
tities [32]. Soon, however, its focus on structure-preserving relationships rather
than on the structure of the entities under study proved the theory to be very
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valuable as conceptual tool for modelling and relating many other fields of math-
ematics [33], and to further elucidate fundamental relationships of concepts be-
yond mathematics, in other scientific disciplines such as computer science [34]
and physics [35].

The application of category theory to the life and cognitive sciences goes as
far back as to Rosen’s proposal to model biological systems using the theory
of categories and functors [36]. Halford and Wilson used the notion of ‘com-
mutative diagram’ from category theory to define the appropriate application
of symbolic processes to a particular segment of the environment at di↵erent
stages of cognitive development [37]. Magnan and Reyes advocated for the
use of category theory to adequately describe human cognitive processes, such
as counting, as carried out by the human mind, in a way that avoids over-
determination [38]. In particular they claimed that universals of the mind may
be expressed by means of universal properties as postulated by the theory of
categories.

The last decade has seen a significant growth in the number of scientific
studies that have explored the suitability of category theory as conceptual tool
for the cognitive sciences. In the spirit of Magnan and Reyes’s account, Phillips,
Wilson and Halford have used categorical constructs with universal mapping
properties to explain why certain cognitive abilities that seem di↵erent (such as
transitive inference and class inclusion) turn out to be acquired at the same stage
of cognitive development. They claim it is because they happen to be modelled
with essentially the same kind of categorical construct—either a ‘product’ or a
‘coproduct’—and hence have the same structural complexity [39].

Furthermore, Phillips et al. highlight the value of the representation-indepen-
dence that underlies this approach:

Category theory o↵ers a potentially powerful approach to theo-
rizing about cognition by not having to presuppose an, as yet, un-
known internal structure for cognitive states representing task ele-
ments. [...] So, one is not required to make an a priori commitment
to, say, symbolic or subsymbolic computational processes. In this
sense, category theory complements more detailed (e.g., symbolic,
or connectionist) approaches to cognitive modelling. [39]

Using a category-theoretic approach, Phillips and Wilson have also put for-
ward a proposal to explain systematicity [40]—that cognitive capacities always
exhibit certain symmetries—by means of the notion of ‘adjunction,’ so as to
not require ad hoc assumptions as in classical or connectionist approaches [41–
43]. An abstract category-theoretical viewpoint based on universal construc-
tions also allowed them to establish a relationship with Gentner’s description of
systematicity as used in computational models of analogy [44], and to present
Fodor-Pylyshyn’s and Gentner’s accounts as “two sides of the same coin; two
aspects of a common principle, universal construction,” thus claiming that such
categorical construction is “a crucial component of cognitive architecture” [45].
As a consequence they also highlight the relationship with computation by way
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of a categorical treatment of recursion to implement an associative learning
method of systematicity [46].

Analogy has also been given a category-theoretic treatment by Arzi-Goncza-
rowski [47] in the particular context of artificial perception [48, 49]. It has
recently been studied in more detail by Navarrete and Dartnell, who presented
a category-theoretic model of analogy that uses the notion of ‘commutative
diagram’ to study the e↵ect of playing particular educational board games on the
learning of numbers, that of ‘coequaliser’ to formally model the re-representation
explaining ‘flexibility’ in analogy, and to further explain the acquisition of the
concept of rational numbers in learning [50].

On the neuronal level of cognition, Healy, Caudell et al. have proposed math-
ematical models of cognitive neuroscience and neural networks based on cate-
gory theory to address issues of human categorisation and similarity, and of
episodic memory [51–53]; whereas Gómez-Ramirez and Sanz have used “neural
categories” modelling the structural relationships and properties of place cells
and grid cells in the brain’s hippocampus to study complex cognitive abilities
such as memory, spatial perception and navigation by means of the notions
of ‘coproduct’ and ‘colimit’ [54, 55]. Ellerman has also advocated for using a
category-theoretic notion such as ‘adjunction’ to abstractly model the functions
of perception and action of a brain [56–58].

Finally, Ehresmann and Vanbremeersch developed a category-theoretic model
of Memory Evolutive Systems based on a hierarchy of complex components
with multiple temporalities, such as biological, neuro-cognitive, or social sys-
tems [59]. The model is based on a theory of ‘dynamic’ categories, to capture
the complexity, emergence and self-organisation of these systems. Ehresman and
Gómez-Ramirez have further proposed this model to conciliate neuroscience and
phenomenology [60].

The value of category theory in all these approaches to the modelling of
human cognition stems from the fact that:

Category theory tries to uncover and classify the main operations
of the “working mathematician;” [...] Mathematical activity, here,
reflects some of the main operation that humans do for making sense
of the world. [...] As all of these operations are at the root of our
mental life, and also of science, it quite naturally follows that cate-
gory theory can successfully applied to di↵erent scientific domains.
[60]

3. Modelling Blends with Category Theory

3.1. Conceptual Blending

Fauconnier and Turner describe conceptual blending as the process by which
two mental or conceptual spaces, whose structure can be put into correspon-
dence via a cross-space relation—which in turn evokes a generic space of common
structure—are combined to yield a new blended space, a composition done by
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selectively projecting substructure of each of the input spaces into the blend and
further adding emergent structure by a process of completion and elaboration.

The elements of blending are nicely exemplified by paying attention to the
cognitive process described by Koestler [61] for solving a brain-teaser first put
forward by Duncker [62], and later popularised by Gardner:

One morning, exactly at sunrise, a Buddhist monk began to climb
a tall mountain. The narrow path, no more than a foot or two
wide, spiralled around the mountain to a glittering temple at the
summit. The monk ascended the path at varying rates of speed,
stopping many times along the way to rest and to eat the dried fruit
he carried with him. He reached the temple shortly before sunset.
After several days of fasting and meditation he began his journey
back along the same path, starting at sunrise and again walking at
variable speeds with many pauses along the way. [...] Prove that
there is a spot along the path that the monk will occupy on both
trips at precisely the same time of day. [63]

Fauconnier and Turner [2] claim that, in the process recounted by Koestler
of how a young women managed to visualise the answer to the question posed by
this brain-teaser, she took her mental space of the monk ascending the mountain
on one day and the mental space of the same monk descending the mountain
on a later day, and blended them into a new mental space in which the monk
was at the same time ascending and descending the mountain:

I tried this and that, until I got fed up with the whole thing, but
the image of that monk in his sa↵ron robe walking up the hill kept
persisting in my mind. Then a moment came when, super-imposed
on this image, I saw another, more transparent one, of the monk
walking down the hill, and I realized in a flash that the two figures
must meet at some point some time — regardless at what speed
they walk and how often each of them stops. Then I reasoned out
what I already knew: whether the monk descends two days or three
days later comes to the same; so I was quite justified in letting him
descend on the same day, in duplicate so to speak. [61, p. 184]

Certain structure that the input spaces have in common is fused in the blend
(the mountain, the path treaded by the monk, the start of the monk’s journey
at sunrise and its completion at sunset) while other elements are kept separate
(the ascent from the mountain base to its summit and the descent from summit
to base). Even the monk itself, which is actually the same entity in both input
spaces, is not fused but kept separate, and two instances of the same monk
occur in the blend, projected into it from each input space. Furthermore, not all
structure present in the inputs is projected into the blended space (for instance,
the specific days of the monk’s ascent and descent or his speed of walking).

The solution to the problem arises in the blended space, where elements
and structure of the input spaces have been put together. This composition
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Figure 1: Schematic view of the conceptual blending that occurs when solving the problem
of the Buddhist monk (taken from [2]). The generic space makes the structure shared by the
inputs explicit (the path, the monk, the journey starting at sunrise and ending at sunset);
the blended space has two instances of the same monk walking in opposite directions of the
mountain path on the same day.

brings about new relationships—as the one between the two monks and their
opposite directions of motion—and this further evokes our previous experiences
of climbing up mountains and meeting fellow hikers on their way down. We
thus complete the composition in the blend with the necessary structure of these
experiences that allow us to infer that the ascending monk and the descending
monk will meet at some time of the day at a particular spot on the path.
This inference is e↵ectuated by what Fauconnier and Turner call “running the
blend”—the elaboration that eventually allows us to solve the problem (see
Figure 1).

3.2. Category Theory

Following Goguen, we model conceptual blending using the theory of cate-
gories. In its application to computation, an important advantage of categorical
approaches lies in them being independent of any particular implementation.
For this reason, it is very appealing to search for a categorical framework in
which to develop a computational theory of conceptual blending. Goguen initi-
ated the development of such an approach to blending relying on the notion of
‘colimit’ by following this basic insight:
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Given a species of structure, say widgets, then the result of intercon-
necting a system of widgets to form a super-widget corresponds to
taking the colimit of the diagram of widgets in which the morphisms
show how they are interconnected. [64, Section 6]

In Turner and Fauconnier’s account of conceptual blending the focus is on
how little mental packages, mental frames, called ‘mental spaces’ form webs
of conceptual connection between them. Little is specified about what sort of
structure these mental spaces are. The whole emphasis in the description of
conceptual blending is on the nature of the conceptual connections. Analo-
gously, category theory puts the focus on the structure-preserving transforma-
tions (called morphisms, or arrows) between mathematical objects, not on the
structure of the mathematical objects themselves.

The basic intuition behind this modelling approach is to define conceptual
blending as a particular category-theoretic construct that is as faithful as pos-
sible to the idea of blending. Mental spaces will correspond to objects in a
category, and mappings and projections from one space to another will corre-
spond to arrows. By framing blending in category theory, we will take the focus
o↵ the mental spaces and its structure and put it on the mappings and projec-
tions between spaces, and how these mappings relate to each other. Quoting
Phillips and Wilson:

[Category theory] o↵ers a re-conceptualization for cognitive science,
analogous to the one that Copernicus provided for astronomy, where
representational states are no longer the center of the cognitive
universe—replaced by the relationships between the maps that trans-
form them. [41]

In the following we will assume basic knowledge of category theory (see, for
instance, [65]), although we will recall the core notions we use in this article.

3.2.1. Diagrams, Cocones and Colimits
Let us focus on the basic blending scenario, that of blending two separate

input spaces I and J . A very simple model of blending could be just two arrows,
one from each of the input spaces I and J to a common blended space B that
preserves the structure in I and J :

B

I

??

J

__

A simple pair of arrows, however, does not capture how the structure shared
by input spaces is ultimately fused in the blended space, which is what makes
blending such a powerful cognitive operation. Shared structure, as captured by
a cross-space relation between input spaces, can be modelled categorically by
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means of a span, a pair of arrows from a common generic space G—modelling
the shared structure—to each of the input spaces:

I J

G

__ ??

Blends that fuse their common structure as captured by a span can then be
modelled by cocones: we require that all arrows—obtained by composition—
from the generic to the blended space are equal (we say the triangles in the
diagram commute):

B

I

??

J

__

G

__

OO

??

This idea can be generalised to any number of input spaces and arrows between
them capturing their structural relationship.

Cocones are defined for particular diagrams. A diagram D in a category C
is a functor D : I ! C, where I is a directed graph (where nodes are objects
and edges are arrows in I).1 The graph I is called the shape of D.

In other words, a diagram D consists of a family of C-objects (indexed by
the nodes of the graph I) and a family of C-arrows (indexed by the edges of I)
satisfying that for an edge a between nodes i and j, the associated C-arrow Da
has C-objects Di and Dj as its source and target, respectively.

We are mostly interested in the case of finite diagrams, i.e., when the graph
I has a finite number of nodes and edges. In most such examples, instead of
explicitly specifying the shape I, we will simply draw a directed graph with the
relevant C-objects and C-arrows. Two particular shapes of diagrams are going
to be relevant in this article. When the shape is given by the graph

i j

k

a

^^

b

@@

1Strictly speaking I is the free category generated over the directed graph, but for the
purpose of this article it is not necessary to worry about this detail.
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we called it a v-diagram (or span). If the shape is

i j k

l

a

]]

b

AA

m

c

__

d

??

we called it a w-diagram.

Definition 1 (Cocone) Let D : I ! C be a diagram of shape I in a category
C. A cocone for D is a C-object A together with a family of C-arrows {◆

i

: Di!
A} (one for each I-object i) such that, for each I-arrow a : i! j, the equality
Da; ◆

j

= ◆
i

holds —i.e., the following triangles commute:2

A

Di

◆i

>>

Da

// Dj

◆j

``

The C-object A is called the apex of the cocone.

Of all these cocones, category theorists are interested in those ones that stand
in relationship to all others, thus capturing the idea of a “minimal” cocone —
one that, whilst capturing the structure of all objects of the diagram D and
their relationships, does not add any new structure to it. Categorically this is
expressed as follows: if there is another cocone (an alternative way of fusing
common structure) then there is a unique arrow to this alternative cocone,
making all triangles commute.

Definition 2 (Colimit) A cocone for D is said to be a colimit for D if, for
each other cocone for D consisting of C-object B together with the family of
C-arrows {

i

: Di ! B}, there exists a unique C-arrow � : A ! B such that,
for each I-objet i, the equality ◆

i

;� = 
i

holds —i.e., the following triangles
commute:

A
� // B

Di

◆i

``

i

>>

When the diagramD is a span (a v-diagram), colimits are also called pushouts.
When used to model blending, the apex of a pushout represents a space that in-
cludes the structure of the input spaces, and not more, fusing only the common
structure specified in the generic space.

2We will use the diagrammatic notation ‘;’ for arrow composition more commonly used
by computer scientists, instead of the functional notation ‘�’ more commonly used by mathe-
maticians.
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Cocones and pushouts seem to be the natural candidates to model blends;
but they are not entirely adequate, because they do not capture selective pro-
jection (in a pushout all structure present in the input spaces is projected into
the blend), emergent structure (in a pushout no more structure is added to the
blend), nor incomparable alternative blends (a pushout is unique up to isomor-
phism).

3.2.2. Ordered Categories
Goguen suggested that ordered categories might be more adequate to ap-

proach the richness of conceptual blending. Ordered categories are categories
whose sets of arrows from one object to another are partially ordered, providing
a notion of ‘quality’ of arrows.

Definition 3 (Ordered Category) An ordered category is a category O such
that for every two objects A and B, there is a partial order  on homset
Hom(A,B) —the set of arrows from A to B— and composition is monotonic
with respect to  in both arguments (i.e., if f1  g1 and f2  g2, then f1; f2 
g1; g2).

Unfortunately, in ordered categories the standard notions of limit and col-
imit appear to be inadequate because they do not preserve the order of arrows
[66]. Consequently, a weaker notion has been proposed under the name of near
limit/colimit, in which commutation (equality of arrows) is replaced by semi-
commutation (inequality of arrows):

Definition 4 (Lax Cocone) Let D : I ! O be a diagram of shape I in an
ordered category O. A lax cocone for D is an O-object A together with a family
of O-arrows {◆

i

: Di ! A} (one for each I-object i) such that, for each I-
arrow a : i ! j, the inequality Da; ◆

j

 ◆
i

holds —i.e. the following triangles
semi-commute:

A

�

Di

◆i

>>

Da

// Dj

◆j

``

The universal property of a colimit needs to be replaced by asking for the
arrow that is maximum among those satisfying the inequalities.

Definition 5 (Near Colimit) A lax cocone for D is said to be a near colimit
for D if, for each other lax cocone for D consisting of O-object B together with
the family of O-arrows {

i

: Di ! B}, there exists an O-arrow � : A ! B
which is maximum for those satisfying that, for each I-objet i, ◆

i

;�  
i

—i.e.
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satisfying that the following triangles semi-commute:

A
� //



B

Di

◆i

``

i

>>

In particular, cocones and colimits in an ordered category are also lax cocones
and near colimits. As before, when the diagram D is a span, near colimits
are also called near pushouts.3 The following proposition lifting a well-known
property from colimits to near colimits will be used later in Section 4.

Proposition 1 The family of O-arrows {◆
i

: Di ! A} forming a near colimit
for D is jointly epic.

proof: Let x, y : A ! B be a pair of O-arrows. Suppose that ◆
i

;x = ◆
i

; y.
This family of O-arrows obviously forms a lax cocone for D. Consequently,
there exists an O-arrow � : A! B which is maximum for those satisfying that
◆
i

;�  ◆
i

;x(= ◆
i

; y). It follows that x  � and y  �, and thus ◆
i

;x  ◆
i

;�
and ◆

i

; y  ◆
i

;�. Consequently, ◆
i

;� = ◆
i

;x = ◆
i

; y. Since � is a maximum (and
hence unique), it follows that x = y. ⇤

Goguen proposed near pushouts (which he calls 3
2 -pushouts

4) for modelling
blends, in order to capture the additional posetal structure on arrows that or-
dered categories provide [16]. But modelling blends as near pushouts comes
at a price: there can be several non-isomorphic near pushouts, i.e. several in-
comparable ideal blends; but Goguen perceived this as a strength rather than
a weakness for modelling conceptual blending. From a computational perspec-
tive however, an important problem of this approach is that there is currently
no computational support for ordered categories, while several computational
tools for ‘plain’ categories have been developed that could potentially be used
for computing blends, such as for instance the Heterogenous Tool Set [25].

4. Blends as Amalgams

The solution we propose is to revisit near pushouts in the context of cat-
egories of partial arrows—i.e., categories of spans consisting of a monic and a

3Jay in [67] initially also used the adjective ‘lax’ for the categorical constructs such as that
of Definition 5, but it may be confused with more common uses of lax (co)limit as in [68]. In
[66] he named them ‘local’, and in a subsequent extended unpublished manuscript he chose
to use the adjective ‘near’ [69], instead. We settled in this article for the latter terminology,
which is also the one adopted in [70].

4The reason for this name is because ordered categories are also called 3
2 -categories. They

are a special case of so-called 2-categories, where there is at most one 2-cell between two
1-cells (i.e., arrows); thus, ordered categories lie between plain 1-categories and 2-categories.
Other names have also been used in the literature, such as locally partially ordered categories,
locally posetal categories, Pos-enriched categories, and order-enriched categories.
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total arrow, which is common practice in category theory. Partial arrows are the
categorical abstraction of partial functions, which underly the selective projec-
tion occurring in conceptual blending. Furthermore, for modelling conceptual
blending it seems that we do not need the general case of a near pushout, which
would allow for partial arrows from the generic to the input spaces. First, let
us introduce some additional category-theoretic notions.

4.1. Partial Arrows

A partial function can be characterised by a total function on the subset
over which the partial function is defined. The categorical abstraction of this
is to define a partial arrow A ! B to be a span of two arrows A � A0 ! B
of which one is a mono (depicted with ‘⇢’) representing the subobject A0. We
call such a span a monospan and its subobject the domain of the partial arrow.

Strictly speaking, in a category C, a subobject of an object A is an equiva-
lence class of monos whose target is A and that factor through each other. It
follows that the sources of the monos in such an equivalence class are isomor-
phic, and it is common to pick one of these isomorphic objects and to call it ‘the
subobject’ of A. This applies also to partial arrows, which, strictly speaking,
are to be understood as entire equivalence classes of monospans as determined
by their respective subobjects.

For partial arrows to constitute a category we need to have inverse images
(i.e., pullbacks of monos) to be able to define composition of partial arrows.
Monos satisfying this property are called stable monos [66]. In the particular
case of a pullback of two monos, the apex of the pullback is also referred to
as the intersection of the subobjects represented by the monos, and given two
subobjects A1 and A2 of an object A, we will write A1\A2 for their intersection.

Following [71], we write Ptl(C) for the category of partial arrows on C.5 Often
Ptl(C) is too big because the class of monos of C is too wide; thus, it is common
to restrict the class of subobjects that are considered admissible as domains
of partial arrows.6 We follow [66] and call such class a realm when its monos
are stable and closed under composition and isomorphism; but we follow [71]
and write M-Ptl(C) for the category of partial arrows, when the monos of the
monospans representing its arrows are taken only from the realm M.

When we move from total to partial functions, it is sensible to order functions
by their extension. Hence homsets in the category of partial functions form
a poset. In turn, homsets of partial arrows are also naturally ordered by the
subobject ordering of their domains. This makes M-Ptl(C) an ordered category.

5There is a foundational issue to take into account here: homsets of Ptl(C) are indeed sets
i↵ the collections of subobjects for each object are sets.

6In categories such as Set, Rng, or Grp subobjects correspond to subsets, subrings,
or subgroups; but they do not correspond to subspaces in Top, where one might consider
as admissible domains only those monics that are continuous functions defined on an open
subspace.
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4.2. Amalgams

In spans modelling cross-space relations of conceptual blending (see Sec-
tion 3.2.1), arrows are total in general, and they factor through the subobjects
of the input spaces, which means that there exist also arrows from the generic
space to the input subspaces (these subspaces lie in between the generic and the
original input spaces, so to say) [31]. In this particular case, the near pushout
diagram is significantly simplified, and it is essentially an abstraction of a what
in [26] has been called an ‘amalgam’ in the context of case-based reasoning7 In
the following we shall provide a category-theoretic abstraction of the original
definition of ‘amalgam,’ keeping the totality condition on the arrows from the
generic space, but not requiring them to factor through input subspaces.

Consequently, we need to define the generalisation of a v-diagram. For this
we require that the subobjects of the realm M have finite unions, and in the
rest of this article we will assume that this additional condition holds for a
class M of monos to be considered a realm. The union of a family {A

i

}
i2I

of
subobjects of A is defined as the subobject A0 of A, denoted by

S
i2I

A
i

, which
is preceded by each of the A

i

(i.e., each A
i

is also subobject of A0), and which
has the following property: If, for an arrow f : A ! B, each A

i

is carried into
some subobject B0 of B by f (i.e., there exists an arrow f

i

: A
i

! B0 such that
m

i

; f = f
i

;n, where m
i

and n are the inclusion monos of A
i

in A and B0 in
B, respectively), then A0 is also carried into B0 by f (i.e., there exists an arrow
f 0 : A0 ! B0 such that m0; f = f 0;n, where m0 is the inclusion mono of A0 in A,
denoted by

S
i2I

m
i

) [72].

Definition 6 (Generalisation of a v-diagram) Let C be a category with

realm M. Let V be a v-diagram I
f � G

g�! J in C. A generalisation of
V is a w-diagram I0  � f�1(I0) i�! f�1(I0) [ g�1(J0) �h g�1(J0) �! J0 in
C, such that m : I0 ⇢ I and n : J0 ⇢ J are C-monos in M.

Notice that the objects of a generalisation of a v-diagram I  � G �! J are
all subobjects of either G, I or J , and that the diagram is determined by the
pair of monic arrows m : I0 ⇢ I and n : J0 ⇢ J . Consequently, we will also
refer to a generalisation by means of this pair hm,ni. The generalisations of a
given v-diagram in a category C with realm M that has finite unions, together
with the pairs hv, wi : hm,ni ! hm0, n0i of monic arrows such that m = v;m0

and n = w;n0, form a category. It is straightforward to check that this category
has finite intersections because the monos in M are stable (see Section 4.1).

Definition 7 (Amalgam) Let C be a category with realm M. An amalgam
for a v-diagram V in C is the colimit for a generalisation W of V (see Figure 2).

When talking about a cocone for a w-diagram that is a generalisation of
a v-diagram (see Definition 6), we will only explicitly talk of the injections

7This notion of ‘amalgam’ is not to be confused with the category-theoretic notion of
‘amalgamation’.
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✏✏

m

✏✏

◆

77

f�1(I0) [ g�1(J0)
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✏✏

m̄[n̄

✏✏

J0
✏✏

n

✏✏
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f
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g
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Figure 2: Amalgam with apex A. The C-arrows ◆,  and l are the injections of the colimit;
the C-monos m and n determine the generalisation of the v-diagram; arrows m̄ and n̄ are the
pullbacks of m and n along f and g, respectively; and m̄ [ n̄ is the inclusion mono of the
union f�1(I0) [ g�1(J0) in G.

with sources I0, f�1(I0) [ g�1(J0) and J0. The other arrows of the cocone
are determined by these and the arrows of the w-diagram by commutation (see
Figure 2).

4.3. Amalgams vs. Near Pushouts

Kutz et al. formalised blending of ontologies following the same intuition of
moving from arbitrary ordered categories to categories of partial arrows, and
they suggested to model ontological blending by means of lax cocones of partial
signature morphisms, which they called blendoids [73]. Amalgams are particular
kinds of blendoids, satisfying a universal property, and in this subsection we
show their relationship to near pushouts, Goguen’s original mathematical model
for blending as propounded in [16]. First, though, we need to state the following
lemma:

Lemma 1 Let C be a category with realm M. Let A together with M-Ptl(C)-
arrows (m, ◆) : I ! A, (n,) : J ! A, and (o,�) : G! A form a near pushout

of the v-shaped diagram I
(p,f) � G

(q,g)�! J in M-Ptl(C); and let I0, J0 and G0 be
the domains of partial arrows (m, ◆), (n,) and (o,�), respectively (i.e., they are
the sources of C-monos m, n and o). Necessarily the C-object G0 is isomorphic
to the C-object f�1(I0) [ g�1(J0).
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proof: Partial arrows (m, ◆), (n,) and (o,�) form a near pushout. Con-
sequently, (p, f); (m, ◆)  (o,�) and (q, g); (n,)  (o,�). Therefore, there are
C-monos from f�1(I0) and from g�1(J0) to G0, and hence there is also a C-mono
⌫ : f�1(I0)[g�1(J0) ⇢ G0. Partial arrows (m, ◆), (n,) and ((m̄; p)[(n̄; q), ⌫;�)
form a lax cocone for the same diagram, with m̄ and n̄ being the pullbacks along
f and g, respectively, and (m̄; p) [ (n̄; q) being the inclusion mono of the union
f�1(I0) [ g�1(J0). Consequently, there exists a maximum µ of those satisfying
(m, ◆);µ  (m, ◆), (n,);µ  (n,) and (o,�);µ  ((m̄; p) [ (n̄; q), ⌫;�). It fol-
lows that there is a C-mono from G0 to f�1(I0)[ g�1(J0) capturing the partial
order of the latter inequality, and hence G0

⇠= f�1(I0) [ g�1(J0). ⇤

The following theorem states that amalgams are “essentially” near pushouts
for v-shaped diagrams of total arrows, provided we have images in the category
we are working with. This holds for most categories in which we have com-
puted conceptual blends (see Section 5). We say “essentially” because we relate
these two constructs switching between a category C and the ordered category
M-Ptl(C) of its partial arrows (as equivalence classes of monospans).

Theorem 1 Let C be a category that has images, with realm M. Let V be a

v-diagram I
f � G

g�! J in the ordered category M-Ptl(C) of partial arrows of
C such that f and g are total. If M-Ptl(C)-object A is the apex of an amalgam
for V , then it is also the apex (taken as C-object) of a near pushout for V .

proof: Let W be the w-diagram that generalises V and for which A is the
colimit. Take ◆ : I0 ! A,  : J0 ! A and � : f�1(I0) [ g�1(J0) ! A to denote
the C-arrows of this colimit, and m : I0 ⇢ I and n : J0 ⇢ J to denote the
C-monos that determine the generalisation W . It follows that M-Ptl(C)-arrows
(m, ◆), (n,) and (m̄ [ n̄,�) form a lax cocone for V , where m̄ and n̄ are the
pullbacks of m and n along the C-arrows f and g of V , respectively, and m̄ [ n̄
is the inclusion C-mono of the union f�1(I0) [ g�1(J0).

Now, let M-Ptl(C)-arrows (m0, ◆0), (n0,0) and (o0,�0) be the injections of
another lax cocone for V whose apex is B. Consequently, there is a w-diagram
W 0 in C that generalises V as determined by the C-monosm0 and n0 and of which
B is the apex of a cocone forW 0. Take now the w-diagramW\W 0 (see comment
on page 14 following Definition 6) with its inclusion hv, wi : W \W 0 ⇢ W and
hv0, w0i : W \W 0 ⇢ W 0; and let us denote with v ? w and v0 ? w0 the monos
between the union objects of the respective w-diagrams. Let A0 denote the
C-object Im(v; ◆) [ Im(w;) [ Im((v ? w);�), and u : A0 ⇢ A the inclusion
C-mono determined by this union of images.

The unique C-arrows ◆⇤, ⇤ and �⇤ determined by the images Im(v; ◆),
Im(w;) and Im((v ?w);�), respectively, form a cocone for W \W 0 with apex
A0. Furthermore, this cocone is a colimit for W \W 0 because A with ◆,  and �
is a colimit for W , and A0 is the smallest subobject of A for which v; ◆, w; and
(v?w);� factor through. Since B is also an apex of the cocone for W \W 0, with
injections v0; ◆0, w0; and (v0 ? w0);�0, it follows that there is a unique arrow
µ : A0 ! B such that ◆⇤;µ = v0; ◆0, ⇤;µ = w0;0 and �⇤;µ = (v0 ? w0);�0.
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The M-Ptl(C)-arrow (u, µ) : A ! B is, thus, the maximal arrow satisfying
(m, ◆); (u, µ)  (m0, ◆0), (m,); (u, µ)  (n0,) and (m̄ [ n̄,�); (u, µ)  (o0,�0)
which makes (m, ◆), (n,) and (m̄[ n̄,�) a near pushout for V with apex A. ⇤

In general, not all near pushouts can be computed by means of amalgams
(see Section 5). The following theorem, however, states that near pushouts are
also amalgams when we are working in the context of a balanced category (i.e.,
arrows that are both monic and epic are also isomorphisms) that is also finitely
cocomplete (i.e., finite diagrams have colimits):

Theorem 2 Let C be a finitely cocomplete and balanced category with realm

M. Let V be a v-diagram I
f � G

g�! J in the ordered category M-Ptl(C) of
partial arrows of C such that f and g are total. If C-object A is the apex of a
near pushout for V , then it is also the apex (taken as a M-Ptl(C)-object) of an
amalgam for V , provided that the generalisation of diagram V along hm,ni has
a colimit.

proof: Let M-Ptl(C)-arrows (m, ◆) : I ! A, (n,) : J ! A and (o,�) :
G ! A be the partial arrows forming the near pushout for V . By the semi-
commutativity of the lax cocone and by Lemma 1, C-arrows ◆,  and � form a
cocone with apex A for the w-diagram W in C that generalises V , as determined
by the pair of monos hm,ni. Let C be the apex of the colimit for W formed
by C-arrows ◆0, 0 and �0 (which exists because of the finite cocompleteness
of C). Therefore there exists a unique arrow ⇠ such that ◆0; ⇠ = ◆, 0; ⇠ = ,
and �0; ⇠ = �. In addition we have that C is also the apex of a lax cocone
for V in M-Ptl(C) formed by M-Ptl(C)-arrows (m, ◆0), (n,0) and (m̄ [ n̄,�0).
Since A is the apex of a near pushout, there exists a maximum M-Ptl(C)-arrow
(u, µ) : A ! C of those satisfying (m, ◆); (u, µ)  (m, ◆0), (n,); (u, µ)  (n,0)
and (m̄ [ n̄�); (u, µ)  (m̄ [ n̄,�0).

Let us focus on the first inequality (an analogous chain of reasoning can
be followed with the other two): (m, ◆); (u, µ)  (m, ◆0) implies that there is a
monic arrow p such that the following diagram commutes:

A A0
oouoo µ // C

I0

◆

;;

✏✏
m

✏✏

◆�1(A0)oo
ū

oo
◆̄

;;

✏✏
p

✏✏
I I0oo

m

oo

◆

0

==

where ū and ◆̄ are the pullback arrows for u and ◆, respectively. Since m is
monic, necessarily p = ū. Consequently, ū; ◆0 = ◆̄;µ. Note that ◆̄, ̄ and �̄
are jointly epic: let x, y : A0 ! B such that ◆̄;x = ◆̄; y, ̄;x = ̄; y, and
�̄;x = �̄; y. TheM-Ptl(C)-arrows (ū;m, ◆̄;x), (ū;n, ̄;x) and (ū; m̄[n̄, �̄;x) form
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a lax cocone with apex B for V in M-Ptl(C). Therefore, there exists a maximum
M-Ptl(C)-arrow (v, ⌫) : A ! B of those satisfying (m, ◆); (v, ⌫)  (ū;m, ◆̄;x),
(n,); (v, ⌫)  (ū;n, ̄;x) and (m̄ [ n̄�); (v, ⌫)  (ū; m̄ [ n̄, �̄;x).

Let us focus again on the first inequality. Since (m, ◆); (u, x) = (m; ū, ◆̄;x),
we have that (u, x)  (v, ⌫). Necessarily there exists a monic arrow q such that
q; v = u and q; ⌫ = x:

B

A1~~
v

~~

⌫

::

A A0
oo

u

oo
ccq

cc x

OO

y

OO

I0

◆

OO

✏✏
m

✏✏

◆�1(A0)oo
ū

oo

◆̄

OO

I

An analysis similar to the one above can be done when composing with y instead
of x. From all this and the fact that v is monic we can infer that x = y.

Recall that we concluded from (m, ◆); (u, µ)  (m, ◆0) that ū; ◆0 = ◆̄;µ. From
this, and from ◆0; ⇠ = ◆ and the commutation if the pullback square, we deduce
that ◆̄;µ; ⇠ = ◆̄;u. Analogously, ̄;µ; ⇠ = ̄;u and �̄;µ; ⇠ = �̄;u, and since ◆̄, ̄
and �̄ are jointly epic, we deduce that µ; ⇠ = u. We know that the arrow u is
monic; but it is also epic, because by Proposition 1, we know that ◆,  and �
are jointly epic, and hence so is ⇠. Since C is balanced, u is an isomorphism,
and we can conclude that ⇠ and u�1;µ are inverse to each other, because C is
the apex of the colimit for W . Therefore A ⇠= C. ⇤

5. Computing Blends With Amalgams

An advantage of using amalgams in place of near pushouts for modelling
blends is that we do not need to work with an ordered category and can draw
from the computational support available for computing colimits in plain, un-
ordered categories. By lifting amalgams as originally proposed in [26] to cate-
gory theory we get also a representation-independent framework.

To illustrate the constructs for modelling conceptual blending proposed in
the previous section, we will show some examples of blends as modelled with
amalgams in di↵erent categories: of typed feature structures [74], of EL++

concept descriptions [75], and of CASL specifications [76]. The first of these
examples, in Section 5.1, we describe in more detail than the remaining two,
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because it exemplifies amalgams as put forward in this present article in its
most general case (see Definition 7) and its relationship to near pushouts (see
Theorem 1). The examples of Sections 5.2 and 5.3 illustrate a more constrained
version of amalgam, bounded by the generic space of the v-diagram of the con-
ceptual blend computed by the amalgam.

5.1. Blending Typed Feature Structures

As a first example we are going to illustrate the computation of blends of
typed feature structures [74]. We briefly recall the basic definitions of this
representation formalism.

Feature Structures
Feature structures are defined over a fixed finite set Feat of features and a

fixed finite poset hType,i of types that is bounded-complete, i.e., all subsets
of Type that have some upper bound also have a least upper bound, called join.
In particular the join of the empty set is the universal type ?, such that ?  ⌧ ,
for all ⌧ 2 Type.

Definition 8 (Feature Structure) A feature structure over Type and Feat is
a tuple F = hQ, q̄, ✓, �i where:

• Q is a finite set of nodes

• q̄ is a distinguished node in Q, called root

• ✓ : Q ! Type is a total typing function, assigning a type to each node in
Q

• � : Feat⇥Q 7! Q is a partial feature value function

satisfying that Q is rooted in q̄: for all q 2 Q, there exists a finite sequence of
features f1, f2, . . . , fn, with n � 0 (i.e., the sequence can be empty), such that
�(f

n

, · · · �(f2, �(f1, q̄)) · · · ) = q.

We will use a graph notation to write feature structures as in [74], with
roots identified by an unlabelled incoming arrow (see the icon blending example
below).

Definition 9 (Feature-Structure Morphism) A feature structure morphism
h : F ! F 0 between feature structures F = hQ, q̄, ✓, �i and F 0 = hQ0, q̄0, ✓0, �0i is
a total function h : Q! Q0 such that:

• h(q̄) = q̄0

• ✓(q)  ✓0(h(q)) for every q 2 Q

• h(�(f, q)) = �0(f, h(q)) for every q 2 Q and every f 2 Feat for which
�(f, q) is defined
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Feature structures over fixed Type and Feat together with feature structure
morphisms form a category F . Homsets in F are either empty or singletons
(because of the rootedness of feature structures), and when there is an F-arrow
from F to F 0, it is said that F subsumes F 0, and we write F v F 0. Consequently,
F is a preorder and all F-arrows are both monic and epic. This implies that F
has images, because a mono is its own image; but, obviously, F is not balanced
because not all F-arrows are isomorphisms.

Feature-structure unification is a pushout construction in F , but since Type
is only bounded-complete, F is not cocomplete in general. Nevertheless, all
non-empty subsets of Type have a greatest lower bound, called meet. Conse-
quently, F has pullbacks. Furthermore, Type is bounded-complete, and so is F .
Consequently, all subobjects of an object F do have an upper bound, namely F
and, therefore, they have a least upper bound, which is their union. It follows
that the class of F-arrows has unions. All this makes the class of F-arrows a
realm and Ptl(F) and ordered category.

By Theorem 1, amalgams in F are near pushouts in Ptl(F), and are thus
suitable for modelling blends as represented with feature structures. But be-
cause F is not a balanced category, there might be near pushouts in Ptl(F) that
do not correspond to an amalgam in F .

Icon Blending
As an example, consider feature structures describing icons composed by

several symbols. Types of nodes are either icon or represent symbols such as
silhouette or rightarrow, and features describe how symbols are positioned
in the icon and with respect to other symbols in it. Let us assume the hierar-
chy Type is as follows (depicted as a Hasse diagram with the least informative
universal type at a the bottom, and the most informative types in the leaves at
the top):8

leftarrow rightarrow

arrow silhouette

icon symbol

?

And let us assume that Feat includes the features right, left, rightside and left-
side. In particular, let us consider the following feature structures representing

8This follows standard practice in domain theory, although it is contrary to how types and
subtypes are depicted in knowledge representation. Consequently, the subsumption relation
v between feature structures is also written in the opposite direction to how it is usually done
in description logics, for instance.
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two icons that we would like to blend (colours identify which substructures of
the feature structures correspond to the equally coloured fragments of the icons
as depicted in Figure 3; they do not carry any meaning in feature structures):

silhouette

right

&&// icon

leftside

::

rightside
$$

rightarrow

silhouette

left

88

silhouette

right

&&// icon

leftside

::

rightside
$$

leftarrow

silhouette

left

88

The structure shared by these feature structures is captured by the anti-
unifier, which is going to play the role of the generic space of the blending
process:

silhouette

right

&&// icon

leftside

99

rightside
%%

arrow

silhouette

left

88

The colimit of the v-diagram formed by the two input feature structures
and their anti-unifier, together with the subsumption morphisms from the anti-
unifier to the inputs, if it existed, would correspond to the unifier of the in-
put feature structures; but in this particular case there is no unifier because
rightarrow and leftarrow are not consistent: they do not have an up-
per bound in Type. However, there exist generalisations of the input feature
structures—features structures subsuming the original inputs—that can be uni-
fied, for example:

silhouette

right

&&// icon

leftside

::

rightside
$$

rightarrow

silhouette

silhouette

// icon

leftside

::

rightside
$$

leftarrow

silhouette

left

88

The unifier of the generalised feature structures is:

silhouette
right // rightarrow

// icon

leftside

99

rightside
%%

silhouette
left
// leftarrow
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Figure 3: Amalgam of icons. Arrows are feature-structure morphisms (i.e., subsumptions) and
point from subsumer to subsumee. A generic arrow (without direction) is drawn as a dashed
line. Colours correspond to the substructures of the same colour in the feature structures as
shown in the text.

Notice, though, that these generalised feature structures are not subsumed
by the anti-unifier of the original input structures. Technically, this unifier is an
amalgam as in Definiton 7: it is the colimit of a w-diagram that generalises the
v-diagram formed by the inputs and their anti-unifier (see Figure 3—where we
have drawn the icons that might be represented by our feature structures—and
compare it with Figure 2).

Amalgam Computation
There exists ample computational support for typed feature structures, par-

ticularly for computing feature-structure unification (i.e., pushout computation
in F) and feature-structure subsumption [77], since this representation formal-
ism has been used for natural language processing [78], declarative programming
[79, 80], conceptual modelling [81], case-based reasoning [82, 83], and music rep-
resentation [84].

To generate blends of feature structures by way of computing amalgams,
we need in addition to implement a generalisation refinement operator that al-
lows us to explore the generalisation space of the original input spaces of the
blend. By means of a simplistic Prolog implementation of the generalisation
refinement operator described in [83], and encoding feature structures as open
lists [85], we explored this generalisation space for our icon-blending example.
Of all non-isomorphic amalgams generated by feature-structure unification on
generalisations of the input feature structures, only four are maximal with re-
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spect to v and thus can be seen as the most informative blends we can obtain
in this way; all others subsume either of these four.

5.2. Blending EL++ Descriptions

Confalonieri et al. [86] have explored the invention of new concepts based
on the principles of conceptual blending using description logics, the formalism
that currently underlies most of the knowledge representation on the semantic
web. In particular they have focused on the blending of concept descriptions
in the lightweight ontology representation language EL++ on which the OWL2
EL profile is based [86].

Unlike the example of Section 5.1, the notion of amalgam used in [86] is a
constrained one, which is not equivalent to near pushouts. It is, however, more
akin to the original definition of amalgam as provided by Ontañon and Plaza
[26]. Let us introduce first this constrained understanding of amalgam. As in
Definition 7, it is defined as the colimit of a generalisation of a given v-diagram

I
f � G

g�! J , only that G serves as an upper bound of the generalisations of
inputs I and J . Furthermore, in [86] the definition is particular to EL++ de-
scriptions, and takes a common subsumer of I and J as the bound G. Following,
we provide a definition for any category C:

Definition 10 (Bounded Generalisation of a v-diagram) Let C be a cat-

egory with realm M. Let V be a v-diagram I
f � G

g�! J in C. A bounded

generalisation of V is a v-diagram I0
f

0

 � G
g

0

�! J0 in C, such that m : I0 ⇢ I
and n : J0 ⇢ J are C-monos in M that factor through f and g, respectively,
i.e., f 0;m = f and g0;n = g.

Definition 11 (Bounded Amalgam) Let C be a category with realm M. A
bounded amalgam for a v-diagram V in C is the pushout for a bounded general-
isation V 0 of V .

The monos m and n that characterise the generalisation V 0 of V factor
through the respective arrows of V by definition, and consequently the objects
f�1(I0), g�1(J0) and G happen to be isomorphic (and thus also f�1(I0) [
g�1(J0)). Therefore, any bounded amalgam in C is also an amalgam as in
Definition 7, and thus also a near pushout in M-Ptl(C); but, in general, the
converse does not hold, unless all subobjects of I and J as characterised by
monos in the realm M factor through the arrows of v-diagram V . If this is the
case, near pushouts are also bounded amalgams.

In [87], Confalonieri et al. provide an algorithm for computing conceptual
blends out of input spaces specified in the description logic EL++. The algorithm
computes bounded amalgams in the category E of EL++ descriptions over a fixed
signature of concept, role and individual names, together with subsumption with
respect to a fixed TBox T (i.e., a finite set of axioms) as its arrows, going from
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subsumer to subsumee; that is, there is an E-arrow from C to D i↵ C wT D.9

As with the category F of typed feature structures given in Section 5.1, there is
at most one arrow between any two objects, which is consequently both monic
and epic.

Confalonieri et al. define a generalisation operator for EL++ descriptions
and implement the search process for bounded generalisations of input spaces
by translating this operator into Answer-Set Programming (ASP). The operator
is proper (it yields generalisations that are not equivalences) and locally finite
(the number of generalisations generated for any given description is finite), but
fails to be complete (there exists generalisations that are not generated by the
operator). Actually, no locally finite, proper and complete generalisation opera-
tor exists for EL++ descriptions. Furthermore, in order to avoid the generation
of infinite chains of generalisations, the number of nested existential quantifiers
is limited to a maximum k 2 N, the so called role depth of EL++ descriptions.

Consequently, the focus is actually on a full subcategory E
k

of E , whose
objects are EL++ descriptions of role depth  k. The realm M underlying
the amalgam computation described in [87] is, thus, the set of E

k

-arrows (i.e.,
of subsumptions wT ) that can be e↵ectively generated by the generalisation
operator. M is indeed a realm because its monos are stable and closed under
composition and isomorphism. In particular, stability follows from the fact that
unique (up to equivalence) role-depth bounded least common subsumers exist
for every pair of EL++ descriptions; this has been shown for several variants of
EL-based languages [88–90], and can be easily extended to EL++.

The bounded amalgams are then computed by taking the greatest common
subsumee of the generalised concept descriptions, which in EL++ is just their
intersection (u). The space of potential blends is further pruned by additional
constraints, and partially ordered according to some preference criteria that
attempt to capture the fact that conceptual blending is usually realised with
some objective in mind, and driven by the values of particular audiences [91].
For further details about the computational realisation of conceptual blending
of EL++ descriptions we refer to [87].

5.3. Blending CASL Specifications

We conclude our examples of blends as modelled with amalgams in dif-
ferent categories by paying attention now to a more expressive representation
formalism than those of the previous two subsections, and we illustrate our
mathematical framework with spaces characterised as CASL specifications.

CASL is the Common Algebraic Specification Language developed by the
Common Framework Initiative (CoFI). It is a general-purpose specification lan-
guage based on first-order logic with induction. In [92], Eppe et al. have used
CASL to specify chords with the aim of generating novel cadences and chord pro-
gressions by conceptual blending. (For example, conceptual blending between

9Recall that the subsumption relation between DL descriptions is written in the opposite
direction to how it is done between feature structures.
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the perfect and Phrygian cadence gives rise to the tritone substitution progres-
sion and the backdoor progression.) As with blends of EL++ descriptions, only
bounded amalgams are computed, and chord generalisation is implemented by
means of an ASP program that codes a generalisation operator for CASL spec-
ifications. A very simple and straightforward generalisation operator is defined
in [92], which just takes a proper subset of the specification by removing one
axiom of a given specification.

The use of a general-purpose specification language such as CASL broadens
the possible domains on which to apply amalgam-based conceptual blending
computation. In [93], Eppe et al. report on a blending framework that illus-
trates the blending of the mathematical theories of natural numbers and of lists
as specified in CASL with the objective to provide computational support in
the discovery of so-called Eureka lemmas, i.e., intermediate lemmas discovered
during the exploration of a theory that can be used to help with the proof
obligations during this exploration.

In [94] amalgam-based blending of CASL theories is also applied to the com-
putation of cross-domain blends, where input spaces are taken from two separate
domains, such as for example chord progressions on the one hand and mathe-
matical theories on the other hand, with the aim of generating very creative and
surprising blends. Formalising blending in a representation-independent way al-
lows Eppe et al. to computationally explore the invention of such multi-domain
concepts. For example, by blending the specification of cyclic groups of ele-
ments with a specification for chords defined via intervals between their notes,
Eppe at al. are capable of reproducing a very creative technique in modern jazz,
namely voicing ; and they are also capable of generating various kinds of chord
progressions, including a progression known in jazz as Coltrane Changes [94].

6. Related Work

We mentioned in the introduction that several computer implementations of
conceptual blending have been proposed, particularly in the field of Computa-
tional Creativity for guiding the development of creative systems. Although they
did not aim at providing a representation-independent, uniform model of con-
ceptual blending, each of them attempts to concretise Fauconnier and Turner’s
basic insights in more or less degree, providing some sort of formalisation of the
basic constitutive elements of conceptual blending and the optimality principles
that govern good blends as proposed by Fauconnier and Turner.

Sapper [7]. Originally developed as a computational model of metaphor and
analogy, in order to compute a mapping between two separate domains that
respects the relational structure of concepts in each domain. Strictly speak-
ing, Sapper does not generate blends, but structural mappings between input
concepts. It can, however, be seen as a computational model for conceptual
blending, because the mappings between the pairs of concepts that constitute
its output can be manipulated as atomic units, as blended concepts. Further-
more, Sapper does not work with a priori given input spaces. It is the structure

25



mapping algorithm itself which, given two domains to be mapped, determines
the set of concepts and relations between these concepts that constitute the
spaces that are blended. It does so by searching within its semantic memory
for the largest substructures (bounded by a previously fixed size) at the root
concepts of these domains that are isomorphic as with respect to their relational
structure, and whose concepts are metaphorically related. Semantic memory is
represented as a semantic network, a graph whose nodes represent concepts and
whose edges represent binary relations between concepts. The actual correspon-
dence or blend between concepts is computed by applying a spreading activation
algorithm according to which Sapper locates pairs of paths that are structurally
isomorphic (of equal length and constituted by the same sequence of semantic
relations) and that terminate at concepts that Sapper considers semantically
bridgeable. Building upon this work, Metaphor-Eyes is a web-based approach
to generate more loosely defined blends [95]. Inconsistencies and evaluation
metrics are not addressed, and, instead, Metaphor-Eyes takes the Internet as
a provider for the massive amount of background information that is required
to generate meaningful blends. Sapper has subsequently been used in a more
goal-driven selective projection process following Brandt and Brandt’s theory
of conceptual blending [96] for generating novel, standalone concepts such as
fictional gadgets in computer-generated stories, or objects used in pretend play
that combine features of a desired fantasy-world object with a real-word object
at hand [11].

Alloy [97]. This algorithm for conceptual blending incorporates many ideas of
the algebraic semiotics approach by Goguen [16] and of conceptual blending
theory. Alloy has been integrated in the Griot system for automated narrative
generation [15, 98]. Apart from the primary conceptual blending approach re-
alised with Alloy, Griot also uses a secondary structural blending mechanism
that blends the dynamic elements of natural language narratives to generate
poetry. The input spaces of the Alloy algorithm are theories defined in the
algebraic specification language BOBJ [99]. This allows one to represent sorts,
operators, constants and axioms. The blending algorithm generates two binary
trees that are based on the input graph, and which represent (i) the space of
possible mappings of relations and (ii) the space of possible mappings of con-
stants, respectively. These trees are then combined in the sense that the leaves
of the tree of constants are applied to the trees of relations. The resulting
combined tree has leaves that represent all possible sort-preserving mappings
of relations and constants, i.e., all possible blends. During the tree generation,
certain optimality principles are applied to prune the space.

Divago [8, 100, 101]. Probably the first complete implementation of conceptual
blending. Its knowledge base contains di↵erent micro-theories and their instan-
tiations. Of these, two are selected for blending, either by the user or randomly.
A mapper then generates the generic space between the inputs, and passes it to
a blender module which generates the blendoid, i.e., a projection that defines
the space of possible blends. Blending in Divago is done on pairs of concepts,
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taken from the multi-domain knowledge base of the system. A factory compo-
nent is used to select the best blends among the blendoid by means of a genetic
algorithm. A dedicated module implements the optimality principles. Given a
blend, this module computes a measure for each principle. These measures yield
a preference value of the blend that is taken as the fitness value of the genetic
algorithm. Recent work [102] describe the use of Divago as a blending compo-
nent within a computational creativity infrastructure, and discuss the relevance
of the optimality principles in the Divago’s architecture.

HDTP [103]. Originally conceived as a framework for analogical reasoning [104],
using a many-sorted first order language to represent conceptual spaces. In
HDTP-based analogical reasoning, knowledge is mapped and transferred from
a usually well-known source domain to a target domain. This happens in two
phases. In the mapping phase, source and target are compared to find com-
monalities. In particular, HDTP uses second-order anti-unification, which is
restricted in a way that renders the process decidable. In the transfer phase,
unmatched knowledge in the source is mapped to the target to establish new
hypotheses. The blending of two initial theories is done in three steps. First,
core blend laws are applied, second, preferred conjectures are added, and third,
extra conjectures are added.

In a subsequent development, an HDTP-based theory blending algorithm
has been proposed for the generation of novel mathematical theories [105]. It
computes maximally informative and maximally compressed theory blends by
exploring the space of possible blends of two input theories relative to a common
generalisation of these computed by HDTP. The algorithm is devised as an
interactive process where the user evaluates the outputs and decides to trigger
a relaxation of the common generalisation in order to determine a new space of
possible blends to explore.

Cobble [106]. Developed in the context of the European COINVENT project
[30], this prototype is based on some early ideas of theoretical and computa-
tional principles put forward in this article. It is a flexible and modular concept
invention prototype implemented and encapsulated as RESTful services. Cob-
ble instantiates the amalgam-based concept blending model and implements a
workflow for concept invention. Input spaces are specified using DOL [107], an
international ontology interoperability standard that provides a unified metalan-
guage for employing an open-ended number of formal logics. Generic space com-
putation in achieved either using HDTP or Answer-Set Programming (ASP).
ASP is also the technique used to search the generalisation spaces of inputs.
Colimit computation is done using HETS [25], a paring, static analysis and
proof management tool incorporating various provers and di↵erent specification
languages, thus providing a tool for heterogeneous specifications.

7. Conclusion

We have proposed to take amalgams as originally used for case-based rea-
soning to act as a model for conceptual blending. To obtain a mathematically
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precise, uniform model that is applicable to a wide range of di↵erent representa-
tion formalisms, we have opted for a category-theoretic definition of amalgam,
drawing from the theory of ordered categories and partial arrows. This abstract
approach situates our work within recent e↵orts to use category theory for mod-
elling and reasoning about the structure and operations of human cognition.

Amalgams, as we define them category-theoretically, lie between pushouts
(which are too restrictive for modelling blends) and cocones (which cover too
many irrelevant cases). They are “essentially equivalent” to near pushouts
(Goguen’s 3

2 -pushouts) of cross-space relations in the corresponding ordered
category of partial arrows, but unlike near pushouts, they are more suitable for
a computational realisation of conceptual blending. To illustrate this, we have
discussed three di↵erent representations of computational conceptual blending
as uniformly implemented with amalgams.

Also based on Goguen’s work on 3
2 -pushouts in ordered categories, there is a

recent e↵ort by Diaconescu to extend the category-theoretic notion of ‘institu-
tion’ —widely used in formal specification— to encompass ordered categories,
with the explicit aim of providing adequate mathematical foundations to concep-
tual blending [70]. He argues that such foundations necessarily need to include
a proper treatment of the semantic dimension by means model amalgamation
in lax cocones. However, by sticking, as Goguen did, to the ordered categorical
framework, his proposal is still computationally di�cult to realise. In our future
work we want to explore how our amalgam-based approach for computational
conceptual blending relates to 3

2 -institutions and model amalgamation.
The representation-independent character of our category-theoretic model

will allow us to establish interesting connections with other related frameworks
that we would like to explore. In [108], for instance, we link core aspects of cer-
tain creative problem-solving processes based on conceptual blending to amal-
gams for diagrams of image schemas—basic skeletal patterns that recur in our
sensory and motor experience [109, 110]— by framing them in terms of the
category-theoretic model of the creative process put forward by Mazzola et al.,
which is based on the Yoneda Lemma [111, 112]. We think that by means of
our model we could further provide mathematically rigorous definitions of ‘con-
ceptual metaphor’, ‘metaphorical entailment’ and ‘metaphor aptness’ [113] by
drawing from Barwise and Seligman’s work on ‘distributed logics’ and ‘reasoning
at a distance’ using channel theory [22].

Finally, we think that the uniform model presented in this article can also be
very relevant for further understanding the relationship of embodied cognition
with conceptualisation and creativity in computational environments. While
Hedblom et al. have done some initial work in this direction by developing an
image schema logic [114], we think that by building upon a category-theoretic
approach we can reach a uniform but computationally feasible model of the
image-schematic structure underlying human conceptualisation and creative-
problem solving that is applicable to a variety of di↵erent domains.
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[25] T. Mossakowski, C. Maeder, K. Lüttich, The Heterogeneous Tool Set, in:
O. Grumberg, M. Huth (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems. 13th International Conference, TACAS 2007,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007.
Proceedings, volume 4424 of Lecture Notes in Computer Science, Springer,
2007, pp. 519–522.
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E. Plaza, K.-U. Kühnberger, A computational framework for conceptual
blending, Artificial Intelligence 256 (2018) 105–129.

[95] T. Veale, From conceptual “mash-ups” to “bad-ass” blends: A robust
computational model of conceptual blending, in: M. L. Maher, K. Ham-
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