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Abstract. Similarity assessment is a key operation in many artificial intelligence
fields, such as case-based reasoning, instance-based learning, ontology matching,
clustering, etc. This paper presents a novel measure for assessing similarity be-
tween individuals represented using Description Logic (DL). We will show how
the ideas of refinement operators and refinement graph, originally introduced for
inductive logic programming, can be used for assessing similarity in DL and also
for abstracting away from the specific DL being used. Specifically, similarity of
two individuals is assessed by first computing their most specific concepts, then
the least common subsumer of these two concepts, and finally measuring their
distances in the refinement graph.

1 Introduction

Description Logic (DL) [4] is becoming a de facto standard for knowledge representa-
tion in many application areas. DL constitutes a family of different logics, which have
been carefully characterized in terms of expressivity and computational complexity of
their deduction algorithms. Gaining momentum through the Semantic Web initiative,
DL popularity is also related to a number of tools for knowledge acquisition and rep-
resentation, as well as inference engines, that have been made publicly available. For
these reasons, DL has also become the technology of choice for representing knowledge
in knowledge-intensive case-based reasoning systems [23, 9].

In the last few years, there has been a growing interest in defining similarity mea-
sures for expressive representation formalisms, such as DL. For example, Amato et al.
[10] propose to measure concept similarity as a function of the intersection of their
interpretations, which is, in fact, an approximation to the semantic similarity of con-
cepts. The approximation is better or worse depending on how good is the sample of
individuals used for assessing similarity. Thus, a good sample of individuals is required.

Other approaches have been proposed in order to assess similarity between individ-
uals or concepts without requiring the use of a good sample of individuals. González
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et al. [12] present a similarity measure for description logic designed for case-based
reasoning systems. This similarity measure is based on the idea of hierarchical aggre-
gation, in which the similarity between two instances is computed as an aggregation
of the similarity of the values in their roles. Like most hierarchical aggregation mea-
sures, however, this measure has problems with roles which create cycles and they
are ignored during similarity assessment. Related to the work of González et al. other
similarity measures have been proposed using the hierarchical aggregation principle
for other representation formalisms such as Horn Clauses [14], Feature Terms [1], or
object-oriented representations [6]. Description logic has also been used to model CBR
case retrieval mechanisms not based on similarity, but on the subsumption order [22].

The work presented in this paper is most related to that of Ontañón and Plaza [20],
where they introduced two similarity measures for feature terms based on refinement
graphs. The large differences between feature terms and description logic imply that
their ideas cannot be applied directly, however. For instance, there are ideal refinement
operators for feature terms, and also there is no distinction between concept and indi-
vidual like in DL. In this paper we borrow the basic ideas and extend them in order to
define similarity measures for description logic.

The rest of the paper runs as follows. The next section briefly introduces the ba-
sic concepts of DL and refinement operators used in the paper. Section 3 defines the
proposed similarity measure, along with the algorithms used to compute it. Section 4
exemplifies the application of the similarity measure for a particular domain, while Sec-
tion 5 presents the results of an empirical evaluation. Finally Section 6 concludes the
paper and elaborates on future work.

2 Background

This section briefly summarizes basic concepts regarding description logic, refinement
operators and similarity assessment, which we will use in this paper.

2.1 Description Logic

Description Logic (DL) is a family of knowledge representation languages which have
received a lot of attention due to the development of the Semantic Web. DL is the logical
foundation of OWL [13], the W3C standard ontology language, and consequently there
is great interest in the creation and maintenance of knowledge bases coded using this
formalism.

DL represents knowledge using three types of basic entities: concepts, roles and in-
dividuals. Concepts provide the domain vocabulary required to describe sets of individ-
uals with common features, roles allow to describe relationships between individuals,
and individuals represent concrete domain entities. DL expressions are built inductively
starting from finite and disjoint sets of atomic concepts (NC), atomic roles (NR) and
individual names (NI ).

An interpretation is a vector I = (∆I , ·I), where ∆I is a non-empty set called the
interpretation domain, and ·I is the interpretation function. The interpretation function



Concept Syntax Semantics
Top concept > ∆I

Atomic concept A AI

Conjunction C uD CI ∩DI

Existential restriction ∃R.C {x ∈ ∆I | ∃y : (x, y) ∈ RI ∧ y ∈ CI}
Table 1. EL concepts and semantics.

Axiom Syntax Semantics
Concept inclusion A v B AI ⊆ BI

Disjointness A uB ≡ ⊥ AI ∩BI = ∅
Role domain domain(R) = A (x, y) ∈ RI → x ∈ AI

Role range range(R) = A (x, y) ∈ RI → y ∈ AI

Table 2. TBox axioms.

relates each atomic concept A ∈ NC with a subset of ∆I , each atomic role R ∈ NR
with a subset of ∆I ×∆I and each individual a ∈ NI with a single element of ∆I .

There are many DL with different expressive power and reasoning complexity de-
pending on which concept constructs are allowed in the language 3. In this paper we
will focus on the EL logic, a light-weight DL with polynomial reasoning time that has
proven to be useful to manage large knowledge bases in real world applications [8, 2].
Table 1 shows the EL concept constructs as well as the extension of the interpretation
function to complex concepts. Later in this paper we will use C(EL) to denote the set
of all possible concept expressions that can be built in the EL logic.

A DL knowledge base (KB), K = (T ,A), consists of two different types of in-
formation: the TBox or terminological component, which contains concept and role
axioms and describes the domain vocabulary, and the ABox or assertional component,
which uses the domain vocabulary to assert facts about individuals. For the purposes
of this paper, a TBox is a finite set of concept and role axioms given in Table 2, and
an ABox is a finite set of axioms about individuals shown in Table 3. We say that a
TBox is acyclic if no concept definition depends directly or indirectly on itself. Note
that we only allow concept inclusion axioms between atomic concepts and, therefore,
these TBoxes will always be acyclic.

An interpretation I is a model of a knowledge base K iff the conditions described
in Tables 2 and 3 are fulfilled for every axiom in K. A concept C is satisfiable w.r.t. a
knowledge base K iff there is a model I of K such that CI 6= ∅.

The basic reasoning operation in DL is subsumption. Let K be a knowledge base
and C and D be two concepts, we say that C is subsumed by D w.r.t. K (C vK D)
iff CI ⊆ DI for every model I of K. When the knowledge base K is known we can
simplify the notation and write C v D. Finally, an equivalence axiom C ≡ D is just an
abbreviation for C v D and D v C, and a strict subsumption axiom C @ D is simply
C v D and C 6≡ D.

3 See http://www.cs.man.ac.uk/˜ezolin/dl/ for further information.



Axiom Syntax Semantics
Concept instance C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Same individual a = b aI = bI

Different individual a 6= b aI 6= bI

Table 3. ABox axioms.

2.2 Refinement Operators

This section briefly summarizes the notion of refinement operator and introduces the
concepts relevant for this paper (see [15] for a more in-depth analysis of refinement
operators). Refinement operators are defined over quasi-ordered sets.

Definition 1. A quasi-ordered set is a pair (S,≤), where S is a set, and ≤ is a binary
relation among elements of S that is reflexive (a ≤ a) and transitive (if a ≤ b and b ≤ c
then a ≤ c).

If a ≤ b and b ≤ a, we say that a ≈ b, or that they are equivalent.
Refinement operators are defined as follows:

Definition 2. A downward refinement operator ρ over a quasi-ordered set (S,≤) is a
function such that ∀a ∈ S : ρ(a) ⊆ {b ∈ S|b ≤ a}.

Definition 3. An upward refinement operator γ over a quasi-ordered set (S,≤) is a
function such that ∀a ∈ S : γ(a) ⊆ {b ∈ S|a ≤ b}.

In other words, upward refinement operators generate elements of S which are “big-
ger” (which in this paper will mean “more general”), whereas downward refinement
operators generate elements of S which are “smaller” (which in this paper will mean
“more specific”). Typically, the symbol γ is used to symbolize upward refinement op-
erators, and ρ to symbolize either a downward refinement operator, or a refinement
operator in general. A common use of refinement operators is for navigating sets in an
orderly way, given a starting element. Typically, the following properties of operators
are considered desirable:

– A refinement operator ρ is locally finite if ∀a ∈ S : ρ(a) is finite.
– A downward refinement operator ρ is complete if ∀a, b ∈ S|a ≤ b : a ∈ ρ∗(b).
– An upward refinement operator γ is complete if ∀a, b ∈ S|a ≤ b : b ∈ γ∗(a).
– A refinement operator ρ is proper if ∀a, b ∈ S b ∈ ρ(a)⇒ a 6≈ b.

where ρ∗ means the transitive closure of a refinement operator. Intuitively, locally finite-
ness means that the refinement operator is computable, completeness means we can
generate, by refinement of a, any element of S related to a given element a by the order
relation≤ (except maybe those which are equivalent to a), and properness means that a
refinement operator does not generate elements which are equivalent to a given element
a. When a refinement operator is locally finite, complete and proper, we say that it is



ρ(C) = ρ1(C) ∪ ρ2(C) ∪ ρ3(C) ∪ ρ4(C)

ρ1(C) = {C[Ai → B] | B ∈ max{B′ ∈ NC | B′ @ Ai}}
ρ2(C) = {C uB | B ∈ max{B′ ∈ NC | ∀A ∈ C : A 6v B′ ∧B′ 6v A}}
ρ3(C) = {C[∃Ri.Dj → ∃Ri.E] | E ∈ ρ(Dj)}
ρ4(C) = see Algorithm 1

Fig. 1. Refinement operator.

ideal. Other interesting properties of refinement operators have been discussed in the
literature, such as minimality [5], but are not relevant for the purposes of this paper.

Concerning DL, the set of all the possible concept expressions and the subsumption
relation between concepts form a quasi-ordered set and, therefore, we can define DL
refinement operators to specialize or generalize concepts. In this paper we focus on the
EL logic which has the advantage of having ideal refinement operators to traverse the
quasi-ordered set (C(EL),v) [17].

It is also well known that there are no ideal refinement operators for theALC logic,
nor for any more expressive logic than that [18]. Fortunately, the similarity metric we
describe in this paper does not require ideal operators and thus our approach is still
valid for more expressive description logics.

2.3 A refinement operator for the EL logic

Any EL concept C can be written as a conjunction of concepts C1 u . . . u Cn where
each Ci is either an atomic concept A or an existential restriction ∃R.D which filler D
follows the same rules. We say that Ci is redundant in C if there is another Cj in C
such that Cj v Ci (i 6= j), that is, if the information contained in Ci is also in Cj . We
say that a concept C is minimal if it does not contain any redundant subconcept and the
fillers of the existential restrictions are minimal as well. And, of course, any concept
can be reduced to a minimal concept by removing the redundant information.

The refinement operator we propose, ρ, is shown in Figure 1 and it is proper only
if it receives a minimal concept. We defined the operator as the union of four simpler
operators (ρ1, ρ2, ρ3 and ρ4) that specialize the concept C in different ways. The idea
behind ρ1 and ρ2 is to specialize the original concept adding the most general atomic
concepts which provide some new information. Symmetrically, ρ3 and ρ4 specialize the
original concept adding the most general existential restrictions which provide some
new information. Next, we describe each one of these operators in depth.

ρ1 specializes a concept C replacing any of its atomic concepts A with one of its
direct descendants in the conceptual hierarchy. For example, if there is a concept Car
in the domain ontology, ρ1(Car) will return different types of car like ShortCar or
CloseCar.

ρ2 refines a concept C adding the most general atomic concepts which neither sub-
sume nor are subsumed by other atomic concept currently in C. For example, the oper-



Algorithm 1 ρ4(C)

1: RES = ∅
2: for R ∈ NR do
3: DS = {D | ∃R.D ∈ C}
4: REM = {range(R)}
5: while REM 6= ∅ do
6: E = pickOne(REM)
7: if ∃D ∈ DS : D @ E then
8: REM = REM ∪ρ(E)
9: else

10: if @D ∈ DS : E v D then
11: RES = RES ∪{C u ∃R.E}
12: end if
13: end if
14: end while
15: end for
16: return RES

ator ρ1(ShortCar) returns formulas like ShortCar u CloseCar. Both ρ1 and ρ2 can
be easily computed by traversing the hierarchy of atomic concepts.

ρ3 and ρ4 follow the same ideas but they operate on existential restrictions rather
than on atomic concepts. ρ3 specializes existential restrictions currently in C applying
the refinement operator to their fillers. For example, if C ≡ Car u ∃hasLoad.Load
and the domain ontology describes different types of loads like Triangle or Circle, then
ρ3(C) returns concepts like Caru∃hasLoad.Triangle and Caru∃hasLoad.Circle.

Finally, ρ4 refines a conceptC adding the most general existential restrictions which
neither subsume nor are subsumed by other existential restrictions currently in C. Al-
gorithm 1 shows how to compute these refinements. The idea is to find the most general
fillers for each role which contribute some new information. The algorithm begins with
the most general filler for each role, its range, and stores it in the set REM which con-
tains the candidates that have not been processed yet. In each while loop the algorithm
processes one of these remaining elements, E, according to the following ideas:

– if E subsumes (is more general than) some of the existing fillers in C then E does
not provide any new information yet and we need to keep specializing it, so we add
all its refinements to REM.

– if E is subsumed by (is more specific than) some of the existing fillers in C then
we ignore it because this situation is already covered by ρ3.

– if E does not subsume any of the existing fillers in C and none of them subsumes
E then we have found a new interesting existential restriction and we add the cor-
responding formula to the solution set.

For example, ρ4(Car) will return formulas with new existential restrictions like
Car u ∃load.Shape or Car u ∃wheels.Number.



3 Measuring Similarity Using Refinement Operators

In this section we present our DL refinement (SDLρ) similarity measure for individuals
in description logic which is based on the following intuitions:

First, given two concepts C and D such that C v D, it is possible to reach C from
D by applying a complete downward refinement operator ρ to D a finite number of
times, i.e. C ∈ ρ∗(D).

Second, the number of times a refinement operator needs to be applied to reach C
from D is an indication of how much more specific C is than D. In other words, the
length of the refinement chain to reach C from D, which we will note by λ(D

ρ−→ C),
is an indication of how much more information C has that was not contained in D. It is
also an indication of their similarity: the smaller the length, the higher their similarity.
Additionally, λ(> ρ−→ C) measures the distance from the most general concept, >, to
C, which is a measure of the amount of information in C.

Third, given any two concepts, their least common subsumer (LCS) is the most
specific concept which subsumes both. The LCS of two concepts contains all that is
shared between two concepts, and the more they share the more similar they are.

Using the previous three ideas, we can now define similarity between two concepts
C and D as:

SCDLρ(C,D) =
λ1

λ1 + λ2 + λ3

where

λ1 = λ(> ρ−→ LCS(C,D))

λ2 = λ(LCS(C,D)
ρ−→ C)

λ3 = λ(LCS(C,D)
ρ−→ D)

Thus, the similarity between two concepts C and D is assessed as the amount of
information contained in their LCS (i.e. the amount of information they share) divided
by the total amount of information in C and D (the common information plus the in-
formation specific to each one).

Additionally, the same method can be used to assess similarity between individuals
by adding an additional idea: that of the most specific concept. The most specific con-
cept (MSC) of an individual is the most specific concept we can create in a given DL
which contains the given individual, i.e. the concept in the DL which better represents
such individual. Given two individuals a and b, their similarity can be assessed in the
following way:

SDLρ(a, b) = SCDLρ(msc(a),msc(b))

The remainder of this section elaborates these ideas.



Algorithm 2 msc(a,A)

1: MSC = >
2: for C(a) ∈ A do
3: MSC = MSC uC
4: end for
5: for R(a, b) ∈ A do
6: MSC = MSC u(∃R.msc(b,A))
7: end for
8: return MSC

3.1 Most Specific Concepts

Let us start by briefly describing the idea of most specific concept (MSC). The MSC
of a given individual is the most specific concept we can create which contains a given
individual. It is well known that depending on the set of constructs allowed in the DL,
the MSC might exist or not, and different algorithms have been proposed, like Baader’s
for the EL logic [3]. This section presents a simple algorithm to approximate the MSC
in EL assuming non-cyclic TBoxes (i.e. non-cyclic concept definitions).

Specifically, a concept C is said to be the MSC of an individual a with respect to
an ABox A, mscA(a) = C, if C(a) and for each concept D such that D(a), C v D
holds.

In general, the MSC does not always exist for a given individual in EL. To illustrate
why does this happen, let us consider the following example. Let A = {R(a, a)} be an
ABox, and n ≥ 0. It is easy to see that a is an instance of the following concepts:

Cn ≡ ∃R. . . .∃R︸ ︷︷ ︸
n times

.>

Notice that Ci is more specific than Cj if i > j, and thus, in this case, there is no
concept which can satisfy the definition of MSC. This problem arises whenever there
is a cycle in the definition of an individual. For simplicity reasons, in the remainder of
this paper we will assume that individuals contain no cycles in their definition.

In the EL logic and under the assumption of no cycles we have used Algorithm 2
to compute the MSC of an individual. For example, given the following ABox which
describes a train with one car which contains a triangle and a square:

Train(t1), hasCar(t1,c1), Car(c1), hasLoad(c1,l1), Triangle(l1),
hasLoad(c1,l2), Square(l2)

our algorithm computes the following MSC of t1 that coincides with what was
expected :

Train u ∃hasCar.(Car u ∃hasLoad.Triangle u ∃hasLoad.Square)

Notice that our acyclicity assumption does not restrict the application of the simi-
larity measure presented in this paper; in case cycles are present, we would only need a
different way of computing the MSC, like the one presented in [3].



Algorithm 3 lcs(C1, ..., Cn)

1: LCS = >
2: while true do
3: N = {C ∈ ρ(LSC)|∀i=1...nCi v C}
4: if N = ∅ then
5: return LCS
6: else
7: LCS = any C ∈ N
8: end if
9: end while

3.2 Least Common Subsumer

Once we have the MSC of the two individuals we want to compare, the next step is
to obtain the most specific concept that subsumes both, that is, their least common
subsumer (LCS) [21].

Definition 4. The Least common subsumer (LCS) of a set of given concepts, C1, ..., Cn
is another concept C = LCS(C1, ..., Cn) such that ∀i=1...nCi v C, and for any other
concept C ′ such that ∀i=1...nCi v C ′, C v C ′ holds.

Depending on the specific DL being used, computing the LCS is trivial or not. In
general, it can be computed by means of a search process, such as the one presented
in Algorithm 3. Algorithm 3 works as follows. Initially, the LCS is set to the most
general concept,>. Then, the set of refinements of> that are still more general than all
the concepts C1, ..., Cn is computed and stored in the set N . If N is empty, we know
that there are no refinements of the current LCS that are still more general than all of
the concepts C1, ..., Cn, and thus, we have already found the LCS. If N is non-empty,
we can just select any of the concepts in N , and keep refining. In case the refinement
operator is not proper, then which C ∈ N is selected has to be carefully performed for
not entering into an infinite loop.

For example, given two concepts C1 = Trainu∃hasCar.(∃hasLoad.Triangle),
andC1 = Trainu∃hasCar.(∃hasLoad.Square), and assuming that the most specific
concept that is more general than Square and Triangle in our ABox is Shape, we
can use the previous algorithm to conclude that msc(C1, C2) = Train u ∃hasCar.(
∃hasLoad.Shape).

3.3 Measuring Distances in The Refinement Graph

The last piece we require for defining SDLρ is a way to measure the distance in the
refinement graph between two concepts C and D, such that D v C, i.e. λ(C

ρ−→ D).
This can be done by measuring the number of refinements required to reach D from C.

Computing the minimum number of refinements required to reach D from C might
be computationally too expensive, so in SDLρ we just use an estimate computed using
Algorithm 4. Algorithm 4 works as follows. If C is already equivalent to D, then their



Algorithm 4 λ(C ρ−→ D)

1: if C ≡ D then
2: return 0
3: else
4: C′ ∈ {E ∈ ρ(C)|D v E}
5: return 1 + λ(C′ ρ−→ D)
6: end if

train1: Train 

car1: ShortCar, ClosedCar 

load1: Triangle two: Number 

train2: Train 

car2: ShortCar, OpenCar 

load2: Triangle two: Number load3: Circle 

SDL! (MSC1,MSC2) =
"1

"1 + "2 + "3
= 7
7+1+ 2

= 0.7

T (top) 

LCS 

MSC1 MSC2 

λ1 

λ2 λ3 

Sim(train1, train2) = SDL! (MSC1,MSC2)

hasCar hasCar 

wheels wheels load load load 

Fig. 2. Example of similarity between 2 trains.

distance in the refinement graph is 0, otherwise, the algorithm takes one refinement C ′

of C, and recursively computes the distance from C ′ to D, the distance from C to D is
then just 1 plus the distance from C ′ to D.

4 Exemplification

This section shows an example of the similarity measure SDLρ using the domain about
trains introduced by Michalsky [16]. The two specific trains we are going to compare
are shown in Figure 2. Both of them have just one short car that transports some type
of load. The differences are that the car of train1 has a closed top and transports a
triangle, while the car of train2 has an open top and transports a triangle and a circle.

In order to compute the similarity between both trains, we need to compute first the
most specific concepts (MSC) that represents them using Algorithm 2:



msc1 ≡ Train u ∃hasCar.(ClosedCar u ShortCar u ∃load.Triangle u
∃wheels.Two)

msc2 ≡ Train u ∃hasCar.(OpenCar u ShortCar u ∃load.Triangle u
∃load.Circle u ∃wheels.Two)

Next we compute the most specific concept that subsumes the previous ones, that
is LCS(msc1,msc2), using Algorithm 3. This algorithm produces the following se-
quence of refinements:

0 : >
1 : Train

2 : Train u ∃hasCar.Car
3 : Train u ∃hasCar.ShortCar
4 : Train u ∃hasCar.(ShortCar u ∃load.Shape)
5 : Train u ∃hasCar.(ShortCar u ∃load.Triangle)
6 : Train u ∃hasCar.(ShortCar u ∃load.Triangle u ∃wheels.Number)
7 : Train u ∃hasCar.(ShortCar u ∃load.Triangle u ∃wheels.Two)

The LCS is the last concept in the previous sequence, and describes the information
that is common to both trains: they have one short car with two wheels which transports
a triangle. The amount of information shared by both trains can be measured as the
length of the previous sequence (λ1 = 7).

Then, we compute the amount of information that is specific to each train using
Algorithm 4. First we search for a sequence of refinements from the LCS to msc1
(λ2 = 1):

1 : Train u ∃hasCar.(ClosedCar u ShortCar u ∃load.Triangle u
∃wheels.Two)

Next, we compute the sequence of refinements from the LCS to msc2 (λ2 = 2)):

1 : Train u ∃hasCar.(OpenCar u ShortCar u ∃load.Triangle u
∃wheels.Two)

2 : Train u ∃hasCar.(OpenCar u ShortCar u ∃load.Cricle
u∃load.Triangle u ∃wheels.Two)

Finally, the similarity between both trains is computed as follows:

SDLρ(train1, train2) = SCDLρ(msc1,msc2) =
λ1

λ1 + λ2 + λ3
=

7

7 + 1 + 2
= 0.7



1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 3. Trains data set as introduced by Michalski [16].

5 Empirical Evaluation

In order to evaluate our similarity measure, we used the trains data set shown in Fig-
ure 3 as presented by Michalski [16]. We selected this dataset since it is available in
many representation formalisms (Horn clauses, feature terms and description logic),
and therefore, we can compare our similarity measure with existing similarity measures
in the literature. The dataset consists of 10 trains, 5 of them labelled as “west”, and 5 of
them labelled as “east.”

We compared our similarity measure against 6 others: González et al. [12], a sim-
ilarity measure for acyclic concepts in description logic, RIBL [11], which is a Horn
clause similarity measure, SHAUD [1], which is a similarity measure for feature terms,
and Sλ, Sπ , and Swπ [20], which are similarity measures for feature terms but also
based on the idea of refinement operators. For RIBL, we used the original version of
the trains dataset, for SHAUD, Sλ, Sπ , and Swπ , we used the feature term version of the
dataset used in [20], which is a direct conversion from the original Horn clause dataset
without loss, and for our DL similarity measure (referred to as SDLρ in Table 4), we
used the version created by Lehmann and Hitzler [19].

We compared the similarity measures in 5 different ways:

– Classification accuracy of a nearest-neighbor algorithm.
– Classification accuracy of a 3-nearest neighbor algorithm.
– Average best rank of the first correct example: if we take one of the trains, and sort

the rest of the trains according to their similarity with the selected train, which is
the position in this list (rank) of the first train with the same solution as the selected
train (west or east).

– Jaro-Winkler distance: the Jaro-Winkler measure [24] can be used to compare two
orderings. We measure the similarity of the rankings generated by our similarity
measure with the rankings generated with the other similarity measures.

– Mean-Square Difference (MSD): the mean square difference with respect to our
similarity measure, SDLρ.

Table 4 shows the results we obtained by using a leave-one-out evaluation. Con-
cerning classification accuracy, we can see that our similarity measure (labeled SDLρ



SDLρ González et al. RIBL SHAUD Sλ Sπ Swπ
Accuracy 1-NN 70% 50% 60% 50% 40% 50% 80%
Accuracy 3-NN 70% 60% 70% 80% 70% 80% 80%

Best Rank 1.4 1.5 2.0 2.0 2.3 2.1 1.7
Jaro-Winkler - 0.78 0.72 0.76 0.71 0.77 0.72

MSD - 0.11 0.03 0.05 0.02 0.05 0.17
Table 4. Comparison of several similarity metrics in the trains dataset.

in the table) achieves a high classification accuracy, higher than most other similarity
measures, except Swπ . The trains data-set is only apparently simple, since the classifi-
cation criteria is a complex pattern which involves several elements from different cars
in a train. The only similarity measure that came close is Swπ , which achieved an 80%
accuracy (it misclassified trains west 1 and west 3). Concerning the average best rank,
either the first or the second retrieved case using our similarity measure was always of
the correct solution class, and thus it is very low, 1.4. Using the Jaro-Winkler similar-
ity, and the MSD, we can see that SDLρ generates an order very similar to González
et al.’s similarity, but that in terms of MSD, it is closest to Sλ, which is also based on
refinement operators (although for feature terms instead of description logic).

Although a more thorough evaluation of our measure by integrating it into a real
CBR system in a more complex task is part of our future work, our empirical evaluation
shows promising results and confirms that refinement operators are a viable approach
to assess similarity in CBR systems which use description logic as their representation
formalism.

6 Conclusions and Future Work

We have presented the similarity measure SDLρ for the EL description logic, based on
notions of refinement graph and generalization space. Refinement graphs were intro-
duced in a subset of Horn logic for the purpose of modeling inductive learning, until
some of the authors of this paper [20] proposed they could be used for the purpose
of estimating similarity in knowledge representation formalisms like description logic.
Since that previous work presented Sλ, a similarity measure for feature terms, part of
the claim was unsubstantiated until now, where SDLρ is shown to be similarly defined
for a given description logic.

Similarity is of great importance to CBR, and similarity for representation for-
malisms like description logic is important for knowledge-intensive CBR, but also for
web-based applications, ontology alignment, and other tasks for AI systems. We con-
sider this work a start into the process of achieving a better understanding of the rela-
tionship of case-based reasoning and the other fields of AI, like knowledge representa-
tion, logic, and inductive learning. More work need to be done, but this understanding
might also be instrumental in greater visibility of CBR in the framework of artificial
intelligence community.

Future work will focus on defining refinement-based similarity measures for more
expressive description logics (DL) and also for subsets of Horn logics. Much of the



work on the family of description logic revolves around finding subsets of DL that are
expressive but computationally tractable; OWL, for instance, defines 3 language levels
of increasing expressiveness and complexity. Defining refinement operators for high
complexity DL may not be practical, so finding a more expressive subset of DL for
which a tractable refinement-based similarity measure exists is our next goal.
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