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A B S T R A C T

We propose a model that conceptualises diagrammatic sensemaking and reasoning as blends of image
schemas – patterns derived from our perceptual and embodied experiences and interactions with the
environment – with the geometric structure of the diagram. Our ultimate goal is to develop an algorithmic
method for determining several potential blends that hold cognitive value for observers. Building upon
our formal, category-theoretic approach to conceptual blending, we extend it by formalising two governing
principles of blending. These principles serve as guides for the blending process, directing the cognitive
construction of the blend. As these principles may compete with each other and favour different blend
structures, we argue that their combination leads to cognitively useful blends. Through examples of several
alternative blends of the geometric configuration of a particular Hasse diagram with the SCALE image schema,
we demonstrate the implications of these competing pressures on diagrammatic reasoning. Consequently, this
work disambiguates and operationalises the intricacies of conceptual blending, advancing its applicability in
computational systems.
1. Introduction

Formal approaches to diagrammatic representation and reasoning
often focus on the mapping between the geometric configuration’s syn-
tax (i.e., shapes) and the intended concepts they represent (Gurr, 1998;
Palmer, 1978; Shimojima, 1996). However, these abstract approaches
overlook the active role of the observer in diagrammatic reasoning
and assume predefined meanings for each geometric shape. A more
cognitively-informed approach to diagrammatic reasoning acknowl-
edges that geometric configurations are not inherently meaningful but
rather prompt the observer to structure them into meaningful diagrams
by integrating appropriate mental frames (Klein et al., 2006). Scholars
suggest that interpreting diagrams involves an active, constructive, and
imaginative process on the part of the observer (Cheng et al., 2001;
Legg, 2013; May, 1999).

To develop a framework for understanding diagrams that incor-
porates the embodied nature of our reasoning capacity, we propose
modelling diagrammatic inferences as originating from image schemas.
Specifically, we envision sensemaking and reasoning with diagrams as
networks of conceptual blends, combining suitable image schemas with
elements of the diagram’s geometry. Image schemas represent recurring
patterns of our embodied experiences, acquired through interaction
and action in our physical world. These schemas capture the invariant

∗ Corresponding author at: Artificial Intelligence Research Institute (IIIA), CSIC, Spain.
E-mail address: marco@iiia.csic.es (M. Schorlemmer).

aspects of our experiences since infancy. For instance, by touching and
observing different types of containers, we learn that they all possess an
inside and an outside, separated by a boundary (Johnson, 1987; Lakoff,
1987). Bourou et al. (2021b) showed how specific image schemas can
be blended with the geometric configuration of particular diagrams,
resulting in inferences consistent with the intended semantics of the
diagrams. They consider a diagram not only the configuration of certain
geometric shapes in space; a diagram, as humans make sense of it,
is geometry blended with the image schemas that ground the human
embodied understanding of the geometry.

Image schemas have previously been used in computational frame-
works of conceptual blending to guide the concept creation process
(Hedblom et al., 2016; Schorlemmer et al., 2016). In these works, image
schemas usually play the role of a common generic structure underlying
the mental spaces to be blended (the so-called ‘generic space’, see
Section 2.2). In our approach to diagram sensemaking, however, we
follow Bourou et al. (2021b), and image schemas play the role of input
spaces to the blend, as they are integrated with the geometric configu-
ration of a diagram. The common generic underlying structure of such
a conceptual blend is based on the correspondences found between
the geometric configuration of a diagram and the image-schematic
structures that support our making sense of it.
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While any schema could potentially be blended with any geomet-
ric configuration, not all blends are equally likely to be constructed
cognitively by observers to support their inferences and reasoning ad-
equately. Conceptual blending follows governing principles that guide
the structuring of blends to possess cognitively desirable features (Fau-
connier & Turner, 2002, pp. 325–336), such as being compact and easy
to remember or manipulate, while preserving the original structure
of the blended concepts. These principles also enable observers to
recognise the constituent parts of the blend and understand it. Since
the governing principles aim to produce cognitively valuable blends,
we believe they can be instrumental in formally characterising suitable
blends within our framework for diagram sensemaking.

In this article, we revisit these governing principles and propose
a formalisation aligned with the uniform, representation-independent
characterisation of conceptual blending introduced by Schorlemmer
and Plaza (2021). We argue that our formalisation can serve as a
cognitively-inspired heuristic to guide the selection of appropriate im-
age schemas for making sense of a diagram. Furthermore, we demon-
strate how these governing principles operate in diagrammatic rea-
soning through examples of blends between an image schema and
the geometric configuration of a diagram. This article’s significance
lies in its progress towards formally characterising which conceptual
blends of image schemas with a given geometric configuration are
cognitively preferable and why. By establishing formal criteria for
evaluating possible blends, we may algorithmically explore the space of
potential meanings of a geometric configuration and gain new insights.
Ultimately, our framework aims to bring the theory of conceptual
blending from a descriptive realm to a mathematically formal one,
enabling its application in computational contexts.

The structure of this article is as follows: Section 2 introduces the
key ideas related to this work, including the relevant background on the
governing principles and our previous contributions to a mathematical
framework for blending. Section 3 restates the formal details of our
blending framework and introduces additional definitions that facilitate
the description of our newly introduced formalisations of the governing
principles later in the same section. Section 4 showcases how the degree
of satisfaction of some governing principles can be quantified, analysing
four blends of an image schema with a diagram. Finally, Section 5 is
a discussion of our contributions, Section 6 reviews related work, and
Section 7 includes our conclusions and future work.

2. Background

2.1. Sensemaking and image schemas

Enactivism proposes that cognition and meaning emerge as living
organisms (agents) interact with their environment in a goal-directed
manner, aiming to grow and sustain themselves (Merleau-Ponty, 1983;
Varela, 1991). This process heavily relies on the embodiment of the
agent, as the physical body imposes specific requirements for survival,
equipped with sensory organs and actuators that shape the agent’s
perception and interaction within the environment. In line with this
notion, sensemaking can be understood as the active process of selecting
nd projecting a structuring frame onto an agent’s percepts to con-
truct meaning from them (Klein et al., 2006). A concrete approach to
ensemaking involves the utilisation of image schemas and conceptual
lending (Fauconnier & Turner, 2002, pp. 104–105). Image schemas
epresent patterns derived from recurrent bodily experiences acquired
arly in life, not through the acquisition of propositions, rules, or
riteria, but through experiences such as maintaining balance, sup-
orting objects, orienting oneself in space and time, performing body
ovements, or manipulating objects. Repetitive experiences of a similar
ature give rise to the formation of image schemas, which reflect the
2

invariant structure shared among these experiences (Johnson, 1987;
Lakoff, 1987).1

The primary function of image schemas lies in their ability to
shape our perception and experience. It is hypothesised that many
concepts we, as humans, utilise – such as time, events, and causes – are
structured and comprehended through the unconscious construction of
conceptual metaphors grounded in image schemas (Lakoff & Johnson,
1999). Image schemas possess a gestalt-like nature, comprising a set
of components arranged in specific relational structures, wherein the
meaning of each component arises solely through its relation to all
others (Lakoff & Núñez, 2000, p. 31). It is through these properties that
observers are capable of integrating image schemas with their experi-
ences, thus making sense of those experiences and extracting meaning
from them. To fulfil this function, the structural integrity of image
schemas must be preserved during this integration process (Lakoff &
Núñez, 2000, p. 42).

2.2. Conceptual blending

In the previous subsection, we briefly discussed sensemaking as
the integration of image schemas with our experiences, which can be
described through the theory of conceptual blending. To introduce con-
ceptual blending, we must first explore the concept of mental spaces.
Mental spaces are ‘‘small conceptual packets constructed as we think
and talk, for purposes of local understanding and action’’ (Faucon-
nier & Turner, 2002, p. 102). They represent coherent and integrated
units of information that encompass entities, relations, and properties
characterising them. Mental spaces can be constructed based on previ-
ously acquired knowledge or current experiences, including exposure
to language (Fauconnier, 1994; Fauconnier & Turner, 2002). While
they operate in working memory, the construction of mental spaces can
also draw upon long-term memory due to their reliance on preexisting
knowledge. Elements within one mental space can be corresponded to
elements in other mental spaces, enabling cognitive access between
them. The central premise of the theory of conceptual blending is that
a systematic process of establishing correspondences between different
preexisting mental spaces, referred to as ‘input spaces’, can lead to the
emergence of novel meanings. This is particularly evident in the gen-
eration of original and unexpected mental spaces, such as the mythical
creature Pegasus, which combines the body parts of a bird and a horse.
Although less apparent, sensemaking also involves a form of novelty,
as stimuli become cognitively structured by agents in new, meaningful
ways (Klein et al., 2006). Examples in Fauconnier and Turner (2002)
illustrate how conceptual blending can be employed to theorise about
such fundamental cognitive processes.

By establishing correspondences between pairs of entities or rela-
tions from separate input spaces, a new mental space called a ‘blended
space’ (or simply ‘blend’) is generated. In this blended space, the ele-
ments that are corresponded exhibit novel relationships or are merged
with each other. These correspondences are determined by a ‘generic
space’, which represents shared or general aspects to be corresponded
between the input spaces. It is not necessary for all elements and
relations from the input spaces to be projected into the blend or have
correspondences with other input spaces; different subsets can be selec-
tively involved in the blending process. This enables the emergence of
a range of alternative structures and meanings. The relations within an
individual input space are referred to as ‘inner-space relations’, while
the correspondences between elements of different spaces are termed
‘outer-space relations’. The network composed of the input spaces,
blended space, generic space, and correspondences among all spaces

1 In this work, we adopt the convention of denoting specific image
chemas, such as CONTAINER, SUPPORT, VERTICALITY, or BALANCE,

using uppercase letters.
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Fig. 1. A visualisation of the conceptual blend corresponding to the debate with Kant. Light blue ellipses represent mental spaces (inputs spaces input 1 and input 2, and blended
space blend), and dashed lines across them represent outer-space relations: in blue, the cross-space correspondence between input spaces; and in green and red, the selective
projections from the input spaces into the blend, respectively. Solid arrows inside the ellipses are inner-space relations. The generic space (not shown) would constitute the mental
space capturing the cross-space correspondence: claims done by some agents, in some language, on some topic, in some year.
is known as the ‘integration network’. Meaning is determined by the
entire integration network as a whole.

Let us illustrate the above with an example from Fauconnier and
Turner (2002, pp. 59–62) which we have modified slightly. The exam-
ple pertains to a modern philosopher describing how some of his work
counters arguments published by Kant in his own work in the following
manner:

I claim that reason is a self-developing capacity. Kant
disagrees with me on this point. He says it’s innate, but
I answer that that’s begging the question, to which he
counters, in Critique of Pure Reason, that only innate
ideas have power. But I say to that, What about neuronal
group selection? And he gives no answer.

Evidently, the philosopher presents an imaginary in-person debate
between himself and Kant. In Fig. 1 we illustrate the conceptual blend
capturing this state of affairs. The left oval represents the input space
with information about the modern philosopher, and the right one,
the input space with information about Kant. The oval at the top
denotes the blended space, and dashed lines or arrows between any
two spaces denote outer-space relations or projections, respectively.
We can see that there are several elements which are present in blend
which have been projected only from input 1. Some of those are: the
language (English) or the year (2023). Some projections from input 2
into blend (specifically with the information that Kant’s language was
German, and that his claim dates from 1781) would clash with the
fact that the modern philosopher is debating in English in 2023. We
see how all these outer-space relations and projections allow us to
create a complex, detailed, imaginary state of affairs that is nonetheless
internally consistent.

2.3. Governing principles

In this section, we introduce the governing principles for good
blends identified in Fauconnier and Turner (2002, ch. 16) and aim to
provide a more precise and unambiguous description of these princi-
ples. Later, in Section 3.1.2, we will formalise some of them. While
theoretically any blend can be constructed cognitively, not all blends
are useful for reasoning and communication. The governing principles
serve as guiding criteria to identify blends that are more likely to be
cognitively valuable.
3

However, there are certain challenges associated with the govern-
ing principles, including the lack of experimental support and their
inherent ambiguity. Our objective here is to explore whether the gov-
erning principles can be effectively used to characterise useful blends
within the framework of the uniform model of conceptual blending
proposed by Schorlemmer and Plaza (2021), specifically in the domain
of diagrammatic sensemaking and reasoning. To achieve this goal, we
need to formalise the governing principles in a manner consistent with
our mathematical language for describing conceptual blends, namely
category theory. By expressing the governing principles using category
theory, our formalisation will be generic, making minimal assumptions
about the content, form, and formal language used to represent the
input spaces. Furthermore, we aim to capture the trade-offs among the
principles in our descriptions. Each governing principle favours blends
with different structural characteristics, often mutually exclusive. Strik-
ing the right balance between these principles is crucial to obtaining
cognitively useful blends.

In Fauconnier and Turner (2002), several governing principles are
described to some extent, including Compression, Topology, Pattern
Completion, Integration, Promoting Vital Relations, Web, Unpacking,
and Relevance. In this article, we will formalise two of these princi-
ples, namely Integration and Topology, as they meet our criteria of
generality and are well-suited for our formal framework.

2.4. Integration and topology

The Integration principle asserts that a blend must consist of an in-
tegrated mental space that can be manipulated as a cohesive unit (Fau-
connier & Turner, 2002, p. 328). Achieving integration may require
selectively projecting only certain parts of the input spaces into the
blend to avoid incongruences (which will be discussed shortly). Al-
though the definition of integration in the literature is circular, we
can interpret it as follows: the blend should be integrated into a
single unit by establishing outer-space relations between elements from
different input spaces and projecting them into the blend connected
by inner-space relations. Maximum integration is attained when all
elements in the blend are linked by an inner-space relation derived
from an outer-space relation between the two input spaces. On the
other hand, Fauconnier and Turner (2002) also employ the term ‘disin-
tegration’, sometimes interchangeably with ‘incongruence’. This usage
can be observed in the example of a philosophical debate involving

Kant and a modern philosopher in 1995, conducted in English, which is
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incongruent with our knowledge of Kant’s historical context (living in
the 18th century and speaking German) (Fauconnier & Turner, 2002,
pp. 125, 329). In general, incongruences and disintegrations arise when
there is a clash between elements in terms of some property, making
it impossible to merge these conflicting elements in the blend. In all
the examples provided by Fauconnier and Turner (2002), this results
in integration networks where elements in the blend have outer-space
relations with only one of the two input spaces. In Section 3.1.2, we
will explore how this understanding of incongruence aligns with our
formal definition of the Integration principle.

The Topology principle is satisfied when the topology of inner-
space and outer-space relations in the blend mirrors that of the input
spaces (Fauconnier & Turner, 2002, p. 327). Specifically, all inner-space
relations of the elements in an input space, as well as the outer-space
relations among elements from different input spaces, must appear as
inner-space relations in the blend. Therefore, the Topology principle
exerts a conservative influence, aiming to preserve relations exactly
as they were in the input spaces. Consequently, we propose using
the term ‘Topology Preservation’ as a more appropriate name for this
principle. To satisfy Topology Preservation, the elements from the two
input spaces should either (a) lack any outer-space relations between
them, appearing separately but intact in the blend, or (b) have only
one-to-one outer-space relations between them, which translate into
inner-space relations in the blend, enhancing their integration to some
extent while preserving all inner-space relations of the input spaces.
Outer-space relations that link multiple elements of one input space
to the same element of another would violate Topology Preservation
since different inner-space relations from the input spaces would be
merged into the same altered relation. Additionally, to fulfil Topology
Preservation, all elements from the input spaces should be represented
in the blend to ensure that the structure of the input spaces is fully
reflected.

3. A mathematical model of blending and its governing principles

When blending mental spaces, incongruences often arise among
them, referring to elements from the original spaces that would conflict
if present in the blend. An example of such incongruences can be seen in
the Kant debate, where two philosophers spoke different languages and
lived 200 years apart. Even in the absence of incongruence, elements
from one input space that lack correspondence with the other may
not be projected into the blend at all. This reflects the cognitive
aspect of excluding irrelevant information from a blend tailored to a
specific purpose, allowing for more concise and effective reasoning and
communication (Fauconnier & Turner, 2002, pp. 313–314, 329, 334).

In the context of the European COINVENT research project (Schor-
lemmer et al., 2014), Bou et al. (2018) proposed a formal, mathematical
framework based on category theory to capture the phenomena of
conceptual blending using the concept of ‘amalgams’. Originally intro-
duced in Case-Based Reasoning (CBR) to combine cases for problem-
solving, amalgams consider all cases, including the combined result,
to be partially ordered by a subsumption relation (Ontañón & Plaza,
2010). Subsumption occurs when one case is more general than or
equal to another, implying that all information in the latter is con-
tained in the former (Ontañón & Plaza, 2012). Amalgams formalise
the process of removing specific information from cases to facilitate
their combination without incongruences or when certain information
is irrelevant to the problem-solving task at hand. This formalisation
involves generalisation operators (see Definition 4), which take one
case as input and return another case that subsumes it. This approach
allows for computational exploration of the subsumption hierarchy.

Extending this perspective to conceptual blending, we consider the
input spaces, generic space, and blend to be part of a subsumption hi-
erarchy capturing how the input spaces can be generalised to eliminate
undesired information from the blend. Modelling amalgams in category
theory enables us to discuss the principles of conceptual blending
4

independent of specific representation languages used in expressing the
inputs. A uniform model of conceptual blending as amalgams using
category theory was developed by Schorlemmer and Plaza (2021),
combining the implementability of amalgams with the generality of
category theory.

Several other computational approaches to conceptual blending
have explored the subsumption hierarchy and employed various heuris-
tics to address the exponentially increasing search space, even for
simple input spaces (see Section 6 for a more detailed discussion of
these approaches). In these implementations, important elements of the
input spaces (e.g., axioms, predicates, operations) for a given integra-
tion network are predetermined by assigning manual priority indices to
each element. These indices are then used as input for various metrics
aimed at assessing the structural criteria of integration networks, which
effectively reduce the search space for the specific problem at hand. In
this article, instead of manually assigning importance indices, which
rely on knowledge of the meaning of the input spaces and the intended
goals and meaning of the blend, we propose a more general-purpose
framework for conceptual blending. This framework remains useful
even when applied to domains different from our own or when the
meaning of the inputs is unknown. We provide a precise formalisation
of some of the governing principles proposed by Fauconnier and Turner
(2002). In particular, we aim at formalising two of these principles in
a manner that is general-purpose, independent of the specific content
of the input spaces, and does not require pre-selection of what is
considered important. The conceptual blending framework we adopt
is the uniform category-theory framework developed by Schorlemmer
and Plaza (2021). To provide technical details relevant to this frame-
work, we present them in Section 3.1.1. Our formal definitions of the
governing principles (Section 3.1.2) are guided by this framework.

3.1. The category-theoretic model

We present the uniform model for conceptual blending proposed
by Schorlemmer and Plaza (2021) and extend it to formally describe
the governing principles. Additionally, we introduce metrics and oper-
ators necessary for evaluating these governing principles in the context
of specific conceptual blends. The model developed by Schorlemmer
and Plaza is rooted in category theory, which provides a general
framework for studying mathematical structures by focusing on the
structure-preserving mappings between them, rather than the con-
stituents of the structures themselves (Mac Lane, 1998). This empha-
sis on structure-preserving mappings makes category theory particu-
larly suitable for formalising cognitive operations in a representation-
independent manner when specific properties of the entities involved
are not assumed (Phillips, 2022).

In category theory, the objects represent the entities of interest,
while the structure-preserving mappings (also known as morphisms
or arrows) generalise homomorphisms, which are mappings between
objects that preserve their internal structure. For conciseness, we omit
the introduction of category-theoretic concepts and constructs used
in our formalisations in this section. Instead, we refer the reader to
Appendix for further details.

Throughout this section, we use a simple graph-based representa-
tion of mental spaces as a running example and focus on a specific blend
of two mental spaces. In Section 3.1.1, we describe the mathematical
model for conceptual blending, while in Section 3.1.2, we reinterpret
and formalise selected governing principles within this model.

3.1.1. Conceptual blends as amalgams
Schorlemmer and Plaza (2021) have provided a uniform characteri-

sation of conceptual blending across several representation formalisms
by means of a category-theoretic framework. Mental spaces and the
outer-space relations between them are taken to be, respectively, the
objects and arrows of some suitable category; blending is then modelled
by means of amalgams, which are related to the category-theoretic
construct of colimit. To illustrate this framework let us take a simple

representation of mental spaces by way of graphs.
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Fig. 2. Blend 𝐵 of two mental spaces 𝐼 and 𝐽 represented by graphs. 𝑅, 𝑆, and 𝑇 are
binary relations such that R(a,c), S(b,c) and T(a,b) hold in mental space 𝐼 (the inner-
space relations of 𝐼). 𝛱 , 𝛴, and 𝛬 are binary relations such that 𝛱(𝛾, 𝛼), 𝛴(𝛾, 𝛽) and
𝛬(𝛼, 𝛽) hold in mental space 𝐽 (the inner-space relations of 𝐽 ). The dotted lines show
the cross-space relationship underlying the blend (the outer-space relations between 𝐼
and 𝐽 ): it relates relation 𝑅 with both relations 𝛱 and 𝛴, and relation 𝑆 also with
both relations 𝛱 and 𝛴. This blend selectively projects only relation 𝑅(𝑎, 𝑐) from 𝐼
nto the blend while projecting all elements and relations of 𝐽 . Since, according to the

cross-space correspondence, 𝑅(𝑎, 𝑐) is related to both 𝛱(𝛾, 𝛼) and 𝛴(𝛾, 𝛽), the blend 𝐵 is
constituted by the two elements 𝑎 and 𝑐 related by 𝑅, but also the relation 𝛬 projected
from 𝐽 , relating 𝑐 with itself (since 𝑐 is the projection of both 𝛼 and 𝛽).

Example. Let us focus on the particular category Grph of graphs and
graph homomorphisms. A graph 𝐺 can act as a simple representation
of a mental space, by which the elements of a space are represented as
vertices, 𝑉 (𝐺), and the relations holding between elements are repre-
sented as directed edges, 𝐸(𝐺). Consequently, only binary relations can
be stated with this simple representation.2

The idea underlying the framework of Schorlemmer and Plaza
(2021) is to look at the selective projection from input spaces 𝐼 and 𝐽 to
their conceptual blend 𝐵 (see Section 2.2) in the context of categories
of partial arrows (Robinson & Rosolini, 1988). The latter are categories
whose arrows are spans 𝐼 ⟵⟨ 𝐼0 ⟶ 𝐵 consisting of a monic and a total
arrow (i.e., monospans). Following Schorlemmer and Plaza (2021), we
take 𝖯𝗍𝗅(C ) to denote the category whose objects are the same as those
of C , and whose arrows are the monospans in C (i.e., the partial arrows
in C ).

Example (cont.). Consider the particular blend 𝐵 of two particular
input spaces 𝐼 and 𝐽 represented as graphs as shown in Fig. 2 (this
is just one of many possible blends). We model this blend in 𝖯𝗍𝗅(Grph)
by representing the cross-space correspondence between input spaces
with the span of graph homomorphisms 𝐼

𝑓
⟵ 𝐺

𝑔
⟶ 𝐽 , where 𝐺 is the

following graph, acting as generic space of the blend:

⟨𝑐, 𝛼⟩ ⟨𝑐, 𝛽⟩

⟨𝑎, 𝛾⟩

⟨𝑅,𝛱⟩

↑↑

⟨𝑅,𝛴⟩

↗↗

⟨𝑏, 𝛾⟩

⟨𝑆,𝛱⟩

↖↖

⟨𝑆,𝛴⟩

↑↑

Vertices are pairs taken from 𝑉 (𝐼) × 𝑉 (𝐽 ) and edges are pairs taken
from 𝐸(𝐼) × 𝐸(𝐽 ); the graph homomorphisms 𝑓 and 𝑔 project the first

2 We use the term graph as it is usually understood by category theorists,
i.e., as a directed multigraph with loops (also called pseudograph or quiver).
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and second component of vertex pairs and edge pairs, respectively.
The selective projection from 𝐼 to 𝐵 is captured in 𝖯𝗍𝗅(Grph) by the
monospan 𝐼 ⟵⟨ 𝐼0 ⟶ 𝐵, where 𝐼0 is the subgraph of 𝐼 consisting
only of vertices 𝑎 and 𝑐 and the edge 𝑅 between them.

As in Schorlemmer and Plaza (2021), we shall focus on a subcate-
gory of 𝖯𝗍𝗅(C ) for which the C -monos of the monospans (i.e., of partial
arrows in C ) are taken only from a distinguished class M of C -monos,
called a realm. We denote this subcategory with M−𝖯𝗍𝗅(C ); the class M

can be seen as representing a generalisation space of C -objects:

Definition 1 (Generalisation of an Object). Let C be a category with
realm M , and let 𝐴 be a C -object. We say that C -object 𝐴′ is a
generalisation of 𝐴 if there exists a C -mono 𝑚 ∶ 𝐴′ ↣ 𝐴 in M .

C -monos into an object 𝐴 are preordered, and we shall denote this
preorder with ‘≼𝐴’: Given 𝑚1 ∶ 𝐴1 ↣ 𝐴 and 𝑚2 ∶ 𝐴2 ↣ 𝐴, 𝑚1 ≼𝐴 𝑚2 iff
there exists an arrow 𝑛 ∶ 𝐴1 → 𝐴2 such that 𝑚1 = 𝑚2◦𝑛. (Necessarily, 𝑛
s unique and monic.) In this case, we may also write 𝐴1 ≼𝐴 𝐴2.

We now extend the notion of generalisation from objects to spans
hat represent how two input spaces 𝐼 and 𝐽 are put into correspon-
ence through a generic space 𝐺:

efinition 2 (Generalisation of a Span). Let C be a category with realm
. Let 𝑉 be a span 𝐼

𝑓
⟵ 𝐺

𝑔
⟶ 𝐽 in C .

• An outer-space generalisation of 𝑉 is a v-diagram (i.e., a span)

𝐼
𝑓◦𝑜
⟵ 𝐺0

𝑔◦𝑜
⟶ 𝐽

in C , where 𝑜 ∶ 𝐺0 ↣ 𝐺 is a C -mono in M representing a gener-
alisation of generic space 𝐺. (By generalising 𝐺 we generalise the
cross-space correspondence between 𝐼 and 𝐽 .)

• An inner-space generalisation of 𝑉 is a w-diagram

𝐼0 ⟵ 𝑓−1(𝐼0) ⟩⟶
(

𝑓−1(𝐼0) ∪ 𝑔−1(𝐽0)
)

⟵⟨ 𝑔−1(𝐽0) ⟶ 𝐽0

in C , such that 𝑚 ∶ 𝐼0 ↣ 𝐼 and 𝑛 ∶ 𝐽0 ↣ 𝐽 are C -monos in M

representing generalisations of input spaces 𝐼 and 𝐽 , respectively.
(By generalising 𝐼 or 𝐽 we generalise the internal structure of the
input mental spaces.)

In the case of both an outer- and inner-space generalisation, we
btain the w-diagram that is the inner-space generalisation of the span
hat is an outer-space generalisation of the original span 𝐼

𝑓
⟵ 𝐺

𝑔
⟶ 𝐽 ,

amely:

0 ⟵ (𝑓◦𝑜)−1(𝐼0) ⟩⟶
(

(𝑓◦𝑜)−1(𝐼0)∪(𝑔◦𝑜)−1(𝐽0)
)

⟵⟨ (𝑔◦𝑜)−1(𝐽0) ⟶ 𝐽0

Notice that the objects of the diagram of a generalisation (be it
uter, inner, or both) of a span 𝐼 ⟵ 𝐺 ⟶ 𝐽 are all subobjects of
ither 𝐺, 𝐼 or 𝐽 , and that the diagram is determined by the monic C -
rrows 𝑚 ∶ 𝐼0 ↣ 𝐼 , 𝑛 ∶ 𝐽0 ↣ 𝐽 , and 𝑜 ∶ 𝐺0 ↣ 𝐺. Consequently, we will
ake this triple ⟨𝑚, 𝑛, 𝑜⟩ of C -monos to refer to a generalisation of a span
. If 𝑚 and 𝑛 are the identities, then the generalisation is outer-space;

f 𝑜 is the identity, then the generalisation is inner-space (see Fig. 3).
e can extend the ordering on monos componentwise to an ordering

f triples of monos, and we will denote this ordering with ‘≼𝑉 ’.
We have now all definitions in place to restate Schorlemmer and

laza’s category-theoretic definition of amalgam in the context of this
rticle:

efinition 3 (Amalgam). Let C be a category with realm M . An
malgam for a span 𝑉 in C is the colimit for a generalisation of 𝑉 (see
ig. 3).

To generate generalisations of objects and spans for the computation
f amalgams we will resort to some generalisation operator by which
e can partially explore the generalisation spaces of objects and spans.

he number of applications of the generalisation operator (i.e., the
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Fig. 3. Amalgam with apex 𝐵. The C -arrows 𝜄, 𝜅 and 𝜆 are the injections of the colimit; the C -monos 𝑚, 𝑛, and 𝑜 represent the generalisation of the span; arrows 𝑚 and 𝑛 are
the pullbacks of 𝑚 and 𝑛 along 𝑓◦𝑜 and 𝑔◦𝑜, respectively; and 𝑚 ∪ 𝑛 is the inclusion mono of the union (𝑓◦𝑜)−1(𝐼0) ∪ (𝑔◦𝑜)−1(𝐽0) in 𝐺0.
d
𝜎

eneralisation steps) needed for some generalisation determines a mea-
ure of generalisation that further underlies the similarity value of
malgams.

efinition 4 (Generalisation Operator). Let C be a category with realm
. A generalisation operator 𝛾 for C is a set-valued function such

hat, given a C -object 𝐴, for every 𝐴′ ∈ 𝛾(𝐴) there exists a C -mono
∶ 𝐴′ ↣ 𝐴 in M . Given a set of C -objects A , we write 𝛾(A ) for the

et ⋃𝐴∈A 𝛾(𝐴); and 𝛾 𝑙(𝐴) stands for 𝛾(𝛾(⋯ 𝛾
⏟⏟⏟

l times

(𝐴))).

For any C -object 𝐴, a generalisation operator 𝛾 is said to be locally
inite if 𝛾(𝐴) is a finite set; it is said to be proper if 𝐴 ∉ 𝛾(𝐴); and it is

said to be complete if, for any C -mono 𝑚 ∶ 𝐴′ ↣ 𝐴 in M , there exists
a 𝑙 ≥ 0, such that 𝐴′ ∈ 𝛾 𝑙(𝐴). A generalisation operator that is locally
finite, proper, and complete is said to be ideal.

Definition 5 (Reachable Generalisation of an Object). Let C be a category
with realm M . Let 𝛾 be a generalisation operator for C . Let 𝑚 ∶ 𝐴′ ↣ 𝐴
be a C -mono in M . If there exists 𝑙 ≥ 0 such that 𝐴′ is isomorphic to
a C -object in 𝛾 𝑙(𝐴), we say that 𝐴′ is a 𝛾-reachable generalisation of 𝐴
(or simply a reachable generalisation, when 𝛾 is clear from the context).
We take the minimum such 𝑙 as the measure of this generalisation and
denote it with 𝜆(𝑚).

Example (cont.). A generalisation operator for Grph could be the one
that, given a graph, yields the set of all its subgraphs obtained by
removing either one single edge or else one single vertex, provided
that this vertex has no incoming nor outgoing edges (note that this
operator is ideal). Consequently, for graph 𝐼 as shown in Fig. 2, the
graph 𝐼0 consisting of the edge 𝑎

𝑅
⟶ 𝑐 is a subgraph of 𝐼 , and thus

a reachable generalisation of 𝐼 , obtained by removing edges S and
T, and vertex b. The measure of this generalisation captured by the
Grph-mono 𝑚 ∶ 𝐼0 ↣ 𝐼 is 𝜆(𝑚) = 3.

Given two generalisations 𝐴1 and 𝐴2 of 𝐴, if 𝐴1 is a reachable
generalisation of 𝐴2, then 𝐴1 ≼𝐴 𝐴2. (The converse only holds if the
generalisation operator is ideal.) We say that a generalisation operator
𝛾 is coherent, if the measures of 𝛾-reachable generalisations are anti-
monotonic with respect to ≼𝐴, i.e., for all generalisations 𝐴1 and 𝐴2 of
𝐴 (with C -monos 𝑚1 ∶ 𝐴1 ↣ 𝐴 and 𝑚2 ∶ 𝐴2 ↣ 𝐴 in M ), 𝑚1 ≼𝐴 𝑚2
6

implies 𝜆(𝑚1) ≥ 𝜆(𝑚2). g
The measure 𝜆 is only one of many possible ways to define a mea-
sure of generalisation. We could, for instance, imagine a generalisation
operator defined by way of several generalisation rules that have dif-
ferent weights attached to them, so that the measure of generalisation
does not only depend on the number of generalisation steps 𝑙, but also
on the weight of each step. With weighted measures, one would be able
to capture the salience of the structural elements that are generalised or
the cognitive diversity of individuals that do the conceptual blending.
This might be relevant, for example, when taking into account cultural
differences of conceptual blending in melody generation (Kaliakatsos-
Papakostas & Cambouropoulos, 2019). For explanatory reasons, and
without loss of generality, we have opted in this article to stay with
the simple measure as defined in Definition 5.

Given two reachable generalisations of the same object, together
with their measures of generalisation, we can now define their simi-
larity, relative to the object they are generalisations of:

Definition 6 (Similarity of Generalisations). Let 𝐴′ and 𝐴′′ be two
reachable generalisations of 𝐴. Let 𝑚 ∶ 𝐴∗ ↣ 𝐴 be the reachable
generalisation of 𝐴 with maximum 𝜆(𝑚), of which both 𝐴′ and 𝐴′′ are
reachable generalisations; consequently, there exist C -monos 𝑚′ ∶ 𝐴′ ↣

𝐴∗ and 𝑚′′ ∶ 𝐴′′ ↣ 𝐴∗ in M :

𝐴′
↘↘

𝑚′
↘↘

𝐴′′
↙↙

𝑚′′
↙↙

𝐴∗
↓↓

𝑚

↓↓
𝐴

The similarity of 𝐴′ and 𝐴′′ with respect to 𝐴 is given by:

𝜎(𝐴′, 𝐴′′, 𝐴) =
1 + 𝜆(𝑚)

1 + (𝜆(𝑚) + 𝜆(𝑚′) + 𝜆(𝑚′′))

We can see that 𝜎(𝐴′, 𝐴′′, 𝐴) = 1 when 𝐴′ and 𝐴′′ are isomorphic,
because then 𝐴∗ ≅ 𝐴′ ≅ 𝐴′′, and in this case the numerator and the
enominator of the fraction are equal. In contrast, we get values for
(𝐴′, 𝐴′′, 𝐴) closer to 0 when 𝐴∗ ≅ 𝐴, because then 𝐴′ and 𝐴′′ are
eneralisations with no common structure.
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Instead of 𝜎(𝐴′, 𝐴′′, 𝐴), we will also denote this similarity as a
two-argument function of the respective C -monos, i.e., 𝜎(𝑚◦𝑚′, 𝑚◦𝑚′′).

Example 3.1.1. Let 𝐼 ′0 be a subgraph of 𝐼 consisting of vertices 𝑏
and 𝑐 and edge 𝑆. The similarity of 𝐼0 and 𝐼 ′0 with respect to 𝐼 is
𝜎(𝐼0, 𝐼 ′0, 𝐼) =

1+1
1+(1+2+2) =

2
6 , as shown here:

The similarity of generalisations can be extended from objects to
pans by defining a measure of generalisation for the triples of monos
nderlying these generalisations, for instance by taking 𝜆(⟨𝑚, 𝑛, 𝑜⟩) =

𝜆(𝑚)+𝜆(𝑛)+𝜆(𝑜). This forms also the basis for a similarity of amalgams of
some span 𝑉 , provided they can be computed as colimits for reachable
generalisations of 𝑉 :

Definition 7 (Similarity of Amalgams). Let 𝑉 be a span, and let 𝐴1 and
𝐴2 be two amalgams for 𝑉 , such that 𝐴1 and 𝐴2 are the apexes of the
colimits for reachable generalisations 𝑉1 and 𝑉2 of 𝑉 , respectively. The
similarity of 𝐴1 and 𝐴2 is given by the similarity of 𝑉1 and 𝑉2.

.1.2. Formalising governing principles
In this subsection, we present our formalisation of the governing

rinciples Integration and Topology Preservation. This formalisation re-
lects our understanding of these principles, as described in Section 2.3,
nd is in line with the category-theoretic framework of conceptual
lending summarised in Section 3.1.1.

ntegration. The Integration principle demands that a blend incorpo-
ates the structure of the input spaces into a single whole. This is
chieved by associating the elements and relations of each input space
ith outer-space relations, which become inner-space relations in the
lend. Therefore, maximum integration would be reached when all
lements in the blend are associated with some inner-space relation that
merges from an outer-space relation between the input spaces. In our
ormal approach, the only such relation we are considering is identity
identifying elements and relations from the given input spaces by way
f a cross-space correspondence).

The degree of integration of a blend is thus given by how well it
ncorporates the input spaces into a whole; i.e., whether each compo-
ent constituting the internal structure of the blended space integrates
omponents of both input spaces, or else the blended space includes
ome disintegrated fragment, one that is the projection of the elements
r relations of only one of the two input spaces. We will thus define
he degree of integration of a blend by the similarity it has to an
lternative blend of the same input spaces (and assuming the same
ross-space correspondence) that integrates all the structure that is
electively projected from both input spaces.
7

i

xample (cont.). In our example (Fig. 2), graph 𝐵 representing a
ossible blended space of 𝐼 and 𝐽 has vertices 𝑎, 𝑐 and edge 𝑅 that
ndeed integrate vertices and edges of both graphs 𝐼 and 𝐽 ; but edge

only comes from 𝐽 , and not from 𝐼 . In Grph, maximal integration
s achieved when the vertex maps and edge maps constituting the
raph homomorphisms into the blend are surjective. Lifting this into
ur category-theoretic framework for blends by means of amalgams,
e assert that the amalgam 𝐵′ that best integrates input spaces 𝐼 and

𝐽 is the one whose arrows of the amalgam’s underlying colimit for
a generalisation of span 𝐼 ← 𝐺 → 𝐽 are all epic. Furthermore, we
focus on the smallest such generalisation, i.e., the one obtained by the
smallest number of applications of the generalisation operator, so as to
keep most of the structure of input spaces.

Definition 8 (Degree of Integration). Let 𝐵 be a conceptual blend,
modelled as the apex of an amalgam for span 𝑉 in C , such that 𝐵 is the
colimit apex for a 𝛾-reachable generalisation ⟨𝑚, 𝑛, 𝑜⟩ of 𝑉 . The degree
of 𝐵’s compliance with the Integration principle, 𝖨𝗇𝗍(𝐵), is given by
the maximum similarity measure between generalisation ⟨𝑚, 𝑛, 𝑜⟩ and
a minimal 𝛾-reachable generalisation ⟨𝑚′, 𝑛′, 𝑜′⟩ of 𝑉 for which there is

colimit whose arrows are all epic (let us call such a colimit an epic
olimit):

𝗇𝗍(𝐵) = max
⟨𝑚′ ,𝑛′ ,𝑜′⟩∈W

𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

W = arg min
⟨𝑚′ ,𝑛′ ,𝑜′⟩∈V

𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

V = {⟨𝑚′, 𝑛′, 𝑜′⟩ ∣ ⟨𝑚′, 𝑛′, 𝑜′⟩ is a 𝛾-reachable generalisation
of 𝑉 with epic colimit}

xample (cont.). In our example (Fig. 2), a minimal 𝛾-reachable gener-
lisation of 𝐼 ← 𝐺 → 𝐽 with epic colimit (i.e., a colimit whose arrows
re all epic) is the span 𝐼 ′0 ← 𝐺 → 𝐽 ′

0 where 𝐼 ′0 is the graph obtained by
emoving edge 𝑇 from 𝐼 (one generalisation step), and 𝐽 ′

0 is the graph
btained by removing edge 𝛬 from 𝐽 (also one generalisation step). The
olimit (pushout) of this span is (isomorphic to) the following graph 𝐵′:

𝑐

𝑎

𝑅

↑↑

𝐵′ has indeed epic arrows both from 𝐼 ′0 and 𝐽 ′
0. 𝐵’s degree of integra-

tion is given by the similarity of 𝐵’s underlying generalisation of span
𝐼 ← 𝐺 → 𝐽 (which is 𝐼0 ← 𝐺 → 𝐽 ) with 𝐵′’s underlying generalisation
(which is 𝐼 ′0 ← 𝐺 → 𝐽 ′

0). A 𝛾-reachable generalisation of 𝐼 ← 𝐺 → 𝐽
with maximal measure of which both 𝐼0 ← 𝐺 → 𝐽 and 𝐼 ′0 ← 𝐺 → 𝐽 ′

0 are
generalisations of is the span 𝐼 ′0 ← 𝐺 → 𝐽 . Consequently, 𝖨𝗇𝗍(𝐵) = 2

5 .

Topology preservation. The Topology Preservation principle demands
that the inner-space relations between elements of an input space, as
well as the outer-space relations among elements of different input
spaces, appear as inner-space relations in the blend. This way, relations
are faithfully reflected in the blend as they were stated in the input
spaces. In our formalisation, outer-space relations become identities in
the blend. Therefore, preserving the topology means that each element
of 𝐼 and 𝐽 has outer-space relations with exactly one element of the
ther, resulting in every element of 𝐼 and 𝐽 having an outer-space
elation with exactly one element in the blend.

The degree of topology preservation of a blend is thus given by
ow well it retains the original structure of the input spaces in the
hole; i.e., whether the components constituting the internal structure
f the input spaces that are projected to the blend space are kept
eparate, or else the blended space fuses some of these components,
hereby not retaining their distinctiveness. We will thus define the
egree of topology preservation of a blend by the similarity it has
o an alternative blend of the same input spaces (and assuming the
ame cross-space correspondence), such that all the structure of that
s selectively projected into this alternative blend is preserved.
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Example (cont.). In our example (Fig. 2), graph 𝐵 representing a
possible blended space of 𝐼 and 𝐽 indeed retains the structure 𝑅(𝑎, 𝑐)
of input space 𝐼 ; nonetheless, the distinct elements 𝛼 and 𝛽 of 𝐽 are
fused into element 𝑐 of the blend, and so the relations 𝛱 and 𝛴 are
fused into 𝑅. In Grph, maximal topology preservation is achieved when
the vertex maps and edge maps constituting the graph homomorphisms
into the blend are injective. Lifting this, as done with our formalisation
of the Integration principle, into our category-theoretic framework for
blends by means of amalgams, we assert that the amalgam 𝐵′ that
best preserves the topology of input spaces 𝐼 and 𝐽 is the one whose
arrows of the amalgam’s underlying colimit for a generalisation of span
𝐼 ← 𝐺 → 𝐽 are all monic. Moreover, as with the Integration principle,
we focus on the least general generalisation of the span so as to keep
most of the structure of input spaces.

Definition 9 (Degree of Topology Preservation). Let 𝐵 be a conceptual
blend, modelled as the apex of an amalgam for span 𝑉 in C , such
that 𝐵 is the colimit apex for a 𝛾-reachable generalisation ⟨𝑚, 𝑛, 𝑜⟩
f 𝑉 . The degree of 𝐵’s compliance with the Topology Preservation
rinciple, 𝖳𝗈𝗉(𝐵), is given by the maximum similarity measure between
eneralisation ⟨𝑚, 𝑛, 𝑜⟩ and a minimal generalisation ⟨𝑚′, 𝑛′, 𝑜′⟩ of 𝑉 for
hich there is a colimit whose arrows are all monic (let us call such a

olimit a monic colimit):

𝗈𝗉(𝐵) = max
⟨𝑚′ ,𝑛′ ,𝑜′⟩∈W

𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

W = arg min
⟨𝑚′ ,𝑛′ ,𝑜′⟩∈V

𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

V = {⟨𝑚′, 𝑛′, 𝑜′⟩ ∣ ⟨𝑚′, 𝑛′, 𝑜′⟩ is a 𝛾-reachable generalisation
of 𝑉 with monic colimit}

xample (cont.). In our example (Fig. 2), a minimal 𝛾-reachable gen-
ralisation of 𝐼 ← 𝐺 → 𝐽 with monic colimit is the span 𝐼 ←

0 → 𝐽 where 𝐺0 is the graph obtained by removing from 𝐺 the
dges ⟨𝑅,𝛱⟩, ⟨𝑅,𝛴⟩, and ⟨𝑆,𝛴⟩ and the vertices ⟨𝑎, 𝛾⟩ and ⟨𝑐, 𝛽⟩ (five
eneralisation steps). The colimit (pushout) of this span is (isomorphic
o) the following graph 𝐵′:

𝑐 𝛬 →→ 𝛽

𝑎

𝑅

↗↗

𝑇
→→ 𝑏

𝑆

↑↑

𝛴

↗↗

𝐵′ has indeed monic arrows from 𝐼 and 𝐽 . 𝐵’s degree of topology
reservation is given by the similarity of 𝐵’s underlying generalisation
f span 𝐼 ← 𝐺 → 𝐽 (which is span 𝐼0 ← 𝐺 → 𝐽 ) to 𝐵′’s underlying
eneralisation (which is 𝐼 ← 𝐺0 → 𝐽 ). For this particular example, a
eneralisation of 𝐼 ← 𝐺 → 𝐽 with maximal measure of which both
0 ← 𝐺 → 𝐽 and 𝐼 ← 𝐺0 → 𝐽 are generalisations of, is actually
he identity ⟨𝑖𝑑𝐼 , 𝑖𝑑𝐺 , 𝑖𝑑𝐽 ⟩, and 𝜆(⟨𝑖𝑑𝐼 , 𝑖𝑑𝐺 , 𝑖𝑑𝐽 ⟩) = 0. Consequently,
𝖳𝗈𝗉(𝐵) = 1

8 .
Notice that, in our example using graphs, a blend whose underlying

olimit is epic (and thus displays maximal integration) is obtained
y inner-space generalisation (i.e., generalisation of the input spaces),
hile a blend whose underlying colimit is monic (and thus displays
aximal topology preservation) is obtained by outer-space generali-

ation (i.e., generalisation of the generic space). This feature is not
nly particular to graphs, but to any mathematical structure that can
e characterised as a presheaf. This is relevant for our case study of
iagrammatic reasoning in Section 4, below, and we state it by way of
he following theorems:

heorem 1. Let Psh(C ) be the category of presheaves on C . Let 𝑉
e a span 𝐼

𝑓
⟵ 𝐺

𝑔
⟶ 𝐽 in Psh(C ). A minimal generalisation of 𝑉

(i.e., a maximal triple of Psh(C )-monos ⟨𝑚, 𝑛, 𝑜⟩ with respect to ≼𝑉 ) for
which the colimit is epic, is given by way of the epi-mono factorisations of
𝑓 = 𝑚◦𝑓 and 𝑔 = 𝑛◦�̄� through their respective images 𝑚 ∶ 𝐼𝑚(𝑓 ) ↣ 𝐼 and
𝑛 ∶ 𝐼𝑚(𝑔) ↣ 𝐽 , and taking 𝑜 = 𝑖𝑑 .
8

𝐺 i
Proof. Since Psh(C ) is regular, every arrow can be factored as the
composition of an epi followed by a mono, and this factorisation is
unique (up to isomorphism). Let 𝑓 = 𝑚◦𝑓 and 𝑔 = 𝑛◦�̄� be the unique
epi-mono factorisations of the arrows of span 𝑉 . The generalisation of
𝑉 given by ⟨𝑚, 𝑛, 𝑖𝑑𝐺⟩ is thus 𝐼𝑚(𝑓 )

𝑓
↞← 𝐺

�̄�
←↠ 𝐼𝑚(𝑔), and its colimit (here

a pushout) is epic because pushouts preserve epis. Let us now assume
there exist a less general generalisation ⟨𝑚′, 𝑛′, 𝑖𝑑𝐺⟩ of 𝑉 for which the
colimit is also epic, with 𝑚′ ∶ 𝐼 ′ ↣ 𝐼 , 𝑚 ≼𝐼 𝑚′, and 𝑛′ ∶ 𝐽 ′ ↣ 𝐽 ,
𝑛 ≼𝐽 𝑛′ (𝑖𝑑𝐺 is already maximal with respect to ≼𝐺). This generalisation
of 𝑉 is thus 𝐼 ′

𝑓 ′
⟵ 𝐺

�̄�′
⟶ 𝐽 ′, where 𝑓 ′ is the pullback of 𝑓 along 𝑚′,

and �̄�′ is the pullback of 𝑔 along 𝑛′. Since we have assumed that the
colimit for this generalisation is epic (here again a pushout), we have,
by Lemma 1 (see below), that 𝑓 ′ and �̄�′ are epis. But since epi-mono
factorisations are unique (up to isomorphism), we have that 𝐼 ′ ≅ 𝐼𝑚(𝑓 )
and 𝐽 ′ ≅ 𝐼𝑚(𝑔). □

The proof of Theorem 1 above uses the following lemma stating the
relationship of epis with pushouts in categories of presheaves.

Lemma 1. Let Psh(C ) be the category of presheaves on C . Let 𝑉 be a span
𝐼

𝑓
⟵ 𝐺

𝑔
⟶ 𝐽 in Psh(C ). The pushout of 𝑉 formed by arrows 𝜄 ∶ 𝐼 → 𝐵

and 𝜅 ∶ 𝐽 → 𝐵 always exists, and if 𝜄 (resp. 𝜅) is epic, then 𝑔 (resp. 𝑓) is
pic.

roof. It is easy to check that the lemma holds for the particular case
f Psh(C ) = Set (i.e., when C is the category with a unique object and

its identity arrow): if 𝜄 (resp. 𝜅) is surjective, so is 𝑔 (resp. 𝑓 ). Psh(C ) is
cocomplete (and hence has pushouts) because it is the functor category
Func(C 𝑜𝑝, Set) and Set is cocomplete. Being a functor category, its
colimits are constructed pointwise. Since epis can be characterised as
pushouts, epis are also constructed pointwise; and because the lemma
holds for Set, we have that it also holds for Psh(C ). □

Theorem 2. Let Psh(C ) be the category of presheaves on C . Let 𝑉 be
a span 𝐼

𝑓
⟵ 𝐺

𝑔
⟶ 𝐽 in Psh(C ). A minimal generalisation of 𝑉 (i.e., a

maximal triple of Psh(C )-monos ⟨𝑚, 𝑛, 𝑜⟩ with respect to ≼𝑉 ) for which the
colimit is monic, is given by way of a maximal Psh(C )-mono 𝑜 ∶ 𝐺0 ↣ 𝐺
with respect to ≼𝐺 such that 𝑓◦𝑜 and 𝑔◦𝑜 are both monic, and taking
𝑚 = 𝑖𝑑𝐼 and 𝑛 = 𝑖𝑑𝐽 .

Proof. The generalisation of 𝑉 given by ⟨𝑖𝑑𝐼 , 𝑖𝑑𝐽 , 𝑜⟩ is the span 𝐼
𝑓◦𝑜
⟵⟨

𝐺0
𝑔◦𝑜
⟩⟶ 𝐽 of monos. Since categories of presheaves are regular, and

pushouts preserve regular monos, we have that the pushout (colimit)
for this generalisation is monic. Let us suppose, however, that there
exists a less general generalisation of 𝑉 given by the triple of monos
⟨𝑖𝑑𝐼 , 𝑖𝑑𝐽 , 𝑜′⟩ (i.e., 𝑜 ∶ 𝐺0 ↣ 𝐺 factors through 𝑜′ ∶ 𝐺′

0 ↣ 𝐺) for which
the colimit formed by arrows 𝜄 ∶ 𝐼 ↣ 𝐵, 𝜅 ∶ 𝐽 ↣ 𝐵, and 𝜆 ∶ 𝐺′

0 ↣ 𝐵 is
lso monic. Since 𝜆 = 𝜄◦𝑓◦𝑜′ = 𝜅◦𝑔◦𝑜′, we have that 𝑓◦𝑜′ and 𝑔◦𝑜′ are
oth monic as well. And, since 𝑜 is maximal with respect to ≼𝐺 such
hat 𝑓◦𝑜 and 𝑔◦𝑜 are both monic, we have that 𝑜′ factors through 𝑜,
nd thus 𝐺′

0 and 𝐺0 are isomorphic. □

. Governing principles in diagram sensemaking

Making sense of a diagram is a cognitive process that involves
ultiple blends with various image schemas (Bourou et al., 2021c).
owever, in this section, we shift our focus to highlight the governing
rinciples underlying conceptual blending. To stay focused and not get
aught within the complexity of the integration network describing
he sensemaking of every meaning-carrying aspect of a diagram, we
hall examine conceptual blends involving only one image schema and
he geometric configuration of only one particular diagram, namely a
asse diagram, modelling alternative ways of making sense of a single
spect of it, namely the levels that the Hasse diagram presents. By
nvestigating these blends, we aim to demonstrate the practicality of the
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Fig. 4. A Hasse diagram representing a poset of eight elements.

formalised governing principles in understanding how we make sense
of certain diagrammatic structure and engage in reasoning processes
related to it. We argue that this case study, although constrained,
still provides insights into the application of the governing princi-
ples as defined in a representation-independent manner to guide our
understanding and reasoning with diagrams in general.

Recall that a Hasse diagram represents a partially ordered set
(poset). It consists of points and lines, with each point representing one
element of the poset. Assuming elements 𝑥, 𝑦 and 𝑧 of a poset ordered
by the ‘<’ relation, then 𝑥 is shown in a lower position than 𝑦, and
connected by a line with it, if and only if 𝑥 < 𝑦 and there is no element
𝑧 such that 𝑥 < 𝑧 and 𝑧 < 𝑦. Some Hasse diagrams represent ranked
posets, i.e., posets for which all maximal chains have the same finite
length. This means that the elements of the poset can be organised into
levels, corresponding to elements with the same rank, i.e., the same
number of steps away from some minimal element (see Fig. 4).

4.1. A category of specifications for modelling diagrams as conceptual
blends

The formalisation of conceptual blending and its governing princi-
ples given in Section 3 is generic and representation-independent. This
is its strength, as it does not need to commit to any particular rep-
resentation language for mental spaces and their relations, mappings,
and projections. However, in order to compute specific blends and their
degrees of compliance with respect to the governing principles, we need
concrete specifications of their input spaces with both their inner- and
outer-space relations, expressed in a particular representation language.
That is, we need to commit to a particular category that models spaces
and their structure-preserving mappings. The generalisation operator
underlying our mathematical model of conceptual blending and its
governing principles also needs to be defined with respect to the chosen
category.

Our computational approach to model the sensemaking of diagrams
uses theory presentations in many-sorted first-order logic with equal-
ity (FOL=), to specify the logical structure of both image schemas
and geometric configurations of diagrams. We implement these the-
ory presentations using basic specifications expressed in the Common
Algebraic Specification Language (CASL), which has FOL= as one of
its sublanguages (Astesiano et al., 2002). We further use the Hetero-
geneous Tool Set (hets) to perform computations over these specifica-
tions (Mossakowski et al., 2007).

A specification 𝑆 = (𝛴, 𝛤 ) consists of a declaration of its signature
𝛴 (i.e., its sorts, operations – which comprises constants and function
symbols – and predicates) and a finite set 𝛤 of axioms written with
the signature symbols of 𝛴. Given a category of FOL= signatures, if
𝜎 ∶ 𝛴 → 𝛴′ is one of its signature morphisms, and 𝑆 = (𝛴, 𝛤 ) and 𝑆′ =
(𝛴′, 𝛤 ′) are two specifications, then 𝜎 can also be seen as a specification
morphism 𝜎 ∶ 𝑆 → 𝑆′ whenever 𝛤 ′ ⊧ 𝜎(𝛤 ); i.e., whenever all FOL=
models of the axioms in 𝛤 ′ are also models of the translation along
𝜎 of the axioms in 𝛤 . Specifications and specification morphisms as
given above constitute a category, Spec. Let Spec⋆ be the subcategory
of Spec whose specification morphisms are axiom preserving, i.e., when
9

𝜎(𝛤 ) ⊆ 𝛤 ′. In this section, we take category Spec⋆ for modelling
particular diagrams of image schemas with geometric configurations
by way of amalgams in Spec⋆.

A straightforward generalisation operator for Spec⋆ is the one that,
given a specification 𝑆 = (𝛴, 𝛤 ), yields specifications 𝑆𝑖 obtained by:

• either removing one of its axioms in 𝛤 , thus yielding 𝑆𝑖 = (𝛴, 𝛤𝑖),
where 1 ≤ 𝑖 ≤ 𝑛, with 𝑛 denoting the number of axioms in 𝛤 (note
that the identity signature morphism on 𝛴 is an axiom-preserving
specification morphism from 𝑆𝑖 to 𝑆);

• or else removing one of the signature symbols in 𝛴, provided
it does not occur in 𝛤 , thus yielding 𝑆𝑖 = (𝛴𝑖, 𝛤 ), where 1 ≤
𝑖 ≤ 𝑚, with 𝑚 denoting the number of signature symbols in 𝛴
not occurring in 𝛤 (note that the inclusion signature morphism
𝛴𝑖 ⊆ 𝛴 is an axiom-preserving specification morphism from 𝑆𝑖 to
𝑆);

As for the specification of the geometric configurations of diagrams,
we have based their signatures on Qualitative Spatial Reasoning (QSR)
formalisms as proposed by Egenhofer and Herring (1994) and Hernán-
dez (1991), which allow us to describe qualitatively certain aspects of
the topology and geometry of the diagram, e.g., if the shapes occurring
in a diagram are of sort Point or Line, and which are their topological
relations or relative positions.3

4.2. Case study: Making sense of levels in a hasse diagram

In this subsection, we analyse four alternative ways of modelling the
sensemaking of different levels in the Hasse diagram of Fig. 4. We have
argued that such sensemaking can be understood as a conceptual blend
of the geometric configuration constituting the diagram with some
image schema capturing our embodied understanding of the levels
sensed in the diagram. In this particular case, our sensemaking would
be driven by the SCALE image schema, which structures both the
quantitative and qualitative aspects of our experience – such as when
we group objects or when we add them to a pile; or when we experience
one light brighter as the other, or one pain as more intense than another
– organising these aspects in different grades that account for our
experience of more, the same, and less quantity or quality (Johnson,
1987, p. 121–124).

Furthermore, we have proposed to model conceptual blends as
amalgams in an appropriate category serving as representation for-
malism for the mental spaces participating in the blends, and we
have chosen the category Spec⋆ of basic CASL specifications and
axiom-preserving CASL signature morphisms for that aim.

Let us now assume that the particular geometric configuration of
the Hasse diagram we shall be analysing is specified in CASL as in
Specification 1. Let us also assume that the SCALE image schema is
specified in CASL as in Specification 2, which includes the generic
specification scale of the SCALE schema, as well an extension of it,
4scale, specifying a particular four-grade scale.4

4.2.1. Intended blending
The first blend we analyse captures what we may assume to be our

intended perception of the Hasse diagram of Fig. 4 as organised in four
levels, with elements depicted as laying at the same horizontal in the

3 The complete CASL specifications are available at https://saco.csic.es/
index.php/s/iKWyj8Kn3nQGKMf. The sensemaking of more diagrams is mod-
elled in Bourou et al. (2021c) and the Hasse diagram discussed here is also
discussed in detail in Bourou et al. (2021b). There it is also explained how the
geometry can be formalised using our choice of QSR formalisms.

4 Note that we distinguish the image schema as such (indicated with sans-
serif uppercase letters) from the CASL specification of the schema (indicated
with small caps).

https://saco.csic.es/index.php/s/iKWyj8Kn3nQGKMf
https://saco.csic.es/index.php/s/iKWyj8Kn3nQGKMf
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Specification 1 The geometric configuration of the Hasse diagram of Fig. 4
by way of its minimal signature and independent facts. It uses predicates that
state the relative position of points with respect to each other as proposed
by Hernández (1991) (assuming the perspective of an observer in front of the
diagram as drawn on a sheet of paper lying on a desktop); and predicates that
state the topological relationship of points and lines as proposed by Egenhofer
and Herring (1994) (We show only a fragment; the complete specification is
available at https://saco.csic.es/index.php/s/iKWyj8Kn3nQGKMf.)

spec hasse =
sorts Point, Line
ops 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8 ∶ Point

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6, 𝑙7, 𝑙8, 𝑙9, 𝑙10, 𝑙11, 𝑙12 ∶ Line
preds leftPP, backPP, leftBackPP, rightBackPP ∶ Point × Point

intersectLL ∶ Line × Line
intersectLP ∶ Line × Point

%% Axioms for hasse:
%% relative position of pairs of points:
∙ rightBackPP(𝑝1, 𝑝2)
∙ backPP(𝑝1, 𝑝2)
∙ leftBackPP(𝑝1, 𝑝4)
∙ rightBackPP(𝑝1, 𝑝5)
∙ leftBackPP(𝑝1, 𝑝7)
⋮
%% topological relation – here, intersection – of lines with points:
∙ intersectLP(𝑙1, 𝑝1) ∙ intersectLP(𝑙1, 𝑝2)
∙ intersectLP(𝑙2, 𝑝1) ∙ intersectLP(𝑙2, 𝑝3)
⋮
%% topological relation – here, intersection – of lines with lines:
∙ intersectLL(𝑙5, 𝑙6)
∙ intersectLL(𝑙7, 𝑙8)

end

diagram, sharing the same level. This is captured by a cross-space cor-
respondence that relates certain points of the geometric configuration
with certain grades of the SCALE image schema.

Therefore, the sort Point of specification hasse (see Specification 1) is
put into correspondence with the sort Grade of specification 4scale (see
pecification 2). Moreover, point 𝑝1 is put into correspondence with
rade 𝑔4; points 𝑝2, 𝑝3, and 𝑝4 with grade 𝑔3; points 𝑝5, 𝑝6, and 𝑝7 with
rade 𝑔2; and point 𝑝8 with grade 𝑔1. Predicates backPP, leftBackPP,

and rightBackPP of hasse are put into correspondence with the predicate
more of 4scale since this is how we understand points situated ‘farther
back’ in the diagram (using the terminology proposed by Hernández
(1991)) as being ‘more’ in the scale of grades. Specification 3 shows this
cross-space correspondence represented as a span 𝑉 of CASL signature
morphisms (called ‘views’ in CASL) from a common generic space.

The conceptual blend capturing this sensemaking of the Hasse dia-
gram as being structured in four levels (Fig. 4) would thus be modelled
by an amalgam over this span. There are many possible amalgams
over the same span, since an amalgam is ultimately the colimit for
some generalisation of a given span, and there are many possible such
generalisations. Let us now see which, of all potential amalgams, would
be the appropriate one to model this intended sensemaking of the Hasse
diagram as organised in four levels.

Notice that, if we were to take the colimit for the span given in
Specification 3 without generalising it, we would get a blend that is
inconsistent, assuming the intended meaning of the relative positioning
predicates we have taken from Hernández (1991) for our specification
of the Hasse diagram as in Specification 1. That is so because the
predicate leftPP is irreflexive, and this fact clashes with the statements
leftPP(𝑔2, 𝑔2) and leftPP(𝑔3, 𝑔3) that we would get in the colimit for the
given span.

Thus, the actual blend that we think is most faithful to our intended
sensemaking of the Hasse diagram as structured in four levels, is the
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one that ignores and does not project the leftPP relationship between
points into the blend. This blend would be modelled by an amalgam,
whose underlying colimit is determined by a generalisation 𝑉0 of the
original span 𝑉 , where we generalise the specification hasse to hasse_0
by removing all occurrences of the leftPP predicate. The result would
be the intended blend hasse_4scale_blend as in Specification 4.

Let us now examine the degrees of integration and topology preser-
vation of this blend according to our governing principles presented in
Section 3.1.2.

Integration. For measuring the integration of the blend, we need to
identify a minimal generalisation 𝑉𝑒 of our original span 𝑉 for which
the colimit is epic. Since Spec signatures (and hence also Spec⋆ sig-
natures) are families of sets, they can be characterised as presheaves.
Consequently, we have that such minimal generalisation is given by
way of epi-mono factorisations (see Theorem 1), which amounts to
making a minimal inner-space generalisation of hasse and 4scale so that
each entity of the colimit integrates entities projected from both input
spaces. (This generalisation removes the structure that is written in
black in Specification 4.) Specification 5 shows these generalised input
spaces.

The degree of integration of hasse_4scale_blend is then

𝖨𝗇𝗍(hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

where 𝑚 ∶ hasse_0↣ hasse is the Spec⋆-mono of the inclusion of hasse_0
into hasse, and 𝑛 and 𝑜 are identity arrows; and where 𝑚′ ∶ hasse_e ↣
hasse and 𝑛′ ∶ 4scale_e ↣ 4scale are the Spec⋆-monos of the inclusions
of hasse_e and 4scale_e into hasse and 4scale, respectively, and 𝑜′ is again
the identity arrow (since the generic space is not generalised).

The similarity 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩) of span generalisations is cal-
culated in terms of the generalisation steps of a given generalisation
operator (see Definition 6). Assuming an operator that removes one
axiom at a time, or that removes one signature symbol at a time
(provided it does not occur in any axiom), and taking into account
that hasse_e is a generalisation of hasse_0, (i.e. there exists Spec⋆-mono
𝑚′′ ∶ hasse_e↣ hasse_0 such that 𝑚′ = 𝑚◦𝑚′′), we have that:

𝑉0 ↘↘

𝑖𝑑 ↘↘

𝑉𝑒↙↙

⟨𝑚′′ ,𝑛′ ,𝑜′⟩↙↙
𝑉0
↓↓

⟨𝑚,𝑛,𝑜⟩

↓↓
𝑉

And thus:

(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(⟨𝑚, 𝑛, 𝑜⟩)

1 + 𝜆(⟨𝑚, 𝑛, 𝑜⟩) + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚′′, 𝑛′, 𝑜′⟩)

=
1 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜))

1 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + 0 + (𝜆(𝑚′′) + 𝜆(𝑛′) + 𝜆(𝑜))

=
1 + (5 + 0 + 0)

1 + (5 + 0 + 0) + 0 + (41 + 14 + 0)

= 6
61

≈ 0.0984

Topology. For measuring the topology preservation of the blend, we
need to identify a minimal general generalisation 𝑉𝑚 of our original
span 𝑉 for which the colimit is monic. Since we have that Spec
signatures are presheaves, this amounts to making a minimal outer-
space generalisation of the cross-space correspondence between input
spaces (by generalising the specification generic of the span modelling
the cross-space correspondence), such that we obtain a one-to-one
correspondence between input spaces, so that entities that are separate
in one input space, stay separate and are not fused in the blend.

Specification 6 shows this generalisation.

https://saco.csic.es/index.php/s/iKWyj8Kn3nQGKMf
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Specification 2 Generic SCALE image schema and its extension specifying a particular four-grade scale.

spec scale =
sorts ScaleSchema, Scale, Grade
ops scale ∶ ScaleSchema → Scale
preds inScale ∶ Grade × Scale

more, less ∶ Grade × Grade

%% Axioms for scale:
∀𝑠 ∶ ScaleSchema; 𝑐 ∶ Scale; 𝑥, 𝑦, 𝑧 ∶ Grade
∙ ∃!𝑠𝑐 ∶ ScaleSchema ∙ scale(𝑠𝑐) = 𝑐
∙ (inScale(𝑥,scale(𝑠)) ∧ inScale(𝑦,scale(𝑠)) ∧ ¬(𝑥 = 𝑦)) ⇒ (more(𝑥, 𝑦) ∨ more(𝑦, 𝑥)))
∙ more(𝑥, 𝑦) ⇒ ∃!𝑠𝑐:ScaleSchema ∙ inScale(𝑥,scale(𝑠𝑐)) ∧ inScale(𝑦,scale(𝑠𝑐))
∙ less(𝑥, 𝑦) ⇔ more(𝑦, 𝑥)

∙ ¬more(𝑥, 𝑥) %irreflexive
∙ (more(𝑥, 𝑦) ∧ more(𝑦, 𝑧)) ⇒ more(𝑥, 𝑧) %transitive
∙ more(𝑥, 𝑦) ⇒ ¬more(𝑦, 𝑥) %antisymmetric

nd

pec 4scale = scale
hen ops 𝑠 ∶ ScaleSchema

𝑔1, 𝑔2, 𝑔3, 𝑔4 ∶ Grade

∙ inScale(𝑔1,scale(𝑠))
∙ inScale(𝑔2,scale(𝑠))
∙ inScale(𝑔3,scale(𝑠))
∙ inScale(𝑔4,scale(𝑠))

∙ more(𝑔4, 𝑔3)
∙ more(𝑔3, 𝑔2)
∙ more(𝑔2, 𝑔1)

nd
Specification 3 Cross-space correspondence between the Hasse geometric
configuration and the four-grade SCALE schema, specified by means of a span
of CASL signature morphisms (called ‘views’) from a common generic space—a
specification constituted only of signature elements and no axioms.

spec generic =
sorts S
ops 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8 ∶ S
preds 𝑟1, 𝑟2, 𝑟3 ∶ S × S

end

view ℎ4𝑠1 ∶ generic to hasse =
S ↦Point,
𝑐1 ↦𝑝1, 𝑐2 ↦𝑝2, 𝑐3 ↦𝑝3, 𝑐4 ↦𝑝4, 𝑐5 ↦𝑝5, 𝑐6 ↦𝑝6, 𝑐7 ↦𝑝7, 𝑐8 ↦𝑝8,
𝑟1 ↦backPP, 𝑟2 ↦leftBackPP, 𝑟3 ↦rightBackPP

nd

iew ℎ4𝑠2 ∶ generic to 4scale =
S ↦Grade,
𝑐1 ↦𝑔4, 𝑐2 ↦𝑔3, 𝑐3 ↦𝑔3, 𝑐4 ↦𝑔3, 𝑐5 ↦𝑔2, 𝑐6 ↦𝑔2, 𝑐7 ↦𝑔2, 𝑐8 ↦𝑔1,
𝑟1 ↦more, 𝑟2 ↦more, 𝑟3 ↦more

nd

The degree of topology preservation of hasse_4scale_blend is then

𝖳𝗈𝗉(hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

where 𝑚 ∶ hasse_0↣ hasse is the Spec⋆-mono of the inclusion of hasse_0
into hasse, and 𝑛 and 𝑜 are identity arrows; and where now 𝑚′ and
𝑛′ are identity arrows (since input spaces are not generalised), while
𝑜′ ∶ generic_m↣ generic is the Spec⋆-mono of the inclusion of generic_m
into generic.

Assuming the same generalisation operator as above, and taking
into account that the most general generalisation of 𝑉 of which both
11

𝖨

𝑉0 and 𝑉𝑚 are generalisations, is 𝑉 itself, we have that:

𝑉0 ↘↘

⟨𝑚,𝑛,𝑜⟩ ↘↘

𝑉𝑚
↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉
↓↓

𝑖𝑑
↓↓
𝑉

And thus:

𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(𝑖𝑑)

1 + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚, 𝑛, 𝑜⟩) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

= 1 + 0
1 + 0 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′))

= 1 + 0
1 + 0 + (5 + 0 + 0) + (0 + 0 + 6)

= 1
12

≈ 0.0833

4.2.2. Nongeneralised blending
The second blend we analyse is based on the same cross-space cor-

respondence as specified with the span of Specification 3, but modelled
by the amalgam whose underlying colimit is the one for the nongener-
alised span. Recall from our discussion above that the resulting blend
turns out to be an inconsistent specification. In what follows we show
what the integration and topology-preservation measures of this blend
are. Let us name this blend nongen_hasse_4scale_blend.

Integration. For measuring the integration of the blend, we compute
the similarity of the generalisation 𝑉𝑒 as in Section 4.2.1 above (for
which the colimit is epic) with the nongeneralised span 𝑉 :

𝗇𝗍(nongen_hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)
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Specification 4 Conceptual blend modelling our sensemaking of the Hasse diagram of Fig. 4 with its points organised in four levels. Highlighted in teal are
the parts of the blend that integrate structure projected from both input spaces; the parts in black are projections only coming from either one or the other input
pace. We have renamed the integrated structure to highlight that the blend now specifies how entities that can be understood to be both points and grades
Point-Grade) are related via a relation (back-more) that states simultaneously the ‘back’ and ‘more’ relation we read off the Hasse diagram as we make sense of
t through our embodied cognition.

spec hasse_4scale_blend =
sorts Line, ScaleSchema, Scale, Point-Grade,
ops 𝑝𝑔1, 𝑝𝑔2, 𝑝𝑔3, 𝑝𝑔4 ∶ Point-Grade

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6, 𝑙7, 𝑙8, 𝑙9, 𝑙10, 𝑙11, 𝑙12 ∶ Line
scale ∶ ScaleSchema → Scale
𝑠 ∶ ScaleSchema

preds back-more, less ∶ Point-Grade × Point-Grade
intersectLL ∶ Line × Line
intersectLP ∶ Line × Point-Grade
inScale ∶ Point-Grade × Scale

%% Axioms for hasse_4scale_blend:
∙ back-more(𝑝𝑔4, 𝑝𝑔3)
∙ back-more(𝑝𝑔4, 𝑝𝑔2)
∙ back-more(𝑝𝑔3, 𝑝𝑔2)
∙ back-more(𝑝𝑔3, 𝑝𝑔1)
∙ back-more(𝑝𝑔2, 𝑝𝑔1)

%% topological relation – here, intersection – of lines with point-grades:
∙ intersectLP(𝑙1, 𝑝𝑔4) ∙ intersectLP(𝑙1, 𝑝𝑔3)
∙ intersectLP(𝑙2, 𝑝𝑔4) ∙ intersectLP(𝑙2, 𝑝𝑔3)
∙ intersectLP(𝑙3, 𝑝𝑔4) ∙ intersectLP(𝑙3, 𝑝𝑔3)
⋮

∙ inScale(𝑝𝑔1,scale(𝑠))
∙ inScale(𝑝𝑔2,scale(𝑠))
∙ inScale(𝑝𝑔3,scale(𝑠))
∙ inScale(𝑝𝑔4,scale(𝑠))

∀𝑠 ∶ ScaleSchema; 𝑐 ∶ Scale; 𝑥, 𝑦, 𝑧 ∶ Grade
∙ ∃!𝑠𝑐 ∶ ScaleSchema ∙ scale(𝑠𝑐) = 𝑐
∙ (inScale(𝑥,scale(𝑠)) ∧ inScale(𝑦,scale(𝑠)) ∧ ¬(𝑥 = 𝑦)) ⇒ (back-more(𝑥, 𝑦) ∨ back-more(𝑦, 𝑥)))
∙ back-more(𝑥, 𝑦) ⇒ ∃!𝑠𝑐:ScaleSchema ∙ inScale(𝑥,scale(𝑠𝑐)) ∧ inScale(𝑦,scale(𝑠𝑐))
∙ less(𝑥, 𝑦) ⇔ back-more(𝑦, 𝑥)

∙ ¬back-more(𝑥, 𝑥) %irreflexive
∙ (back-more(𝑥, 𝑦) ∧ back-more(𝑦, 𝑧)) ⇒ back-more(𝑥, 𝑧) %transitive
∙ (back-more(𝑥, 𝑦) ⇒ ¬back-more(𝑦, 𝑥) %antisymmetric

end
w

where now 𝑚, 𝑛, and 𝑜 are identity, and 𝑚′ ∶ hasse_e ↣ hasse and 𝑛′ ∶
4scale_e ↣ 4scale are the Spec⋆-monos of the inclusions of hasse_e and
4scale_e into hasse and 4scale, respectively, and 𝑜 is again the identity
arrow, as we had for Section 4.2.1.

As before, we compute the similarity 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩) of span
generalisations in terms of the generalisation operator used in Sec-
tion 4.2.1. Consequently, we have that:

𝑉
↘↘

𝑖𝑑 ↘↘

𝑉𝑒↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉
↓↓

𝑖𝑑
↓↓
𝑉

And thus:

(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩) =
1 + 𝜆(𝑖𝑑)

1 + 𝜆(𝑖𝑑) + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

= 1 + 0
12

1 + 0 + 0 + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜))
= 1
1 + (46 + 14 + 0)

= 1
61

≈ 0.0164

Topology. For measuring the topology preservation of the blend, we
compute the similarity of the generalisation 𝑉𝑚 as in Section 4.2.1
above (for which the colimit is monic) with the nongeneralised span
𝑉 :

𝖳𝗈𝗉(nongen_hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

here 𝑚, 𝑛, 𝑜, 𝑚′, and 𝑛′ are identity arrows, and 𝑜′ ∶ generic_m ↣
generic is the Spec⋆-mono of the inclusion of generic_m into generic as
in Section 4.2.1. Consequently, we have that:

𝑉
↘↘

𝑖𝑑 ↘↘

𝑉𝑚
↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉
↓↓

𝑖𝑑
↓↓

𝑉
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Specification 5 Inner-space generalisation of the geometric configuration of
the Hasse diagram of Fig. 4 (fragment) in which only the information about
points and their relative position is kept (except for leftPP); and inner-space
generalisation of the four-grade scale schema in which only the information
about the four grades and their ordering with more is kept.

spec hasse_e =
sorts Point
ops 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8 ∶ Point
preds backPP, leftBackPP, rightBackPP ∶ Point × Point

%% Axioms forhasse_e:
%% relative position of pairs of points:
∙ rightBackPP(𝑝1, 𝑝2)
∙ backPP(𝑝1, 𝑝2)
∙ leftBackPP(𝑝1, 𝑝4)
∙ rightBackPP(𝑝1, 𝑝5)
∙ leftBackPP(𝑝1, 𝑝7)
⋮

end

spec 4scale_e =
sorts Grade
ops 𝑔1, 𝑔2, 𝑔3, 𝑔4 ∶ Grade
preds more ∶ Grade × Grade

%% Axioms for 4scale_e:
∙ more(𝑔4, 𝑔3)
∙ more(𝑔3, 𝑔2)
∙ more(𝑔2, 𝑔1)

∀𝑥, 𝑦, 𝑧 ∶ Grade
∙ ¬more(𝑥, 𝑥) %irreflexive
∙ (more(𝑥, 𝑦) ∧ more(𝑦, 𝑧)) ⇒ more(𝑥, 𝑧) %transitive
∙ more(𝑥, 𝑦) ⇒ ¬more(𝑦, 𝑥) %antisymmetric

end

Specification 6 Outer-space generalisation of the cross-space correspondence
(the span of generic space and signature morphisms) so as to get a one-to-one
correspondence of input-space structure.

spec generic_m =
sorts S
ops 𝑐1, 𝑐3, 𝑐6, 𝑐8 ∶ S
preds 𝑟1 ∶ S × S

end

view ℎ4𝑠𝑚1 ∶ generic_m to hasse =
S ↦Point,
𝑐1 ↦𝑝1, 𝑐3 ↦𝑝3, 𝑐6 ↦𝑝6, 𝑐8 ↦𝑝8,
𝑟1 ↦backPP

end

view ℎ4𝑠𝑚2 ∶ generic_m to 4scale =
S ↦Grade,
𝑐1 ↦𝑔4, 𝑐3 ↦𝑔3, 𝑐6 ↦𝑔2, 𝑐8 ↦𝑔1,
𝑟1 ↦more

end

And thus:

(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩) =
1 + 𝜆(𝑖𝑑)

1 + 𝜆(𝑖𝑑) + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

= 1 + 0
1 + 0 + 0 + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜))

= 1
13

1 + (0 + 0 + 6)
= 1
7
≈ 0.1429

4.2.3. Only-ranked blending
The third blend we analyse is based on the same cross-space corre-

spondence as specified with the span of Specification 3 but modelled
by the amalgam whose underlying colimit is the span in which we
have generalised the Hasse geometry keeping only the points and its
relative positioning. This geometry is the one given in hasse_e (see
pecification 5). As in Section 4.2.1, this is an asymmetric blend (only
ne of the input spaces is generalised) and it captures the case of fo-
using only on how the points in the diagram are ranked, disregarding
ompletely how they are connected with lines. Let us name this blend
nly-ranked_hasse_4scale_blend.

ntegration. For measuring the integration of the blend, we compute
he similarity of the generalisation 𝑉𝑒 as in Section 4.2.1 above (for
hich the colimit is epic) with the generalisation 𝑉1 of span 𝑉 for which
asse is generalised to hasse_e:

𝗇𝗍(only-ranked_hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

here now 𝑚 ∶ hasse_e↣ hasse and 𝑛′ ∶ 4scale_e↣ 4scale are the Spec⋆-
onos of the inclusions of hasse_e and 4scale_e into hasse and 4scale,

espectively, and 𝑛, 𝑜, 𝑚′, and 𝑜′ are identity arrows.
As before, we compute the similarity 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩) of span

eneralisations in terms of the generalisation operator used in Sec-
ion 4.2.1. Consequently, we have that:

𝑉1 ↘↘

𝑖𝑑 ↘↘

𝑉𝑒↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉1
↓↓

⟨𝑚,𝑛,𝑜⟩

↓↓
𝑉

And thus:

(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(⟨𝑚, 𝑛, 𝑜⟩)

1 + ⟨𝑚, 𝑛, 𝑜⟩ + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜))

1 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + 0 + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′))

=
1 + (46 + 0 + 0)

1 + (46 + 0 + 0) + (0 + 14 + 0)

= 47
61

≈ 0.7705

Topology. For measuring the topology preservation of the blend, we
compute the similarity of the generalisation 𝑉𝑚 as in Section 4.2.1
above (for which the colimit is monic) with the span 𝑉1:

𝖳𝗈𝗉(only-ranked_hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

here 𝑚 ∶ hasse_e ↣ hasse and 𝑜′ ∶ generic_m ↣ generic are the Spec⋆-
onos of the inclusions of hasse_e and generic_m into hasse and generic,

espectively; and 𝑛, 𝑜, 𝑚′, and 𝑛′ are identity arrows. Consequently, we
ave that:

𝑉1 ↘↘

⟨𝑚,𝑛,𝑜⟩ ↘↘

𝑉𝑚
↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉
↓↓

𝑖𝑑
↓↓
𝑉

And thus:

𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)
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=
1 + 𝜆(𝑖𝑑)

1 + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚, 𝑛, 𝑜⟩) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

= 1 + 0
1 + 0 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′))

= 1
1 + (46 + 0 + 0) + (0 + 0 + 6)

= 1
53

≈ 0.0189

4.2.4. Disjoint blending
Let us analyse now a limit case, namely the extreme case of total

non-integration, that is, when the blend is just a disjoint union of
the HASSE and 4SCALE specifications. This blend is modelled with
he amalgam whose underlying colimit is for the span obtained by
eneralising generic to the empty specification. Let us name this blend
isjoint_hasse_4scale_blend.

ntegration. For measuring the integration of the blend, we compute
he similarity of the generalisation 𝑉𝑒 as in Section 4.2.1 above (for
hich the colimit is epic) with the span 𝑉∅ that we obtain by removing
ll entities from generic, with the same generalisation operator as in
ection 4.2.1.

𝗇𝗍(disjoint_hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

where 𝑚 are 𝑛 are identities, and 𝑜 ∶ empty ↣ generic is the Spec⋆-mono
f the inclusions of empty into generic; and 𝑚′ and 𝑛′ are the Spec⋆-

monos of the inclusions of hasse_e and 4scale_e into hasse and 4scale,
respectively, and 𝑜′ is the identity arrow, as we had for Section 4.2.1.
Consequently, we have that:

𝑉∅ ↘↘

⟨𝑚,𝑛,𝑜⟩ ↘↘

𝑉𝑒↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉
↓↓

𝑖𝑑
↓↓
𝑉

And thus:

(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(𝑖𝑑)

1 + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚, 𝑛, 𝑜⟩) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

= 1 + 0
1 + 0 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′))

= 1 + 0
1 + 0 + (0 + 0 + 12) + (46 + 14 + 0)

= 1
73

≈ 0.01370

Topology. For measuring the topology preservation of the blend, we
compute the similarity of the generalisation 𝑉𝑚 as in Section 4.2.1
bove (for which the colimit is monic) with the span 𝑉∅:

𝗈𝗉(disjoint_hasse_4scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

here 𝑚 are 𝑛 are identities, and 𝑜 ∶ empty↣ generic is the Spec⋆-mono
f the inclusions of empty into generic; and 𝑚′ and 𝑛′ are also identities,
nd 𝑜′ is the Spec⋆-mono of the inclusions of generic_m into generic, as
n Section 4.2.1. Taking into account that empty is a generalisation of
eneric_m, (i.e., there exists Spec⋆-mono 𝑜′′ ∶ empty ↣ generic_m such
hat 𝑜 = 𝑜′◦𝑜′′), we have that:

𝑉∅ ↘↘

⟨𝑚,𝑛,𝑜′′⟩ ↘↘

𝑉𝑚
↙↙

𝑖𝑑
↙↙

𝑉𝑚
↓↓

⟨𝑚′ ,𝑛′ ,𝑜′⟩

↓↓
14

𝑉 S
Specification 7 SCALE schema of three grades, specified as an extension of
the scale specification.

spec 3scale = scale
then ops 𝑠 ∶ ScaleSchema

𝑔1, 𝑔2, 𝑔3 ∶ Grade

∙ inScale(𝑔1,scale(𝑠))
∙ inScale(𝑔2,scale(𝑠))
∙ inScale(𝑔3,scale(𝑠))

∙ more(𝑔3, 𝑔2)
∙ more(𝑔2, 𝑔1)

nd

Specification 8 Cross-space correspondence between the Hasse geometric
configuration and the three-grade SCALE schema to capture a vertically-
layered Hasse diagram, specified by means of a span of CASL signature
morphisms (called ‘views’) from the common space generic (see Specification
3).

view ℎ3𝑠1 ∶ generic to hasse =
S ↦Point,
𝑐1 ↦𝑝1, 𝑐2 ↦𝑝2, 𝑐3 ↦𝑝3, 𝑐4 ↦𝑝4, 𝑐5 ↦𝑝5, 𝑐6 ↦𝑝6, 𝑐7 ↦𝑝7, 𝑐8 ↦𝑝8,
𝑟1 ↦leftPP, 𝑟2 ↦leftBackPP, 𝑟3 ↦rightBackPP

nd

iew ℎ3𝑠2 ∶ generic to 3scale =
S ↦Grade,
𝑐2 ↦𝑔3, 𝑐5 ↦𝑔3, 𝑐1 ↦𝑔2, 𝑐3 ↦𝑔2, 𝑐6 ↦𝑔2, 𝑐8 ↦𝑔2, 𝑐4 ↦𝑔1, 𝑐7 ↦𝑔1,
𝑟1 ↦more, 𝑟2 ↦more, 𝑟2 ↦less

nd

And thus:

(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

1 + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩) + 𝜆(⟨𝑚, 𝑛, 𝑜′′⟩) + 𝜆(𝑖𝑑)

=
1 + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′))

1 + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′)) + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜′′) + 𝜆(𝑖𝑑))

=
1 + (0 + 0 + 6)

1 + (0 + 0 + 6) + (0 + 0 + 6) + 0

= 7
13

≈ 0.5385

4.2.5. Vertically-levelled blending
The three blends above are amalgams for the same cross-space

correspondence as given by the span of Specification 3 relating horizon-
tally positioned points in a Hasse diagram with four grades of SCALE
chema. Let us now model how we would make sense of the same
asse diagram if we were to group the points into ‘‘vertical levels’’,
s it were, that increase horizontally from right to left. This requires a
ifferent correspondence of points with grades, and thus an extension
f scale specifying a three-grade scale, as shown in Specification 7. The
ross-space correspondence is then the span shown in Specification 8.

Analogous to the blend analysed in Section 4.2.1, a blend that
aptures the sensemaking of the Hasse diagram as organised in three
ertical levels, is the one that ignores and does not project the backPP
elation between points into the blend. This blend would be mod-
lled by an amalgam, whose underlying colimit is determined by a
eneralisation 𝑉0 of the original span 𝑉 , where we generalise the
pecification hasse to hasse_0† by removing all occurrences of the backPP
redicate. The resulting blend would be hasse_3scale_blend as shown in
pecification 9.
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Specification 9 Conceptual blend that captures the sensemaking of the Hasse diagram of Fig. 4 with its points grouped in three vertical levels, as it were.
Highlighted in teal are the parts of the blend that fuse entities projected from both input spaces; the parts in black are projections only coming from either one
or the other input space. We have renamed the fused entities to highlight that the blend now specifies how entities that can be understood to be both points and
grades (point-grades) are related via relations (left-more, right-less) that state simultaneously the ‘left’ and ‘more’ relations (or the ‘right’ and ‘less’ relations) we
read off the Hasse diagram.

spec hasse_3scale_blend =
sorts Point-Grade, Line, ScaleSchema, Scale
ops 𝑝𝑔1, 𝑝𝑔2, 𝑝𝑔3 ∶ Point-Grade

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6, 𝑙7, 𝑙8, 𝑙9, 𝑙10, 𝑙11, 𝑙12 ∶ Line
scale ∶ ScaleSchema → Scale
𝑠 ∶ ScaleSchema

preds left-more, right-less ∶ Point-Grade × Point-Grade
intersectLL ∶ Line × Line
intersectLP ∶ Line × Point-Grade
inScale ∶ Point-Grade × Scale

%% Axioms for hasse_3scale_blend:
∙ left-more(𝑝𝑔2, 𝑝𝑔1) ∙ right-less(𝑝𝑔1, 𝑝𝑔2)
∙ left-more(𝑝𝑔3, 𝑝𝑔2) ∙ right-less(𝑝𝑔2, 𝑝𝑔3)
∙ left-more(𝑝𝑔3, 𝑝𝑔1) ∙ right-less(𝑝𝑔1, 𝑝𝑔3)

%% topological relation—here, intersection—of lines with point-grades:
∙ intersectLP(𝑙1, 𝑝𝑔2) ∙ intersectLP(𝑙1, 𝑝𝑔3)
∙ intersectLP(𝑙2, 𝑝𝑔2)
∙ intersectLP(𝑙3, 𝑝𝑔2) ∙ intersectLP(𝑙3, 𝑝𝑔1)
⋮

∙ inScale(𝑝𝑔1,scale(𝑠))
∙ inScale(𝑝𝑔2,scale(𝑠))
∙ inScale(𝑝𝑔3,scale(𝑠))

∀𝑡 ∶ ScaleSchema; 𝑐 ∶ Scale; 𝑥, 𝑦, 𝑧 ∶ Point-Grade
∙ ∃!𝑠𝑐 ∶ ScaleSchema ∙ scale(𝑠𝑐) = 𝑐
∙ (inScale(𝑥,scale(𝑡)) ∧ inScale(𝑦,scale(𝑡)) ∧ ¬(𝑥 = 𝑦)) ⇒ (left-more(𝑥, 𝑦) ∨ left-more(𝑦, 𝑥)))
∙ left-more(𝑥, 𝑦) ⇒ ∃!𝑠𝑐:ScaleSchema ∙ inScale(𝑥,scale(𝑠𝑐)) ∧ inScale(𝑦,scale(𝑠𝑐))
∙ right-less(𝑥, 𝑦) ⇔ left-more(𝑦, 𝑥)

∙ ¬left-more(𝑥, 𝑥) %irreflexive
∙ (left-more(𝑥, 𝑦) ∧ left-more(𝑦, 𝑧)) ⇒ left-more(𝑥, 𝑧) %transitive
∙ (left-more(𝑥, 𝑦) ⇒ ¬left-more(𝑦, 𝑥) %antisymmetric

end
h
Let us now examine the degrees of integration and of topology
reservation of this blend.

ntegration. For measuring the integration of the blend, we identify
least general generalisation 𝑉𝑒 of our original span 𝑉 for which

the colimit is epic. This amounts to making a minimal inner-space
generalisation of hasse and 3scale so that each entity of the colimit fuses
entities projected from both input spaces. (Analogous to Section 4.2.1,
his generalisation removes the structure that is written in black in
pecification 9.)

The degree of integration of hasse_3scale_blend is then

𝗇𝗍(hasse_3scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

here 𝑚 ∶ hasse_0† ↣ hasse is the Spec⋆-mono of the inclusion
f hasse_0† into hasse, and 𝑛 and 𝑜 are identity arrows; and where
′ ∶ hasse_e ↣ hasse and 𝑛′ ∶ 3scale_e ↣ 3scale are the Spec⋆-
onos of the inclusions of hasse_e and 3scale_e into hasse and 3scale,

espectively, and 𝑜′ is again the identity arrow (since the generic space
s not generalised).

The similarity 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩) of span generalisations is cal-
ulated in terms of the generalisation steps of a given generalisation
perator (see Definition 6). Assuming an operator that removes signa-
ure entities as in Section 4.2.1, and taking into account that hasse_e is a
eneralisation of hasse_0†, (i.e. there exists Spec⋆-mono 𝑚′′ ∶ hasse_e↣
15
asse_0† such that 𝑚′ = 𝑚◦𝑚′′), we have that:

𝑉0 ↘↘

𝑖𝑑 ↘↘

𝑉𝑒↙↙

⟨𝑚′′ ,𝑛′ ,𝑜′⟩↙↙
𝑉0
↓↓

⟨𝑚,𝑛,𝑜⟩

↓↓
𝑉

And thus:

𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(⟨𝑚, 𝑛, 𝑜⟩)

1 + 𝜆(⟨𝑚, 𝑛, 𝑜⟩) + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚′′, 𝑛′, 𝑜′⟩)

=
1 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜))

1 + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + 𝜆(𝑖𝑑) + (𝜆(𝑚′′) + 𝜆(𝑛′) + 𝜆(𝑜))

=
1 + (6 + 0 + 0)

1 + (6 + 0 + 0) + 0 + (41 + 11 + 0)

= 7
59

≈ 0.1186

Topology. For measuring the topology preservation of the blend, we
need to identify a minimal general generalisation 𝑉𝑚 of our original
span 𝑉 for which the colimit is monic. Analogous to Section 4.2.1,
this amounts to making a minimal outer-space generalisation of the
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cross-space correspondence between input spaces (by generalising the
specification generic of the span modelling the cross-space correspon-
dence).

The degree of topology preservation of hasse_3scale_blend is then

𝖳𝗈𝗉(hasse_3scale_blend) = 𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

where 𝑚 ∶ hasse_0† ↣ hasse is the Spec⋆-mono of the inclusion of
hasse_0† into hasse, and 𝑛 and 𝑜 are identity arrows; and where now
𝑚′ and 𝑛′ are identity arrows (since input spaces are not generalised),
while 𝑜′ ∶ generic_m ↣ generic is the Spec⋆-mono of the inclusion of
generic_m into generic.

Assuming the same generalisation operator as above, and taking
into account that the most general generalisation of 𝑉 of which both
𝑉1 and 𝑉𝑚 are generalisations, is 𝑉 itself, we have that:

𝑉0 ↘↘

⟨𝑚,𝑛,𝑜⟩ ↘↘

𝑉𝑚
↙↙

⟨𝑚′ ,𝑛′ ,𝑜′⟩↙↙
𝑉
↓↓

𝑖𝑑
↓↓
𝑉

And thus:

𝜎(⟨𝑚, 𝑛, 𝑜⟩, ⟨𝑚′, 𝑛′, 𝑜′⟩)

=
1 + 𝜆(𝑖𝑑)

1 + 𝜆(𝑖𝑑) + 𝜆(⟨𝑚, 𝑛, 𝑜⟩) + 𝜆(⟨𝑚′, 𝑛′, 𝑜′⟩)

= 1 + 0
1 + 𝜆(𝑖𝑑) + (𝜆(𝑚) + 𝜆(𝑛) + 𝜆(𝑜)) + (𝜆(𝑚′) + 𝜆(𝑛′) + 𝜆(𝑜′))

= 1 + 0
1 + 0 + (6 + 0 + 0) + (0 + 0 + 6)

= 1
13

≈ 0.0769

. Discussion

We have initiated our formalisation of governing principles for
nalysing diagram sensemaking by addressing the Integration and
opology-Preservation principles. These principles hold a central po-
ition within conceptual blending. In Section 2.4, we have revisited
hese principles, aligning them with our understanding of Fauconnier
nd Turner’s original propositions. This clarification aims to reduce am-
iguities and facilitate their formalisation in Section 3.1.2, following an
nterpretation-independent approach based on the category-theoretical
ramework proposed by Schorlemmer and Plaza (2021). According
o Fauconnier and Turner, ‘‘the impulse to achieve integrated blends
s an overarching principle of human cognition’’ (Fauconnier & Turner,
002, p. 328), emphasising the significance of the Integration principle.

Simultaneously, we strive to retain as much information as possible
rom the input spaces’ structure, which is captured by the Topology-
reservation principle. As mentioned in Section 2.3, Fauconnier and
urner proposed additional governing principles for conceptual blend-

ng, including Compression, Pattern Completion, Promoting Vital Rela-
ions, Web, Unpacking, and Relevance. These principles are considered
dvantageous for reasoning and communication, offering cognitive
enefits such as reduced computation or memory costs. However, Inte-
ration and Topology-Preservation exhibit a compelling duality when
ormalised within our category-theoretic framework, with integration
valuated through epic colimits and topology assessed through monic
olimits. Consequently, we have prioritised the initial analysis of Sec-
ion 4 on these two governing principles due to the aforementioned
easons.

.1. Integration vs topology-preservation in diagram sensemaking

When examining the integration and topology-preservation mea-
ures computed for the various approaches to interpreting the ranked
16

p

Table 1
Summary of the degrees of integration and topology preservation of the four different
blends modelling alternative ways of making sense of the Hasse diagram of Fig. 4 as
analysed in this section.

Blending Integration Topology preservation

Intended 0.0984 0.0833
Nongeneralised 0.0164 0.1429
Only-Ranked 0.7705 0.0185
Disjoint 0.0137 0.5385

Vertically-Levelled 0.1186 0.0769

structure of the Hasse diagram shown in Fig. 4 and summarised in
Table 1, we observe distinct values. The blend that exhibits the highest
degree of integration between the diagram’s geometry and the SCALE
chema is the one that disregards the lines and solely focuses on the
oints, treating them as constituting multiple levels (referred to as
he ‘only-ranked’ blend). This blend successfully integrates the ranked
tructure of the diagram with the SCALE schema. However, it also
emonstrates the lowest degree of topology preservation since most of
he information from the Hasse diagram is generalised away.

Among the other blends we have examined, two of them stand out.
irstly, the ‘intended’ blend, where the Hasse diagram is understood as
rganised into four horizontal levels while preserving the information
bout point-line connections, exhibits a higher degree of integration
etween the diagram’s geometry and the SCALE schema. Secondly,
he ‘vertically-levelled’ blend, which captures our interpretation of the
iagram as structured into three vertical levels, also demonstrates a
otable degree of integration. In comparison, the remaining blends
e analysed, namely the ‘nongeneralised’ blend and ‘disjoint’ blend,
isplay lower degrees of integration of the diagram’s geometry with
he SCALE schema.

According to Fauconnier and Turner, ‘‘inputs often have opposed
opologies; [p]rojecting these topologies into the blend could create a
isintegrated space’’ (Fauconnier & Turner, 2002, p. 329). We aimed
o demonstrate this disintegration through the case of the ‘nongener-
lised’ blend. By refraining from generalising the diagram geometry,
e achieve better topology preservation compared to the ‘only-ranked’
nd ‘intended’ blending cases, as we retain more structure. However,
his comes at the expense of integration. This aligns with Fauconnier
nd Turner’s assertion that ‘‘it is a corollary of the Integration principle
hat in such cases, selections and adjustments must be made to avoid
disintegrated blend’’. Fauconnier and Turner (2002, p. 329). For in-

tance, the ‘intended’ blending case maintains consistency and exhibits
reater integration by generalising elements of the diagram geometry
hat lead to inconsistencies in the blend.

As Fauconnier and Turner suggest, ‘‘governing principles . . . of-
en conflict’’ (Fauconnier & Turner, 2002, p. 327), which is evident
etween the Integration and Topology-Preservation principles, as re-
lected in our formalisation. An extreme example of nonintegration is
llustrated in the case of the ‘disjoint’ blend, which prioritises topology
reservation but lacks integration.

It is important to note that the alternative approach of interpreting
he Hasse diagram as vertically levelled exhibits higher integration
ut lower topology preservation compared to the intended blending
ase. However, comparing these measures when cross-space correspon-
ences differ can be misleading. Factors such as the smaller signature
nd fewer axioms in the 3scale specification compared to the 4scale
pecification influence the computation of integration and topology-
reservation measures. Additionally, the SCALE schema is not the
ole image schema relevant to our embodied understanding of a Hasse
iagram.

Bourou et al. (2021a, 2022) have shown that image schemas like
INK, PATH, and VERTICALITY also play significant roles in reason-
ng with Hasse diagrams. Considering the integration and topology
reservation of the VERTICALITY schema with the geometry of the
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Hasse diagram may assist in guiding our blending process towards the
‘intended’ sensemaking of the diagram, organised by horizontal levels
that increase from bottom to top, rather than the alternative vertically-
levelled interpretation or the one that disregards all lines. A detailed
analysis of the role of the Integration and Topology-Preservation prin-
ciples when blending the geometry of the Hasse diagram with VERTI-
ALITY and other image schemas that are relevant when making sense
f the entire diagram, however, is outside the scope of this article.

.2. Salience and grouping in diagram sensemaking

The integration network between image schemas and the geometry
f a diagram reflects how we mentally structure this geometry to
ake sense of and reason with it. This cognitive structuring involves

mphasising certain parts of the geometric configuration while disre-
arding others or combining multiple shapes into a single entity. These
henomena are present to varying degrees in all the blends analysed in
his article.

The emphasis on certain structures is evident in the blending of the
CALE schema with only the points (along with their relative position
redicates) of a Hasse diagram’s geometry, highlighting them as salient
or reasoning about the entire geometry as an ordered/ranked poset
the ‘only-ranked’ blend). In this case, the lines and other predicates
re generalised away from the Hasse diagram’s geometric space and
re not included in the blend, representing a cognitive instance where
hey are not attended to. A similar but lesser degree of emphasis occurs
n the intended blending case, where most elements of the input spaces
re retained and projected into the blend.

The grouping of multiple shapes into a single structure, resulting
n a new entity, can be observed in the intended, ‘only-ranked’, the
nongeneralised’, and the ‘vertically-levelled’ blending cases. Here, sev-
ral points of the diagram’s geometry are mapped to a single grade,
ntegrating them as point-grades in the blend. The Integration principle
romotes this grouping, while Topology-Preservation is increased when
ross-space correspondences are one-to-one, avoiding the grouping of
lements from the input spaces. Conversely, the disjoint blending case,
hich exhibits the highest degree of topology preservation among the
nalysed cases, represents a blend where no grouping occurs.

. Related work

In this section, we discuss previous research on the computational
mplementation of conceptual blending that has explicitly addressed
he formalisation of governing principles, and we compare it with our
wn proposal.

.1. Alloy and GRIOT

One of the early implementations of conceptual blending and its
overning principles is Alloy (Goguen & Harrell, 2004). This algorithm
s based on the algebraic semiotics approach defined by Goguen (1999).
he input spaces of the Alloy algorithm are theories defined in the
lgebraic specification language BOBJ (Goguen et al., 2000) and im-
lemented as graph structures. This allows implementing the possible
uter-space relations as binary trees, which the blending algorithm
onducts a search on to select a mapping. This work has many common-
lities with our implementation, as our category-theoretical framework
uilds on it; in both works, blends are based on colimits, the approach
f algebraic specification is followed, and an algebraic specification
anguage is used.

The authors require governing principles to select blends, but they
onsider that the principles of Fauconnier and Turner (2002), although
ich, require human meaning, and are thus not easy to implement in

computational system. An exception is Topology, which addresses
tructure rather than meaning, and so it is captured as the commutativ-
17

ty property for each of the triangles (left/right) in the pushout diagram t
Fig. 5. Pushout diagram modelling two input spaces 𝐼1 and 𝐼2, a generic space 𝐺, and
a blend 𝐵. The latter corresponds to the apex of the colimit (here pushout) for the
span 𝐼1 ← 𝐺 → 𝐼2.

modelling the conceptual blend (see Fig. 5). This is the only principle
used in Alloy (Goguen & Harrell, 2004).

Alloy was later integrated into GRIOT to generate narratives in
poetry (Goguen & Harrell, 2010). In this work, the authors use their
own set of principles, which are computationally effective but limited.
In addition to diagram commutativity, the number of constants and
axioms of the input spaces that are preserved in the blend is quantified,
and so is the degree of type casting.5 A weighted sum of the principles
is taken, and thresholds can be set, above which blends are deemed
acceptable. Measures considered to decrease optimality can be nega-
tive. The authors also claim Unpacking (as defined by Fauconnier and
Turner (2002)) is satisfied for the blends resulting from their algorithm.

Finally, the authors point out that the advantages of certain blends,
such as those corresponding to highly metaphorical poems, may not
be captured by any of the principles of Fauconnier and Turner (2002),
nor by those they proposed themselves. Such blends may violate In-
tegration, Web, Unpacking, Topology and Relevance, while they may
have a high occurrence of type casting, so it might be necessary to for-
malise some additional principles and incorporate them into systems for
computational creativity. Other criteria that Goguen and Harrell (2004)
propose to take advantage of are: the fact that incongruence is not
necessarily problematic in metaphors, the existence of personification,
oxymoron, and metonymic tightening (relations between elements of
the same input should become as close as possible within the blend).

Firstly, we concur with Goguen and Harrell (2004, 2010) that the
principles of Fauconnier and Turner (2002) require human under-
standing and are hard to formalise computationally if they are not
reinterpreted to a certain extent. In this article, we have opted for revis-
iting and formalising a couple of these principles, instead of proposing
another set of them. Second, we see that the features of the blend
used to assess the governing principles in these two papers roughly
correspond to what we understand as Topology Preservation. Finally,
additional principles discussed, such as metonymy and oxymoron, we
believe are too specific to certain blends, e.g., in art, and in our work
we opted for a general formalisation that may subsume other, more
specialised, principles.

6.2. Divago and BlendVille

The first thorough implementation of a conceptual blending system
is, to the best of our knowledge, Divago (Pereira, 2007). Two input
spaces for blending are selected from a knowledge base of various
micro-theories represented in Prolog, each of them consisting of a
concept map (implemented as a semantic network, where nodes are
concepts and arcs are binary relations), logical rules specifying what
constitutes an incongruence for this concept, and some frames asso-
ciated with it. The cross-space mapping is defined using a structure
alignment algorithm based on spreading activation, which finds a
partial one-to-one mapping between elements of the input domains,

5 Type casting refers to when a constant in the blend gets a type that is not
he same, or a subtype of, the one it had in the input space.
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based on the identity of relational structure. Many possible blends can
be generated from this mapping, so the selection of the final blend is
done with a genetic algorithm. A weighted sum of the values of several
governing principles for each blend serves as its fitness function.

The governing principles are discussed in detail by Pereira and
Cardoso (2003). The degree to which frames are accomplished in the
blend plays a prominent role in the formalisation of the governing
principles. The accomplishment of a frame refers to the concept map of
the blend having the same structure as the frames associated with the
input spaces to this blend.

In the formalisations of Pereira and Cardoso (2003) we see that
several principles, as described by Fauconnier and Turner (2002),
require information about the meaning, or the purposes, of a particular
blend. Indicatively, this occurs in the principles of Integration; when
discussing what comprises incongruence, Promoting Vital Relations;
when defining intensity for a particular relation, and Relevance; be-
cause certain frames are assumed to be goal frames for a given blend.
Moreover, certain frames are assumed to be associated with a particular
concept. The authors try to adapt these definitions in a way that works
for their input spaces, giving rise to a very powerful but specialised
system.

Following the footsteps of Divago, BlendVille is a computational
conceptual blending system that uses evolutionary algorithms more
exploring the blend space (Gonçalves et al., 2017); but unlike Di-
vago, it selects and assesses blends not by way of governing principles
as in Fauconnier and Turner (2002), but by proposing to evaluate
topology, entropy, frame related informative measures and general
informative measures. They base their choice of simplifying the number
of governing principles on the study by Martins et al. (2016) where the
authors suggest that five governing principles – Integration, Topology,
Unpacking, Relevance, and Vital Relations – are enough for generating
good blends

We offer a more abstract but general-purpose, mathematical founda-
tion for formalising governing principles, linking them to our uniform
model of conceptual blending, and we also focus on two significant
governing principles—Topology and Integration. Another difference
we note is that, while we put frames aside completely, they have a
prominent role in Divago and BlendVille. Nonetheless, frames could be
incorporated in our model as additional input spaces which do not get
generalised, precisely as we do with image schemas in our case studies
in Section 4. Finally, Topology seems to be the most unambiguous prin-
ciple, as it has a relatively straightforward, and similar, formalisation
in our work and in all aforementioned publications blending systems.

6.3. Cobble

Within the context of the COINVENT project (Schorlemmer et al.,
2014), another implementation of conceptual blending has been pro-
posed, which shares with the examples presented here the CASL-based
representation of input spaces and the amalgam-based approach to
blending (Bou et al., 2018). The blending system has been called
Cobble, and it draws from several enabling technologies (Confalonieri
et al., 2018). The computational framework has been applied to com-
putational creativity in music harmonisation, mathematics, and formal
methods in computer science (Eppe et al., 2015, 2018).

In this and other implementations of conceptual blending, important
elements of the input spaces for a given integration network are pre-
determined by assigning manual priority indices to axioms, predicates,
or operations. These indices are then used as input for various metrics
aimed at assessing the structural criteria of integration networks, and
they effectively reduce the search space for the specific problem at
hand. Unlike the approach we have presented in this article, Cobble
efines and formalises governing principles relative to the particular
18

epresentation formalism it uses. Here we have been reinterpreting
governing principles in the uniform, category-theoretic model of con-
ceptual blending, aiming at a generic, representation-independent char-
acterisation of these principles. Consequently, these representation-
independent formalisations of governing principles are orthogonal to
(and thus compatible with) representation-specific assignments of pri-
ority indices to elements of input spaces. Both approaches can con-
tribute to assessing the value of a blend, and their relative importance
will depend on the particular domain of application.

7. Conclusions and future work

We have introduced a formal framework for understanding the
sensemaking process of diagrams, treating them as conceptual blends
of image schemas with the geometry of the diagrams. We repre-
sented these blends as amalgams and formalised them using category-
theoretical concepts. Our main contribution was the incorporation
of a category-theoretic characterisation of governing principles for
conceptual blending, with a specific focus on Integration and Topology
Preservation. This allowed us to quantitatively measure the degree to
which alternative blends satisfy these governing principles. By using
these principles in our framework, which are proposed to guide us
towards cognitively useful blends, we aimed to define, formalise, and
implement them in a way that captures the tradeoffs between them and
makes them amenable to algorithmic systems.

We believe that our work holds potential for applications in dia-
grammatic reasoning. Assuming that the interpretation of a diagram by
an observer can be modelled as a conceptual blend of image schemas
with the diagram’s geometry, we anticipate that a likely interpretation
would be represented by a blend with image schemas that maximally
satisfy the governing principles among other possible blends. In future
research, we plan to explore potentially interesting conceptual blends
from a pool of image schemas that have been blended with the geom-
etry of a diagram. Such a task requires an efficient way to explore the
search space of possible amalgams.

Our objective is to use the formalised governing principles to guide
this search. With the aid of such an algorithm, it becomes possible to
assess the efficacy of a diagram and gain a qualitative understanding of
the sensemaking process associated with it. If a diagram is cognitively
effective, there will exist image schemas that can be blended with its
geometry, resulting in a blend that satisfies the governing principles
and facilitates valid inferences about the diagram’s semantics. This
framework has already been applied to various diagrams, allowing us to
model different syllogisms involving them Bourou et al. (2021a, 2021b,
2021c), as well as compare their cognitive effectiveness (Bourou et al.,
2022).

All of these goals are facilitated by having formal descriptions of
image schemas as primitives that capture our embodied experiences.
Image schemas have been proposed to structure our perception and
bridge it with abstract thought (Mandler, 2004; Mandler & Pagán
Cánovas, 2014; Fauconnier & Turner, 2002, pp. 104–105). While there
is no definitive list of image schemas, they are conceptually and com-
putationally simple. This makes them suitable for modelling and imple-
mentation in computational systems, such as detecting affordances in
robotics (Pomarlan & Bateman, 2020; Pomarlan et al., 2021; Shanahan
et al., 2020; Thosar et al., 2021) or studying spatial meaning across
languages (Gromann & Hedblom, 2017).

In this article, our aim was to present a formal exploration of
the governing principles of conceptual blending and their potential
applications. We do not intend to provide a definitive description of
governing principles at this stage. Our objective is to concretise the
details of conceptual blending theory, which exists on the conceptual
level so that it can be effectively utilised by other researchers. We have
approached this theory formally using category theory and attempted
to reinterpret and incorporate the governing principles within our
framework to provide an understanding of the general characteristics

of blends that could be leveraged for selecting effective blends. We
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believe that image schema and conceptual blending theory hold sig-
nificant value for the development of computational cognitive systems.
However, their conceptual and occasionally ambiguous nature hinders
progress, which is why we have endeavoured to address this issue in
our work.
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ppendix. Category theory

In this section, we recall the basic category-theoretic notions we
se in our work, drawing from Mitchell (1965) and Pierce (1991) for
he basic definitions, and from Jay (1991) and Robinson and Rosolini
1988) for categories of partial arrows, with some minor adjustments
o terminology and notation.

.1. Categories, objects, and arrows

A category C comprises:

• a collection of objects;
• a collection of arrows (often called morphisms);
• operations assigning to each arrow 𝑓 an object 𝑑𝑜𝑚𝑓 , its domain,

and an object 𝑐𝑜𝑑 𝑓 , its codomain (we write 𝑓 ∶ 𝐴 → 𝐵 of 𝐴
𝑓
→ 𝐵

to show that 𝑑𝑜𝑚𝑓 = 𝐴 and 𝑐𝑜𝑑 𝑓 = 𝐵; the collection of all arrows
with domain 𝐴 and codomain 𝐵 is written C (𝐴,𝐵));

• a composition operator assigning to each pair of arrows 𝑓 and
𝑔, with 𝑐𝑜𝑑 𝑓 = 𝑑𝑜𝑚 𝑔, a composite arrow 𝑔◦𝑓 ∶ 𝑑𝑜𝑚𝑓 → 𝑐𝑜𝑑 𝑔,
satisfying the following associative law: for any arrows 𝑓 ∶ 𝐴 →
𝐵, 𝑔 ∶ 𝐵 → 𝐶, and ℎ ∶ 𝐶 → 𝐷, ℎ◦(𝑔◦𝑓 ) = (ℎ◦𝑔)◦𝑓 ;

• for each object 𝐴, and identity arrow 𝑖𝑑𝐴 ∶ 𝐴 → 𝐴 satisfying the
following identity law: for any arrow 𝑓 ∶ 𝐴 → 𝐵, 𝑖𝑑𝐵◦𝑓 = 𝑓 and
𝑓◦𝑖𝑑𝐴 = 𝑓 .

For the purposes of the work presented in this article, we will assume
(as in Pierce (1991)) that collections of objects and arrows are sets,
operations 𝑑𝑜𝑚, 𝑐𝑜𝑑, and ◦ are set-theoretic functions, and that equality
is set-theoretic identity. These categories are called small categories.

The opposite of a category C , denoted C 𝑜𝑝, has the same objects as
C but all its arrows reversed.

A category D is a subcategory of C if each object of D is an object
of C ; for all objects 𝐴 and 𝐵 of D , D(𝐴,𝐵) ⊆ C (𝐴,𝐵); and composite
and identity arrows are the same in D as in C .

An arrow 𝑓 ∶ 𝐴 → 𝐵 is an isomorphism if there is an arrow
𝑓−1 ∶ 𝐵 → 𝐴, called the inverse of 𝑓 , such that 𝑓−1◦𝑓 = 𝑖𝑑 and
19

𝐴 o
𝑓◦𝑓−1 = 𝑖𝑑𝐵 . The objects 𝐴 and 𝐵 are said to be isomorphic (and we
write 𝐴 ≅ 𝐵) if there is an isomorphism between them.

An arrow 𝑓 ∶ 𝐵 → 𝐶 of a category C is a monomorphism (or ‘‘is
a mono’’, or ‘‘is monic’’) if, for any pair of arrows 𝑔 ∶ 𝐴 → 𝐵 and
ℎ ∶ 𝐴 → 𝐵 of C , the equality 𝑓◦𝑔 = 𝑓◦ℎ implies that 𝑔 = ℎ. (In this
case we will write 𝑓 ∶ 𝐵 ↣ 𝐶.)

An arrow 𝑓 ∶ 𝐴 → 𝐵 of a category C is an epimorphism (or ‘‘is an
epi’’, or ‘‘is epic’’) if, for any pair of arrows 𝑔 ∶ 𝐵 → 𝐶 and ℎ ∶ 𝐵 → 𝐶
of C , the equality 𝑔◦𝑓 = ℎ◦𝑓 implies that 𝑔 = ℎ. (In this case we will
write 𝑓 ∶ 𝐵 ↠ 𝐶.)

Given a mono 𝑓 ∶ 𝐴′ ↣ 𝐴, we shall call 𝐴′ a subobject of 𝐴, and
we shall refer to 𝑓 as the inclusion of 𝐴′ in 𝐴. In general, there is more
than one mono from 𝐴′ to 𝐴, so that whenever we speak of 𝐴′ as a
subobject of 𝐴 we shall be referring to a specific inclusion mono 𝑓 .

The image of an arrow 𝑓 ∶ 𝐴 → 𝐵 in category C is defined as the
smallest subobject of 𝐵 which 𝑓 factors through; that is, the image is an
inclusion mono 𝑚 ∶ 𝐼 ↣ 𝐵 in C satisfying that there exists an arrow
𝑒 ∶ 𝐴 → 𝐼 such that 𝑓 = 𝑚◦𝑒, and for every subobject 𝑚′ ∶ 𝐼 ′ ↣ 𝐵
and arrow 𝑒′ ∶ 𝐴 → 𝐼 ′ such that 𝑓 = 𝑚′◦𝑒′, there exists a unique arrow
𝑣 ∶ 𝐼 → 𝐼 ′ such that 𝑚 = 𝑚′◦𝑣. (Necessarily the arrow 𝑣 is monic.) When
𝑒 is epic, we call the pair of arrows (𝑒, 𝑚) an epi-mono factorisation.

The union of a family {𝐴𝑖}𝑖∈𝐼 of subobjects of 𝐴 is defined as the
subobject 𝐴′ of 𝐴, denoted by ⋃

𝑖∈𝐼 𝐴𝑖, which is preceded by each of the
𝐴𝑖 (i.e., each 𝐴𝑖 is also subobject of 𝐴′), and which has the following
property: If, for an arrow 𝑓 ∶ 𝐴 → 𝐵, each 𝐴𝑖 is carried into some
subobject 𝐵′ of 𝐵 by 𝑓 (i.e., there exists an arrow 𝑓𝑖 ∶ 𝐴𝑖 → 𝐵′ such
that 𝑓◦𝑚𝑖 = 𝑛◦𝑓𝑖, where 𝑚𝑖 and 𝑛 are the inclusion monos of 𝐴𝑖 in 𝐴 and
𝐵′ in 𝐵, respectively), then 𝐴′ is also carried into 𝐵′ by 𝑓 (i.e., there
exists an arrow 𝑓 ′ ∶ 𝐴′ → 𝐵′ such that 𝑓◦𝑚′ = 𝑛◦𝑓 ′, where 𝑚′ is the
inclusion mono of 𝐴′ in 𝐴, denoted by ⋃

𝑖∈𝐼 𝑚𝑖).
When necessary to disambiguate, we will explicitly mention with

a prefix the category C a particular entity is part of, and thus talk of
C -objects, C -arrows, C -monos, etc.

A.2. Diagrams

A diagram in a category C is a collection of vertices and directed
edges, consistently labelled with objects and arrows of C , where ‘‘con-
sistently’’ means that if an edge in the diagram is labelled with an arrow
𝑓 and 𝑓 has domain 𝐴 and codomain 𝐵, then the endpoints of this edge
must be labelled with 𝐴 and 𝐵.

In this article we focus on diagrams with vertices and edges of
particular shapes, namely v-diagrams, such as for instance:

𝐵 𝐶

𝐴
𝑓

↖↖

𝑔

↗↗

and also w-diagrams, such as for instance:

𝐶 𝐷 𝐸

𝐴
𝑓

↖↖

𝑔

↗↗

𝐵
ℎ

↖↖

𝑘

↗↗

A.3. Universal constructions

A product of two objects 𝐴 and 𝐵 is an object 𝐴 × 𝐵 together with
two projection arrows 𝜋1 ∶ 𝐴 × 𝐵 → 𝐴 and 𝜋2 ∶ 𝐴 × 𝐵 → 𝐵, such that
for any object 𝐶 and pair of arrows 𝑓 ∶ 𝐶 → 𝐴 and 𝐺 ∶ 𝐶 → 𝐵 there is
exactly one mediating arrow ⟨𝑓, 𝑔⟩ ∶ 𝐶 → 𝐴 ×𝐵 such that 𝜋◦⟨𝑓, 𝑔⟩ = 𝑓
nd 𝜋2◦⟨𝑓, 𝑔⟩ = 𝑔.

A pullback of the pair of arrows 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶 is an
bject 𝑃 (called apex of the pullback) and a pair of arrows 𝑔′ ∶ 𝑃 → 𝐴
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and 𝑓 ′ ∶ 𝑃 → 𝐵 such that 𝑓◦𝑔′ = 𝑔◦𝑓 ′; and if 𝑖 ∶ 𝑋 → 𝐴 and 𝑗 ∶ 𝑋 → 𝐵
re such that 𝑓◦𝑖 = 𝑔◦𝑗, then there is a unique 𝑘 ∶ 𝑋 → 𝑃 such that
= 𝑔′◦𝑘 and 𝑗 = 𝑓 ′◦𝑘.

Each universal construction has its dual, obtained by reversing the
irection of arrows. In this paper, we also use the dual of the pullback:

A pushout of the pair of arrows 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶 is an
bject 𝑃 (called apex of the pushout) and a pair of arrows 𝑔′ ∶ 𝐵 → 𝑃
nd 𝑓 ′ ∶ 𝐶 → 𝑃 such that 𝑔′◦𝑓 = 𝑓 ′◦𝑔; and if 𝑖 ∶ 𝐵 → 𝑋 and 𝑗 ∶ 𝐶 → 𝑋
re such that 𝑖◦𝑓 = 𝑗◦𝑔, then there is a unique 𝑘 ∶ 𝑃 → 𝑋 such that
= 𝑘◦𝑔′ and 𝑗 = 𝑘◦𝑓 ′.

A pushout is a particular kind of the following universal construc-
ion (when the given arrows constitute a v-diagram):

A colimit for a diagram is an object 𝐶 (called apex of the colimit)
nd a family of arrows {𝑓𝑖 ∶ 𝐴𝑖 → 𝐶} with an arrow from each of the

objects 𝐴𝑖 in the given diagram, such that, for every arrow 𝑎 ∶ 𝐴𝑖 → 𝐴𝑗
n the given diagram, 𝑓𝑖 = 𝑓𝑗◦𝑎; and, if {𝑔𝑖 ∶ 𝐴𝑖 → 𝑋} is a family of

arrows with an arrow from each of the objects 𝐴𝑖 in the given diagram,
such that, for every arrow 𝑎 ∶ 𝐴𝑖 → 𝐴𝑗 in the given diagram, 𝑔𝑖 = 𝑔𝑗◦𝑎,
then there is a unique 𝑘 ∶ 𝐶 → 𝑋 such that 𝑔𝑖 = 𝑘◦𝑓𝑖.

A category C is said to ve cocomplete if there exists a colimit for
every diagram in C .

A.4. Categories of partial arrows

A pair of arrows 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶 with the same domain
constitute a span between 𝐵 and 𝐶. When 𝑓 is monic, we call it a
monospan from 𝐵 to 𝐶.

Monospans are a categorical abstraction of partial functions on sets,
and when seen this way they are called partial arrows. The subobject as
determined by the inclusion mono of the monospan is then called the
domain of the partial arrow. When this inclusion mono is the identity,
the arrow is a total arrow.

For partial arrows to constitute a category we need to have inverse
images (i.e., pullbacks of monos) to be able to define composition of
partial arrows. Monos satisfying this property are called stable monos.
In the particular case of a pullback of two monos, the apex of the pull-
back is also referred to as the intersection of the subobjects represented
by the monos, and given two subobjects 𝐴1 and 𝐴2 of an object 𝐴, we
will write 𝐴1 ∩ 𝐴2 for their intersection.

We write 𝖯𝗍𝗅(C ) for the category of partial arrows on C . Often 𝖯𝗍𝗅(C )
is too big because the class of monos of C is too wide; thus, it is
common to restrict the class of subobjects that are considered admis-
sible as domains of partial arrows. We call such class a realm when its
monos are stable and closed under composition and isomorphism; and
we write M−𝖯𝗍𝗅(C ) for the category of partial arrows, when the monos
of the monospans representing its arrows are taken only from the realm
M .

A.5. Functors and presheaves

Given two categories C and D , a functor 𝐹 ∶ C → D is a map from
C -objects to D-objects and from C -arrows to D-arrows, such that for
all C -objects 𝐴 and composable C -arrows 𝑑 and 𝑔:

• 𝐹 (𝑖𝑑𝐴) = 𝑖𝑑𝐹 (𝐴)

• 𝐹 (𝑔◦𝑓 ) = 𝐹 (𝑔)◦𝐹 (𝑓 ).

The functors from a category C to a category D constitute themselves
a category Func(C ,D) called functor category.

A presheaf on a category C is a functor 𝐹 ∶ C 𝑜𝑝 → Set, where Set
is the category of sets and functions. The category Psh(C ) of presheaves
on a category C is the functor category Func(C 𝑜𝑝, Set). Its colimits for
a diagram (in the functor category) are constructed pointwise, i.e., by
constructing the colimit at each value of the diagram for each object in
20
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