
Course on Metaheuristics and Hybrids c© C. Blum

Swarm Intelligence

Christian Blum

Artifical Intelligence Research Institute (iiia)

Spanish National Research Council (csic)

c© Alex Wild (http://www.myrmecos.net)

Course on Metaheuristics and Hybrids c© C. Blum

Outline

Topics:

◮ Swarm intelligence: Short introduction

◮ Topic 1: Ant colony optimization

⋆ Inspiration: Foraging behavior of ant colonies

◮ Topic 2: Particle swarm optimization

⋆ Inspiration: Social behavior of flocks of birds and fish schools

Course on Metaheuristics and Hybrids c© C. Blum

Outline

Topics (continued):

◮ Topic 3: Self-synchronized duty cycling in sensor networks

⋆ Inspiration: Self-synchronization in ant colonies

◮ Topic 4: Distributed graph coloring

⋆ Inspiration: Self-desynchronization of Japanese tree frogs

Course on Metaheuristics and Hybrids c© C. Blum

Swarm intelligence

Swarm Intelligence

Short introduction

Course on Metaheuristics and Hybrids c© C. Blum

What is swarm intelligence

In a nutshell: AI discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools

c© Ralf Müller By curtesy of www.aerospaceweb.org c© Su Neko

Course on Metaheuristics and Hybrids c© C. Blum

Swarm intelligence

Properties:

◮ Consist of a set of simple entities

◮ Distributedness: No global control

◮ Self-organization by:

⋆ Direct communication: visual, or chemical contact

⋆ Indirect communication: Stigmergy (Grassé, 1959)

E1 E2 En−1 En

R1 R2 Rn−1

Result: Complex tasks/behaviors can be accomplished/exhibited in cooperation

Course on Metaheuristics and Hybrids c© C. Blum

Swarm intelligence

Examples of social insects:

◮ Ants

◮ Termites

◮ Some wasps and bees

c© Velo Steve c© Alex Wild (http://www.myrmecos.net) c© Alex Wild

Course on Metaheuristics and Hybrids c© C. Blum

Current state: distributed optimization/control and robotics

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Cemetery formation (1)

c© by the National Academy of Sciences (PNAS)

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Cemetery formation (2)

Note: Models for cemetery formation (brood tending) are used for clustering

◮ E. D. Lumer and B. Faieta. Diversity and adaptation in populations of

clustering ants. 3rd International Conference on Simulation of Adaptive

Behaviour: From Animals to Animats 3 (SAB 94), 1994

◮ D. Merkle, M. Middendorf, A. Scheidler. Decentralized packet clustering

in router-based networks. Int. J. Found. Comput. Sci., 2005.

◮ R. Klazar, A. P. Engelbrecht. Dynamic Load Balancing Inspired by

Cemetery Formation in Ant Colonies. Swarm Intelligence, 2012.

Course on Metaheuristics and Hybrids c© C. Blum

Current state: distributed optimization/control and robotics

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Division of Labour / Task Allocation (1)

◮ Problem: in any colony (ants, bees, etc) are a number of tasks to fulfill

◮ Examples: brood tending, foraging for resources, maintaining the nest

◮ Requires: dyanamic allocation of individuals to tasks

◮ Depends on: state of the environment, needs of the colony

◮ Requires: global assessment of the colonies current state

However: Individuals are unable (as individuals) to make a global assessment

Solution: Response threshold models

Course on Metaheuristics and Hybrids c© C. Blum

Division of Labour / Task Allocation (2)

Assume that:

◮ We have m tasks to fulfill

◮ We have n individuals in the colony

◮ Each individual i has a response threshold δij for each task j

◮ Let sj ≥ 0 be the stimulus of task j

◮ An individual engages in task j with probability

pij =
s2j

s2j + δ2ij

This means:

◮ If sj << δij : pij is close to 0

◮ If sj >> δij : pij is close to 1

Course on Metaheuristics and Hybrids c© C. Blum

Division of Labour / Task Allocation (3)

This means (continued):

◮ If sj = δij : pij = 0.5

◮ An individual i with a low δij is likely to respond to a lower stimulus sj

Additional feature: response thresholds are dynamic

◮ Let ∆t be a duration of time.

◮ Let xij∆t be the fraction of time spent by i on task j within ∆t

◮ Then: (1− xij)∆t is the time spent by i on other tasks

Response threshold update:

δij → δij − ξxij∆t+ ρ(1− xij)∆t

Course on Metaheuristics and Hybrids c© C. Blum

Division of Labour / Task Allocation (4)

where:

◮ ξ is a reinforcement coefficient

◮ ρ is a forgetting coefficient

Effects:

◮ The more an individual engages in a task j, the lower becomes its threshold

◮ The less an individual engages in a task j, the higher becomes its threshold

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Division of Labour / Task Allocation (4)

References:

◮ M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic

scheduling and division of labor in social insects. Adaptive Behavior,

2000.

◮ D. Merkle, M. Middendorf and A. Scheidler. Self-Organized Task

Allocation for Service Tasks in Computing Systems with

Reconfigurable Components, Journal of Mathematical Modelling and

Algorithms, 2008.

◮ A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, M. Dorigo. Self-organized

task allocation to sequentially interdependent tasks in swarm

robotics. Autonomous Agents and Multi-Agent Systems, 2014.

Course on Metaheuristics and Hybrids c© C. Blum

Current state: distributed optimization/control and robotics

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Self-synchronization of fireflies (1)

By curtesy of www.learner.org

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Self-synchronization of fireflies (2)

Pulse-coupled oscillator model

c© A. Tyrrell and G. Auer

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Self-synchronization of fireflies (3)

References:

◮ A. Rowe, R. Mangharam and R. Rajkumar. FireFly: A Time

Synchronized Real-Time Sensor Networking Platform, Wireless Ad

Hoc Networking: Personal-Area, Local-Area, and the Sensory-Area Networks,

CRC Press Book Chapter (2006)

◮ N. Lipa, E. Mannes, A. Santos and M. Nogueira. Firefly-inspired and

robust time synchronization for cognitive radio ad hoc networks.

Computer Communications, 2015.

◮ D. Sutantyo and P. Levi. Decentralized underwater multi-robot

communication using bio-inspired approaches. Artificial Life and

Robotics, 2015.

Course on Metaheuristics and Hybrids c© C. Blum

Current state: distributed optimization/control and robotics

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Nest construction (1)

Termite mound Ant hill

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Nest construction (2)

Automated construction Automated shape forming

◮ J. Werfel, K. Petersen, R. Nagpal. Designing Collective Behavior in a

Termite-Inspired Robot Construction Team, Science, 2014.

◮ M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, R. Nagpal. Kilobot: A Low Cost

Robot with Scalable Operations Designed for Collective Behaviors.

Robotics and Autonomous Systems Journal, 2013.

Course on Metaheuristics and Hybrids c© C. Blum

Current state: distributed optimization/control and robotics

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Animal-robot interaction (1)

Reasons for controlling animal swarms:

1. Studies of animal behaviour. For example:

◮ Studying swarm/herd/group formation

◮ Studying collective decision making

2. Guiding a swarm out of a danger zone

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Animal-robot interaction (2)

Robot fish Influencing the fish school

◮ F. Bonnet, Y. Kato, J. Halloy, F. Mondada. Infiltrating the Zebrafish Swarm:

Design, Implementation and Experimental Tests of a Miniature Robotic

Fish Lure for Fish-Robot Interaction Studies. SWARM 2015: The First

International Symposium on Swarm Behavior and Bio-Inspired Robotics, 2015.

Course on Metaheuristics and Hybrids c© C. Blum

Current state: Animal-robot interaction (3)

◮ S. Gade, A. A. Paranjape, and S.-J. Chung. a Flock of Birds Approaching an

Airport Using an Unmanned Aerial Vehicle. AIAA Guidance, Navigation,

and Control Conference, 2015.

Course on Metaheuristics and Hybrids c© C. Blum

Swarm intelligence: examples

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Flocking (1)

Definition: The collective motion of a large number of self-propolled entities

Note:

◮ Commonly used as a demonstration of emergence and self-organization

◮ Modelled/simulated for the first time by Craig Reynolds (Boids, 1986)

Model: Basic rules

1. Separation: avoid crowding neighbours (short range repulsion)

2. Alignment: steer towards average heading of neighbours

3. Cohesion: steer towards average position of neighbours (long range attraction)

Course on Metaheuristics and Hybrids c© C. Blum

Flocking (2)

References:

◮ J. Kennedy and R. Eberhart. Particle Swarm Optimization, Proceedings

of IEEE International Conference on Neural Networks, pages 1942–1948, 1995

◮ G. Folino, A. Forestiero and G. Spezzano. An adaptive flocking algorithm

for performing approximate clustering, Information Sciences,

179(18):3059–3078, 2009

◮ X. Cui, J. Gao, and E. Potok. A Flocking based algorithm for document

clustering analysis, Journal of Systems Architecture, 52, 505–515, 2006

Course on Metaheuristics and Hybrids c© C. Blum

Swarm intelligence: examples

Examples:

◮ Cemetery formation (ants)

◮ Division of labour / Task allocation (ants + bees)

◮ Self-synchronization of fireflies

◮ Nest construction (termites + ants)

◮ Animal-robot interaction

◮ Flocking (birds + fish)

◮ Foraging behavior of ants

Course on Metaheuristics and Hybrids c© C. Blum

Foraging behavior of ants (1)

Communication strategies:

◮ Direct communication: For example, recruitment

◮ Indirect communication: via chemical pheromone trails

c© Alex Wild (http://www.myrmecos.net) c© Christian Blum

Course on Metaheuristics and Hybrids c© C. Blum

Foraging behavior of ants (2)

Communication strategies:

◮ Direct communication: For example, recruitment

◮ Indirect communication: via chemical pheromone trails

Basic behaviour:

Course on Metaheuristics and Hybrids c© C. Blum

Foraging behavior of ants (3)

c© Alex Wild (http://www.myrmecos.net)

Course on Metaheuristics and Hybrids c© C. Blum

Foraging behavior of ants (4)

Nest Food

Nest Food

Course on Metaheuristics and Hybrids c© C. Blum

Foraging behavior of ants (5)

Nest Food

Nest Food

Course on Metaheuristics and Hybrids c© C. Blum

Foraging behavior of ants (6)

References:

◮ M. Dorigo and T. Stützle. Ant Colony Optimization, MIT press, 2004.

◮ C. Blum. Ant colony optimization: introduction and recent trends,

Physics of Life Reviews, 2(4):353–373, 2005.

◮ P. Korosec, J. Silc and B. Filipic. The differential ant-stigmergy

algorithm, Information Sciences, 192, 82–97, 2012

Course on Metaheuristics and Hybrids c© C. Blum

Bla

Topic 1: Ant Colony Optimization

Inspiration: Foraging behavior of ant colonies

Course on Metaheuristics and Hybrids c© C. Blum

The ant colony optimization metaheuristic

Outline (ACO part):

◮ Simulation of the foraging behaviour

◮ The ACO metaheuristic

◮ Example: traveling salesman problem (TSP)

◮ Example: assembly line balancing

◮ A closer look at algorithm components

◮ ACO for continuous optimization

Course on Metaheuristics and Hybrids c© C. Blum

Simulation of the foraging behaviour (1)

Technical simulation:

a b
Nest Foode1, l1 = 1

e2, l2 = 2

1. We introduce artificial pheromone parameters:

T1 for e1 and T2 for e2

2. W initialize the phermomone values:

τ1 = τ2 = c > 0

Course on Metaheuristics and Hybrids c© C. Blum

Simulation of the foraging behaviour (2)

Algorithm:

Iterate:

1. Place na ants in node a.

2. Each of the na ants traverses from a to b either

◮ via e1 with probability p1 = τ1
τ1+τ2

,

◮ or via e2 with probability p2 = 1− p1.

3. Evaporate the artificial pheromone: i = 1, 2

τi ← (1− ρ)τi , ρ ∈ (0, 1]

4. Each ant leaves pheromone on its traversed edge ei:

τi ← τi +
1

li

Course on Metaheuristics and Hybrids c© C. Blum

Simulation of the foraging behaviour (3)

Simulation results:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

%
 o

f a
nt

s
us

in
g

th
e

sh
or

t p
at

h

iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150

%
 o

f a
nt

s
us

in
g

th
e

sh
or

t p
at

h

iteration

Colony size: 10 ants Colony size 100 ants

Observation: Optimization capability is due to co-operation

Course on Metaheuristics and Hybrids c© C. Blum

Simulation of the foraging behaviour (4)

Main differences between model and reality:

Real ants Simulated ants

Ants’ movement asynchronous synchronized

Pheromone laying while moving after the trip

Solution evaluation implicitly explicit quality measure

Problem: In combinatorial optimization we want to find good solutions

Course on Metaheuristics and Hybrids c© C. Blum

The ant colony optimization metaheuristic

Outline (ACO part):

◮ Simulation of the foraging behaviour

◮ The ACO metaheuristic

◮ Example: traveling salesman problem (TSP)

◮ Example: assembly line balancing

◮ A closer look at algorithm components

◮ ACO for continuous optimization

Course on Metaheuristics and Hybrids c© C. Blum

The ACO framework

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values

Course on Metaheuristics and Hybrids c© C. Blum

The ACO pseudocode

input: An instance P of a combinatorial problem P.
InitializePheromoneValues(T)
while termination conditions not met do

Siter ← ∅
for j = 1, . . . , na do

s← ConstructSolution(T)
s← LocalSearch(s) — optional —

Siter ← Siter ∪ {s}
end for

ApplyPheromoneUpdate(T)
end while

output: The best solution found

Course on Metaheuristics and Hybrids c© C. Blum

Metaheuristics: Timeline of their introduction

Metaheuristics:

◮ Simulated Annealing (SA) [Kirkpatrick, 1983]

◮ Tabu Search (TS) [Glover, 1986]

◮ Genetic and Evolutionary Computation (EC) [Goldberg, 1989]

◮ Ant Colony Optimization (ACO) [Dorigo, 1992]

◮ Greedy Randomized Adaptive Search Procedure (GRASP) [Resende, 1995]

◮ Particle Swarm Optimization (PSO) [Kennedy, 1995]

◮ Guided Local Search (GLS) [Voudouris, 1997]

◮ Iterated Local Search (ILS) [Stützle, 1999]

◮ Variable Neighborhood Search (VNS) [Mladenović, 1999]

Course on Metaheuristics and Hybrids c© C. Blum

The ant colony optimization metaheuristic

Outline (ACO part):

◮ Simulation of the foraging behaviour

◮ The ACO metaheuristic

◮ Example: traveling salesman problem (TSP)

◮ Example: assembly line balancing

◮ A closer look at algorithm components

◮ ACO for continuous optimization

Course on Metaheuristics and Hybrids c© C. Blum

TSP: definition (1)

Example: Traveling salesman problem (TSP) . Given a completely connected,

undirected graph G = (V,E) with edge-weights.

3 4

1 2
2

2

2 2
1 5

Goal:
Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.

Course on Metaheuristics and Hybrids c© C. Blum

TSP definition (2)

TSP in terms of a combinatorial optimization problem P = (S, f):

◮ S consists of all possible Hamiltonian cycles in G.

◮ Objetive function f : S 7→ IR+: s ∈ S is defined as the sum of the edge-weights

of the edges that are in s.

3 4

1 2
2

2

2 2
1 5

obj. function value: 8

3 4

1 2
2

2

2 2
1 5

obj. function value: 10

3 4

1 2
2

2

2 2
1 5

obj. function value: 10

Course on Metaheuristics and Hybrids c© C. Blum

Applying ACO to the TSP

Preliminary step: Definition of the

◮ solution components

◮ pheromone model

example instance solution components pheromone model

3 4

1 2
2

2

2

2
51

3 4

1 2
c1,2

c2,4

c3,4

c1,3
c2,3c1,4

3 4

1 2
T1,2

T2,4

T3,4

T1,3 T2,3T1,4

Course on Metaheuristics and Hybrids c© C. Blum

TSP: solution construction

Tour construction:

Step 1 Step 2 Finished

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ2,3τ1,4

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ1,4 τ2,3

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ1,4 τ2,3

p(ci,j) =
τi,j

τ1,2 + τ1,3 + τ1,4
p(ci,j) =

τi,j
τ2,3 + τ2,4

Course on Metaheuristics and Hybrids c© C. Blum

TSP: pheromone update (1)

Pheromone update: For example with the Ant System (AS) update rule

Pheromone evaporation Reinforcement

τi,j ← (1− ρ) · τi,j τi,j ← τi,j + ρ · ∑
{s∈Siter|ci,j∈s}

F (s)

where

◮ evaporation rate ρ ∈ (0, 1]

◮ Siter is the set of solutions generated in the current iteration

◮ quality function F : S 7→ IR+. We use F (·) = 1
f(·)

Course on Metaheuristics and Hybrids c© C. Blum

TSP: pheromone update (2)

Pheromone update: For example with the Ant System (AS) update rule

start p evaporation solution s1 solution s2

3 4

1 2
2

2

2

2
1 5

3 4

1 2
2

2

2

2
1 5

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

Course on Metaheuristics and Hybrids c© C. Blum

The ant colony optimization metaheuristic

Outline (ACO part):

◮ Simulation of the foraging behaviour

◮ The ACO metaheuristic

◮ Example: traveling salesman problem (TSP)

◮ Example: assembly line balancing

◮ A closer look at algorithm components

◮ ACO for continuous optimization

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Assembly line balancing

c© BMW c© J. Bautista & NISSAN

Specific problem: Simple assembly line balancing (SALB) [Bautista,Pereira,2004]

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

cycle time C = x seconds

Tasks: Each task i has a time requirement ti

1 2

3

4

5

6

7

8

11 17

9

5

8

12

10

3

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Additionally given: The maximum number UB of possible work stations

Goal: Minimize the number of work stations needed!

1st step of applying ACO: Solution components and pheromone model

1. Solution components: We consider each possible assignment of

◮ a task i

◮ to a work station j

to be a solution component ci,j

2. Pheromone model: We assign to each solution component ci,j a pheromone

trail parameter Ti,j with value τi,j

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Solution construction: Work stations are filled with tasks one after the other

At each iteration:

◮ j∗: The current work station to be filled

◮ T : The set of tasks

1. that are not yet assigned to a work station

2. whose predecessors are all assigned to work stations

3. whose time requirement is such that it fits into j∗

If T is empty: Open a new work station

If all tasks assigned: Stop solution construction

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Assumption: Cycle time C = 30 seconds

Example situation 1:

1 2 1 2

3

4

5

6

7

8

11 17

9

5

8

12

10

3

Example situation 2:

1 2 4 1 2

3

4

5

6

7

8

11 17

9

5

8

12

10

3

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

At each iteration: How to choose a task from T?

p(ci,j∗) =
τi,j∗∑

k∈T τk,j∗
∀ i ∈ T

Disadvantage in this case:

τi,1 τi,2 τi,3 τi,4 τi,5 τi,6 τi,7 τi,8

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Possible solution: The summation rule [Merkle et al., 2000]

p(ci,j∗) =

(∑j∗

h=1 τi,h

)

∑
k∈T

(∑j∗
h=1 τk,h

) ∀ i ∈ T

Graphical example: Current work station: 6

τi,1 τi,2 τi,3 τi,4 τi,5 τi,6 τi,7 τi,8∑

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Pheromone update: For example with the iteration-best (IB) update rule

Pheromone evaporation Reinforcement

τi,j ← (1− ρ) · τi,j τi,j ← τi,j + ρ · F (sib) ∀ ci,j ∈ sib

where

◮ evaporation rate ρ ∈ (0, 1]

◮ sib is the best solution constructed in the current iteration

◮ quality function F : S 7→ IR+. We use F (·) = 1
f(·)

Course on Metaheuristics and Hybrids c© C. Blum

The ant colony optimization metaheuristic

Outline (ACO part):

◮ Simulation of the foraging behaviour

◮ The ACO metaheuristic

◮ Example: traveling salesman problem (TSP)

◮ Example: assembly line balancing

◮ A closer look at algorithm components

◮ ACO for continuous optimization

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Definition of solution components and pheromone model

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Note: Different pheromone models can be used to solve a problem!

Example: 3 different pheromone models for group shop scheduling

On the board!

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Result: Different pheromone models ⇒ different algorithm performance

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0.00065

 0.0007

 0.00075

 0.0008

 0 500 1000 1500 2000

av
er

ag
e

ite
ra

tio
n

qu
al

ity

iteration

(1)

(2)

(3)

(4)

AS_JSS_suc (1)
AS_JSS_rel (2)

AS_JSS_pos (3)
AS_JSS_sum (4)

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0 500 1000 1500 2000

av
er

ag
e

ite
ra

tio
n

qu
al

ity

iteration

(1)

(2)

(3)

(4)

IB_JSS_suc (1)
IB_JSS_rel (2)

IB_JSS_pos (3)
IB_JSS_sum (4)

AS-update IB-update

Course on Metaheuristics and Hybrids c© C. Blum

Solution construction (1)

Solution construction: A closer look

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values

Course on Metaheuristics and Hybrids c© C. Blum

Solution construction (2)

A general constructive heuristic:

◮ sp = 〈〉
◮ Determine N(sp)

◮ while N(sp) 6= ∅
⋆ c← ChooseFrom(N(sp))

⋆ sp ← extend sp by adding solution component c

⋆ Determine N(sp)

◮ end while

Problem: How to implement function ChooseFrom(N(sp))?

Course on Metaheuristics and Hybrids c© C. Blum

Solution construction (3)

Possibilities for implementing ChooseFrom(N(sp)):

◮ Greedy algorithms:

c∗ = argmaxci,j∈N(sp)η(ci,j) ,

where η : C 7→ IR+ is a Greedy function

Examples for Greedy functions:

◮ TSP: Inverse distance between nodes (i.e., cities)

◮ SALB: ti/C

Course on Metaheuristics and Hybrids c© C. Blum

Solution construction (4)

Possibilities for implementing ChooseFrom(N(sp)):

◮ Ant colony optimization:

p(ci,j | sp) =
[τi,j]

α · [η(ci,j)]β∑
ck,l∈N(sp)

[τk,l]
α · [η(ck,l)]β

, ∀ ci,j ∈ N(sp) ,

where α and β are positive values

Note: α and β balance between pheromone information and Greedy function

Observations:

◮ ACO can be applied if a constructive heuristic exists!

◮ ACO can be seen as an iterative, adaptive Greedy algorithm

Course on Metaheuristics and Hybrids c© C. Blum

Pheromone update (1)

Pheromone update: A closer look

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values

Course on Metaheuristics and Hybrids c© C. Blum

Pheromone update (2)

A general update rule:

τi,j ← (1− ρ) · τi,j + ρ ·
∑

{s∈Supd|ci,j∈s}
ws · F (s) ,

where

◮ evaporation rate ρ ∈ (0, 1]

◮ Supd is the set of solutions used for the update

◮ quality function F : S 7→ IR+. We use F (·) = 1
f(·)

◮ ws is the weight of solution s

Question: Which solutions should be used for updating?

Course on Metaheuristics and Hybrids c© C. Blum

Pheromone update (3)

ACO update variants:

AS-update Supd ← Siter

weights: ws = 1 ∀ s ∈ Supd

elitist AS-update Supd ← Siter ∪ {sbs} (sbs is best found solution)

weights: ws = 1 ∀ s ∈ Siter, wsbs = e ≥ 1

rank-based AS-update Supd ← best m− 1 solutions of Siter ∪ {sbs} (ranked)
weights: ws = m− r for solutions from Siter, wsbs = m

IB-update: Supd ← argmax{F (s) | s ∈ Siter}
weight 1

BS-update: Supd ← {sbs}
weight 1

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Successful ACO variant:

◮ MAX–MIN Ant System(MMAS) [Stützle, Hoos, 2000]

Characteristic properties:

◮ Use of a pheromone lower bound τmin > 0

◮ Application of restarts (by re-initializing the phermone values)

◮ Mix of IB-update and BS-update depending on a convergence measure

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Successful ACO variant:

◮ Ant Colony System(ACS) [Gambardella, Dorigo, 1996]

Characteristic properties:

◮ Deterministic construction steps with probability q

c = argmaxci,j∈N(sp)[τi,j]
α · [η(ci,j)]β

◮ Evaporation of pheromone during the construction of solution s:

τi,j ← γτi,j + (1− γ)c , ∀ ci,j ∈ s ,

where c > 0 is the initial pheromone value, and γ ∈ (0, 1]

◮ Use of the BS-update (evaporation only for used solution components)

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Successful ACO variant:

◮ The hyper-cube framework (HCF) for ACO [Blum, Dorigo, 2004]

Charactersitic properties:

Limits the pheromone values to the interval [0, 1] by using the folling update:

τi,j ← (1− ρ) · τi,j + ρ ·
∑

{s∈Supd|ci,j∈s}

F (s)
∑

s′∈Supd
F (s′)

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Rewriting the HCF update in vector form:

~τ ← ~τ + ρ · (~m− ~τ) ,

where ~m is a |C|-dimensional vector with

~m =
∑

s∈Supd

γs · ~s and γs =
F (s)∑

s′∈Supd
F (s′)

.

Course on Metaheuristics and Hybrids c© Christian Blum

The ant colony optimization metaheuristic

Example: Problem with 3 solutions, 2 ants per iteration

(0, 0, 1)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(1, 0, 1)

(1, 1, 0)

solution of ant 1

solution of ant 2

~τ
~m

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Search bias in ant colony optimization:

◮ Positive (and wanted) bias: Choice of (in comparison) good solutions for

updating

◮ Negative bias:

1. Modelling of the problem

2. Solution construction process

3. Pheromone update

How to detect negative bias? Decreasing algorithm performance over time

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Implicit assumptions in ACO:

Assumption 1:

Good solutions are composed of good solution components.

(A solution component is regarded to be good, if the average quality of

the solutions that contain it is high.)

Assumption 2:

The pheromone update is such that good solution components on

average are stronger reinforced than others.

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Implicit assumptions in ACO:

Assumption 1:

Good solutions are composed of good solution components.

(A solution component is regarded to be good, if the average quality of

the solutions that contain it is high.)

Assumption 2:

The pheromone update is such that good solution components on

average are stronger reinforced than others.

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Example: 2-cardinality tree problem

v1 v2 v3 v4 v5
1

e1

2

e2

2

e3

1

e4

3 different solutions:

s1 : v1 v2 v3 v4 v5
1 2 2 1

f(s1) = 3

s2 : v1 v2 v3 v4 v5
1 2 2 1

f(s2) = 4

s3 : v1 v2 v3 v4 v5
1 2 2 1

f(s3) = 3

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Average iteration quality of Ant System ρ = 0.01

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0 500 1000 1500 2000

av
er

ag
e

ite
ra

tio
n

qu
al

ity

iteration

 AS_KCT_fo

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0 500 1000 1500 2000

av
er

ag
e

ite
ra

tio
n

qu
al

ity

iteration

 AS_KCT_fo

na = 10 na = 1000

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Benchmark instances: Ant System applied to an Internet-like instance

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

3839

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

0

 0.00058

 0.00059

 0.0006

 0.00061

 0.00062

 0.00063

 0.00064

 0.00065

 0.00066

 0 500 1000 1500 2000

av
er

ag
e

ite
ra

tio
n

qu
al

ity

iteration

AS_KCT_fo

instance gd96c (65 nodes, 125 edges) 10 ants, ρ = 0.1, k = 30

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Instance statistics:

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

3839

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

0

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Defintion: Competition-balanced system (CBS)

Given:

1. a feasible partial solution sp;

2. and the set of solution components N(sp) that can be added to extend the

partial solution sp

An ACO algorithm applied to P ∈ P is called a CBS , if each solution

component c ∈ N(sp) is a component of the same number of feasible solutions.

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

Example: 2-cardinality tree problem

v1 v2 v3 v4 v5
1

e1

2

e2

2

e3

1

e4

Search tree:

〈〉

ce1 ce2 ce3 ce4

ce2 ce1 ce3 ce2 ce4 ce3

s1 s1 s2 s2 s3 s3

Therefore: This example is NOT a competition-balanced system

Course on Metaheuristics and Hybrids c© Christian Blum

Theoretical studies of ant colony optimization

What do we know?

1. In case an ACO algorithm applied to a problem instance is NOT a

competition-balanced system → possibility of negative search bias

2. Existing theoretical result: The Ant System algorithm applied to

unconstrained problems does not suffer from negative search bias

Open questions:

1. Can it be shown that a competition-balanced system does not suffer from

negative search bias?

2. ...

In general: Research on search bias might lead to better guidelines on how to

develop ACO algorithms

Course on Metaheuristics and Hybrids c© C. Blum

The ant colony optimization metaheuristic

Outline (ACO part):

◮ Simulation of the foraging behaviour

◮ The ACO metaheuristic

◮ Example: traveling salesman problem (TSP)

◮ Example: assembly line balancing

◮ A closer look at algorithm components

◮ ACO for continuous optimization

Course on Metaheuristics and Hybrids c© C. Blum

Ant colony optimization for continuous optimization

Continuous optimization

Given:

1. Function f : IRn 7→ IR

2. Constrains such as, for example, xi ∈ [li, ui]

Goal: Find

~X∗ = (x∗
1, . . . , x

∗
n) ∈ IRn

such that

◮ ~X∗ fulfills all constraints

◮ f(~X∗) ≤ f(~Y), ∀ ~Y ∈ IRn

Course on Metaheuristics and Hybrids c© C. Blum

Ant colony optimization for continuous optimization

Different approaches:

◮ N. Monmarché, G. Venturini and M. Slimane. On how Pachycondyla

Apicalis ants suggest a new search algorithm, Future Generation

Computer Systems, 16:937–946, 2000.

◮ K. Socha and M. Dorigo. Ant colony optimization for continuous

domains, European Journal of Operational Research, 185(3):1155–1173, 2008.

◮ X. M. Hu, J. Zhang and Y. Li. Orthogonal methods based ant colony

search for solving continuous optimization problems, Journal of

Computer Science & Technology, 23:2–18, 2008).

◮ P. Korosec, J. Silc and B. Filipic. The differential ant-stigmergy

algorithm, Information Sciences, 192:82–97, 2012.

◮ T. Liao et al. A unified ant colony optimization algorithm for

continuous optimization, European Journal of Operational Research,

234(3):597–609, 2014.

Course on Metaheuristics and Hybrids c© C. Blum

Discrete ant colony optimization

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ant colony optimization

Continuous problem
population

of solutions

ACO

probabilistic

solution

construction

population

update

initialization

of the
population

Main conceptual difference:

Population instead of pheromone model

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO: Probabilistic solution construction

A solution construction: Choose a value xi ∈ IR for each variable Xi, i = 1, . . . , n

→ n solution construction steps

How to choose a value for variable Xi?

→ by sampling the following Gaussian kernel probability density function (PDF):

Gi(x) =
k∑

j=1

ωj

(
1

σj

√
2π

e
− (x−µj)

2

2σj
2

)

where k is the cardinality of the population P .

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO: Probabilistic solution construction

A Gaussian kernel PDF:

−4 −2 0 2 4

z

Gaussian kernels
individual Gausian functions

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO: Probabilistic solution construction

Problem: It is quite difficult to sample a Gaussian kernel PDF

Solution: Instead, at the start of each solution construction

1. choose probabilistically one of the Gaussian kernels, denoted by j∗

2. and sample—for all decision variables—the j∗-th Gaussian kernel

Methods for sampling: For example, the Box-Muller method

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO: Probabilistic solution construction

Choice of a Gaussian kernel:

pj =
ωj∑k
l=1 ωl

, ∀ j = 1, . . . , k

Definition of ωj ’s:

ωj =
1

qk
√
2π
· e−

(rj−1)2

2q2k2

Hereby:

◮ rj is the rank of solution j in population P

◮ q is a parameter of the algorithm: A small q favours high-ranked solutions

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO: Probabilistic solution construction

Assumption: Gaussian kernel j∗ is chosen for sampling

j∗-th Gaussian kernel =
1

σj∗
√
2π

e
−

(x− µj∗)2

2 σj∗
2

What remains? Definition of

1. the mean µj∗

2. and the standard deviation σj∗

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO: Probabilistic solution construction

Definition of µj∗ :

µj∗ = xj∗
i ,

where xj∗

i is the value of the i-th decision variable of solution j∗.

Definition of σj∗ :

σj∗ = ρ



√∑k

l=1

(
xl
i − xj∗

i

)2

k




where ρ is a parameter of the algorithm: high ρ means slow convergence speed

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO

Different methods for constraint handling:

1. Repair function: Each unfeasible solution is transformed into a feasible one

2. Penalty function: Unfeasible solutions are penalized by high objective

function values

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

x

f(x)
g(x)
h(x)
q(x)
p(x)

Iteration 1

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

x

f(x)
g(x)
h(x)
q(x)
p(x)

Iteration 2

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

x

f(x)
g(x)
h(x)
q(x)
p(x)

Iteration 3

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

x

f(x)
g(x)
h(x)
q(x)
p(x)

Iteration 4

Course on Metaheuristics and Hybrids c© C. Blum

Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

x

f(x)
g(x)
h(x)
q(x)
p(x)

Iteration 5

Course on Metaheuristics and Hybrids c© C. Blum

Bla

Topic 2: Particle Swarm Optimization

Inspiration: Social behavior of flocks of birds and fish schools

Course on Metaheuristics and Hybrids c© C. Blum

PSO: inspiration

Inspiration: Social behaviour observed in animals or insects

Examples:

◮ Bird flocking

◮ Fish schooling

◮ Animal herding

Course on Metaheuristics and Hybrids c© C. Blum

PSO: Facts

Note:

◮ Invented by J. Kennedy and R. Eberhart in 1995

◮ Initial intention: Modelling the movements of flocks of birds and fish schools

◮ PSO deals with a swarm of particles at each iteration

◮ Particles move in the solution space in the search for good solutions

◮ The term particles was used because the notion of velocity was adopted

◮ The initial algorithm is for continuous optimization

Course on Metaheuristics and Hybrids c© C. Blum

PSO: Basic notations

Notations: Each particle i = 1, . . . ,m has a

◮ current position xi

◮ velocity vi

◮ personal best position pi

Furthermore:

◮ Each particle i has (resp., belongs to) a neighborhood N (i) ⊆ {1, . . . ,m}

◮ pg is called the neighborhood best position of i

Course on Metaheuristics and Hybrids c© C. Blum

PSO: Basic algorithm

input: A continuous optimization problem in n dimensions

Generate for each particle i a random initial position pi, i = 1, . . . ,m

xi := pi

while termination conditions not met do

vi := vi + ρ1 · (pi − xi) + ρ2 · (pg − xi)

xi := xi + vi

if f(xi) > f(pi) then pi := xi

end while

output: The best solution found

Hereby:

◮ ρk = ck · rk, where
1. ck is a so-called acceleration coefficient

2. rk is a n-dimensional vector of random numbers from [0, 1]

Course on Metaheuristics and Hybrids c© C. Blum

PSO: Velocity update

Basic update rule:

vi := vi + ρ1 · (pi − xi) + ρ2 · (pg − xi)

Consists of:

1. Momentum term: vi

→ reinforces the previous direction

2. Cognitive part: ρ1 · (pi − xi)

→ represents the influence of the best solution seen so far by i

3. Social part: ρ2 · (pg − xi)

→ represents the influence of the best solution seen by the neighborhood of i

Course on Metaheuristics and Hybrids c© C. Blum

PSO: Pictorial view of the update

c© X. Li

Course on Metaheuristics and Hybrids c© C. Blum

PSO: neighborhoods (1)

Basic division:

1. gbest PSO: The neighborhood of each particle is the whole swarm

2. lbest PSO: Neighborhoods are restricted

c© University of Málaga

Course on Metaheuristics and Hybrids c© C. Blum

PSO: neighborhoods (2)

More sophisticated neighborhoods:

Examples:

◮ Von Neumann

◮ Star

◮ Pyramid

◮ Dynamic

c© University of Málaga

Course on Metaheuristics and Hybrids c© C. Blum

PSO: neighborhoods (3)

General rules:

◮ The gbest PSO converges fast, but might miss good solutions

◮ A lbest PSO converges slower, but usually performs better

◮ The choice of the right neighborhood is strongly problem dependent

◮ Dynamic neighborhoods perform usually well, but are computationally more

expensive

Systematic evaluation: Two criteria

1. k: degree of connectivity

2. C: amount of clustering

Result: higher k favours exploration , while lower k favours exploitation

Course on Metaheuristics and Hybrids c© C. Blum

PSO: velocity clampling and inertia weight

Problem:

◮ Observation: Velocities have the tendency to explode to large values

◮ Result: Particles may leave the boundaries of the search space

Possible solutions:

◮ Velocity clamping: introducing a maximum velocity vmax

◮ Inertia weight w:

vi := w · vi + ρ1 · (pi − xi) + ρ2 · (pg − xi)

Consequences:

1. For w > 1: divergence behaviour, for w < 1: convergence behaviour

2. Recommendation from literature: Start with w = 0.9 and decrease to

w = 0.4

Course on Metaheuristics and Hybrids c© C. Blum

PSO variants

Main problem: Finding a balance between exploration and exploitation

Some variants:

◮ Attractive and repulsive PSO (ARPSO)

Uses different phases of attraction and repulsion between the particles

◮ Fitness-distance-ratio PSO (FDR-PSO)

Encourages interaction between particles that are fit and close to each other

◮ Hierarchical PSO (H-PSO)

⋆ Organizes the particles in a dynamically changing tree structure

⋆ Particles are only influenced by their current father

Course on Metaheuristics and Hybrids c© C. Blum

Discrete PSO: binary problems (1)

Note: First discrete PSO introduced in 1997 for binary problems

Changes: with respect to the standard PSO

◮ The position vectors xi are binary

◮ The position update xi := xi + vi is re-interpreted:

if (r < S(vid)) then xid = 1, otherwise xid = 0

where S() is a sigmoidal function, mapping all vid to [0, 1]

Note: The velocity update can now be seen as changing the probability that

bit xi will be 1, i = 1, . . . , n

Course on Metaheuristics and Hybrids c© C. Blum

Discrete PSO: binary problems (2)

Extended versions of binary PSO:

◮ L. Y. Chuang, H. W. Chang, C. J. Tu, et al. Improved binary PSO for

feature selection using gene expression data. Computational Biology and

Chemistry, 32, pages 29–37, 2008

◮ Y. Zhang et al. Binary PSO with mutation operator for feature

selection using decision tree applied to spam detection,

Knowledge-Based Systems, 64, pages 22–31, 2014

◮ J. C.-W. Lin et al. A binary PSO approach to mine high-utility

itemsets, Soft Computing, 2016, in press.

Course on Metaheuristics and Hybrids c© C. Blum

Discrete PSO: TSP example

Basic update rule:

vi := vi + ρ1 · (pi − xi) + ρ2 · (pg − xi)

xi := xi + vi

Note: In order to apply PSO to any optimziation problem we need to define ...

◮ Position of a particle

◮ Velocity of a particle

◮ Addition of position and velocity. Result: Position

◮ Substraction of positions . Result: Velocity

◮ Addition of velocities. Result: Velocity

◮ Multiplying a velocity with a real. Result: Velocity

Course on Metaheuristics and Hybrids c© C. Blum

TSP example: positions

Definition:

◮ Given: TSP instance with n cities

◮ Position: Permutation of the n cities + first city added to the end

Example:

(1, 2, 4, 3, 1)
3 4

1 2
2

2

2 2
1 5

Position Graphically

Course on Metaheuristics and Hybrids c© C. Blum

TSP example: velocity

Definition:

◮ List of swaps of city identifiers

Example:

((1, 4), (3, 4))

Note:

◮ Null-velocity: empty list

◮ Oposite velocity: reversed list. Example: ((1, 4), (3, 4))→ ((3, 4), (1, 4))

Course on Metaheuristics and Hybrids c© C. Blum

TSP example: addition of position and velocity

Definition:

◮ Given: A position x and a velocity v

◮ Apply all swaps of city identifiers of v to position x

Example: x = (1, 2, 4, 3, 1), v = ((1, 4), (3, 4))

First swap Second swap

3 4

1 2
2

2

2 2
1 5

3 4

1 2
2

2

2 2
1 5

3 4

1 2
2

2

2 2
1 5

(1, 2, 4, 3, 1) (4, 2, 1, 3, 4) (3, 2, 1, 4, 3)

Course on Metaheuristics and Hybrids c© C. Blum

TSP example: substraction and addition

Substraction of positions: Results in a velocity

◮ Given: Two positions x1 and x2. We want x1 − x2

◮ Resulting velocity v: sequence of swaps that transforms x1 into x2

◮ Example: x1 = (1, 2, 4, 3, 1), x2 = (1, 4, 2, 3, 1) → v = ((2, 4))

Addition of velocities: Results in a velocity

◮ Given: Two velocities v1 and v2. We want v = v1 + v2

◮ Resulting velocity v: merge lists v1 and v2 and remove all doubles

◮ Example: v1 = ((1, 3), (2, 4)), v2 = ((1, 4), (2, 4)) → v = ((1, 3), (2, 4), (1, 4))

Course on Metaheuristics and Hybrids c© C. Blum

TSP example: multiplication with a real-number

Multiplication: Multiplying a velocity with a real-number

◮ Given: A velocity v and a real-number r ∈ [0, 1]

◮ Result: Reduce v to the first 100 · r% of the swaps

Note:

◮ This completes the necessary definitions

◮ This is only an example . This algorithm will not work very well

Course on Metaheuristics and Hybrids c© C. Blum

Discrete PSO: Other examples

Some references:

◮ D. Y. Sha and C.-Y. Hsu. A new particle swarm optimization for the

open shop scheduling problem, Computers and Operations Research,

35(10):3243–3261, 2008

◮ Y. Tian et al. A discrete PSO for two-stage assembly scheduling

problem, The International Journal of Advanced Manufacturing Technology,

66 (1-4), pages, 481–499, 2013

◮ M. Gómez-González, A. López and F. Jurado. Hybrid discrete PSO and

OPF approach for optimization of biomass fueled micro-scale energy

system, Energy Conversion and Management, 65, pages 539–545, 2013

Course on Metaheuristics and Hybrids c© C. Blum

Bla

Topic 3: Self-Synchronized Duty-Cycling in Sensor
Networks

Inspiration: Self-synchronized activity phases of ant colonies

Course on Metaheuristics and Hybrids c© C. Blum

Self-synchronized activity phases in ant colonies (1)

Biologist discovered:

◮ Colonies of ants show synchronized activity patterns

◮ Synchronization is achieved in a self-organized way: self-synchronization

◮ Synchronized activity ...

1. ... provides a mechanism for information propagation

2. ... facilitates the sampling of information from other individuals

Model of self-synchronization:

J. Delgado and R.V. Solé. Self-synchronization and task fulfilment in ant

colonies, Journal of Theoretical Biology, 205, 433–441 (2000)

Course on Metaheuristics and Hybrids c© C. Blum

Self-synchronized activity phases in ant colonies (2)

◮ Each ant is modelled as an automaton

◮ The state of an automaton i is described by a continuous state variable:

Si(t) ∈ R where t is the time step

◮ Each automaton i can move on a LxL grid with periodic boundary conditions

◮ At time step t, each automaton i is either active or inactive :

ai(t) = Φ(Si(t)− θact) ,where

⋆ θact: activation threshold

⋆ Φ(x) = 1 if x ≥ 0, and Φ(x) = 0 otherwise

Course on Metaheuristics and Hybrids c© C. Blum

Self-synchronized activity phases in ant colonies (3)

Simulation: At each iteration t

1. Activity calculation:

◮ Calculate ai(t)

◮ If ai(t) = 0: Spontaniously activate i with probability pa (activity level Sa)

2. Move: Each active automaton i moves (if possible) to one of the free places in

its 8-neighborhood

3. State variable update:

Si(t+ 1) = tanh(g · (Si(t) +
∑

j∈Ni

Sj(t)))

where Ni is the 8-neighborhood of the position of i

Course on Metaheuristics and Hybrids c© C. Blum

Self-synchronized activity phases in ant colonies (4)

What do we measure? Mean activity of the system at time t:

A(t) =
1

N

N∑

i=1

ai(t)

where N is the number of automata

3700 3800 3900 4000 4100 4200 4300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time steps

ac
tiv

ity

Course on Metaheuristics and Hybrids c© C. Blum

Design of a duty-cycling protocol: organization

Organization:

0 ∆ 2∆ 3∆

DC User application DC User application DC User application

Note: during the duty-cycling phase (DC) ...

◮ all nodes are awake

◮ Each node executes one duty-cyling event at a randomly chosen time.

Includes sending of one message.

Course on Metaheuristics and Hybrids c© C. Blum

Design of a duty-cycling protocol: sensor nodes

Note: Automata are now mobile or static sensor nodes

Each sensor i ...

◮ has a battery with level 0 ≤ bi(t) ≥ 1

◮ maintains a special message queue Qi for incoming duty-cycling messages

◮ is equipped with a radio antenna that allows to choose from a set

{T 1, . . . , Tn} of n different transmission power levels

Contents of a message m ∈ Qi: the sender nodes state variable value

Course on Metaheuristics and Hybrids c© C. Blum

Design of a duty-cycling protocol: energy harvesting

Characteristics:

◮ Sensor nodes that are equipped with solar panels

◮ Each sensor i harvests a certain amount of energy per time step

Daily sun intensity:

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time steps

su
n

in
te

ns
ity

Course on Metaheuristics and Hybrids c© C. Blum

Design of a duty-cycling protocol: duty-cycling events

1: Calculate ai

2: if ai = 0 then

3: Draw a random number p ∈ [0, 1]

4: if p ≤ pa then Si := Sa and ai := 1 endif

5: end if

6: Determine transmission power level Ti

7: Compute new value for state variable Si

8: Send duty-cycling message m (containing value Si) with transmission power Ti

Course on Metaheuristics and Hybrids c© C. Blum

Choice of the transmission power level

Ideal transmission power level:

Ti := Tmin · (1− bi) + Tmax · bi

where

◮ Tmin : minimum transmission power level

◮ Tmax : maximum transmission power level

Course on Metaheuristics and Hybrids c© C. Blum

Experimental Results (1): Network simulator Shawn

Parameters: 120 static sensor nodes, no packet loss

13000 13400 13800 14200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Note: The average activity of the system is at about 0.6

Course on Metaheuristics and Hybrids c© C. Blum

Experimental Results (2): Packet Loss

Parameters: 120 static sensor nodes, different packet loss rates

0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

packet loss rate

m
ea

n
sy

st
em

 a
ct

iv
ity

Note: System is very robust up to a packet loss rate of about 0.3

Course on Metaheuristics and Hybrids c© C. Blum

Experimental Results (3): Restricted Energy Harvesting

Parameters: 120 static sensor nodes, different cloud densities

cloud density

m
ea

n
sy

st
em

 a
ct

iv
ity

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

Note: linear relationship between cloud density and system activity

Course on Metaheuristics and Hybrids c© C. Blum

Self-synchronized duty-cycling: literature

Some Papers:

◮ H. Hernández, C. Blum, M. Middendorf, K. Ramsch and A. Scheidler.

Self-synchronized duty-cycling for mobile sensor networks with energy

harvesting capabilities: A swarm intelligence study. Proceedings of SIS 2009,

pages 153–159, IEEE press, 2009.

◮ H. Hernández and C. Blum. Foundations of ANTCYCLE: Self-synchronized

duty-cycling in mobile sensor networks. The Computer Journal, 54(9),

1427–1448, 2011.

Course on Metaheuristics and Hybrids c© C. Blum

Hybrid metaheuristics

Topic 4: Distributed Graph Coloring

Inspiration: Self-desynchronization of Japanese tree frogs

Course on Metaheuristics and Hybrids c© C. Blum

De-synchronization in Japanese Tree Frogs (1)

Biologist discovered:

◮ Male Japanese Tree Frogs de-couple their calls

◮ WHY?

⋆ The purpose of the calls is to attract females

⋆ Female frogs cannot distinguish between too close calls

⋆ Result: females cannot determine the correct direction

Mathematical model:

I. Aihara, H. Kitahata, K. Yoshikawa and K. Aihara. Mathematical modeling

of frogs’ calling behavior and its possible applications to artificial life

and robotics. Artificial Life and Robotics, 12(1):29–32, 2008.

Course on Metaheuristics and Hybrids c© C. Blum

De-synchronization in Japanese Tree Frogs (2)

Model components:

◮ A set of pulse-coupled oscillators .

◮ Some oscillators are coupled, others are independent of each other

◮ Each oscillator i has a phase θi ∈ [0, 1) which changes over time

1
2

1

2

1

2

Course on Metaheuristics and Hybrids c© C. Blum

De-synchronization in Japanese Tree Frogs (3)

Topology Suboptimal de-synchronization Optimal de-synchronization

1 2

34 1

23

4 1, 3

2, 4

1 2

34

5

1

2, 43

5
1, 32, 4

5

Course on Metaheuristics and Hybrids c© C. Blum

Distributed graph coloring: organization of the algorithm

Implementation:

◮ In static wireless ad-hoc networks (such as sensor networks)

◮ Algorithm works with communication rounds (length: 1 time unit)

Each network node i maintains:

◮ θi ∈ [0, 1]: a graph coloring event is executed at time θi in each

communication round

◮ ci ∈ {0, 1, ...}: the current color of the node

Course on Metaheuristics and Hybrids c© C. Blum

Distributed graph coloring: graph coloring event

1: PHASE I

2: Recalculate θi
3: Choose a (new) color ci
4: Send a graph coloring event message m to the neighbors

5:

6: PHASE II

7: Execute a kind of distributed local search

Messages:

◮ Graph coloring event messages are collected in a separate message queue Mi

◮ Each message m contains two values:

⋆ The θ-value thetam of the sender node

⋆ The current color colorm of the sender node

Course on Metaheuristics and Hybrids c© C. Blum

Distributed graph coloring: re-calculating θi

θi := θi +
∑

m∈Mi

inc(thetam − θi)

Function inc():

-1 0 1

-1

0

1

Course on Metaheuristics and Hybrids c© C. Blum

Distributed graph coloring: choosing a new color ci

ci := min{c ∈ N |6 ∃m ∈Mi with colorm = c}.

Use of the θ-values:

◮ They determine the order in which nodes choose a color

◮ This is in contrast to an exsiting attempt to use frogs’ behavior for graph

coloring

Course on Metaheuristics and Hybrids c© C. Blum

Experiments: quality of the coloring over time

Example: DIMACS graph DSJC1000.9.col

0 20 40 60 80

29
0

30
0

31
0

32
0

33
0

34
0

Communication rounds

N
um

be
r

of
 c

ol
or

s

Course on Metaheuristics and Hybrids c© C. Blum

Experiments: comparison

Avg. improvement over: Algorithm by Finocchi et al.

Instances

Im
pr

ov
em

en
t (

in
 p

er
ce

nt
)

0
10

20
30

40

Random DIMACS 1 DIMACS 2 Grids Lee (2008)

◮ I. Finocchi, A. Panconesi and R. Silvestri. An experimental analysis of

simple distributed vertex coloring algorithms, Algorithmica, 41(1),

1–23, 2005

Course on Metaheuristics and Hybrids c© C. Blum

Distributed graph coloring: literature

Some Papers:

◮ H. Hernández and C. Blum. Distributed Graph Coloring: An Approach

Based on the Calling Behavior of Japanese Tree Frogs. Swarm

Intelligence, 6(2), 117–150, 2012

◮ H. Hernández and C. Blum. FrogSim: distributed graph coloring in

wireless ad hoc networks, Telecommunication Systems, 55(2), pages

211–223, 2014

◮ C. Blum, B. Calvo and M. J. Blesa. FrogCOL and FrogMIS: new

decentralized algorithms for finding large independent sets in

graphs, Swarm intelligence, 9(2-3), pages 205–227, 2015

Course on Metaheuristics and Hybrids c© C. Blum

Extension: Finding Large Independent Sets

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Independent set Maximal independent set Maximum independent set

Complexity in centralized settings:

◮ Problem of finding a maximal independent set is in P

◮ Problem of finding a maximum independent set is NP -hard

Algorithms from the literature: (for the de-centralized case)

◮ Simple distributed greedy algorithms

◮ Iterative self-stabilizing algorithms

Course on Metaheuristics and Hybrids c© C. Blum

Idea: Use Existing FroSim Algorithm

Observe: relation between graph coloring and independent sets

7

3 4

6 1 2 8

5

7

3 4

6 1 2 8

5

Course on Metaheuristics and Hybrids c© C. Blum

Experiments (1)

Competitors:

◮ Centralized Greedy: Just for interest

◮ FruitFly: Newest iterative self-stabilizing algorithm published in the

literature

Inspiration of Fruitfly: Development of the fly’s nervous system , when sensory

organ precursor (SOP) cells are chosen

Paper:

Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z. A biological

solution to a fundamental distributed computing problem. Science, 331:183–185,

2011.

Course on Metaheuristics and Hybrids c© C. Blum

Numerical Results: Random geometric graphs of 1000 nodes

radius (r) Greedy FruitFly FrogSim

avg. rounds avg. rounds convergence

0.049 244.88 225.39 66.66 229.76 416.14 734.08

0.0578 190.96 176.50 115.30 180.26 414.50 758.72

0.0666 152.35 142.98 236.02 144.82 325.74 775.16

0.0754 124.53 118.74 480.64 118.82 272.97 770.88

0.0842 103.82 100.91 1114.90 99.55 248.03 754.76

0.093 87.82 87.19 2562.90 84.93 279.20 755.75

0.1018 75.42 76.72 7014.74 73.16 212.85 750.31

0.1106 65.61 67.91 22063.76 64.14 205.49 740.14

0.1194 57.84 60.60 53523.54 56.55 215.69 684.79

0.1282 51.53 54.60 165323.04 50.16 165.77 700.42

0.134 47.83 50.84 321192.92 46.95 160.96 678.45

Course on Metaheuristics and Hybrids c© C. Blum

Indication For Convergence To Good Solutions (1)

Example: Sparse graph on 1000 nodes

0

50

100

150

200

0 5 10 15
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

Course on Metaheuristics and Hybrids c© C. Blum

Indication for Convergence To Good Solutions (2)

Example: Dense graph on 1000 nodes

0

10

20

30

40

0 10 20 30 40
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

Course on Metaheuristics and Hybrids c© C. Blum

Summary and Conclusions

Presented Topics:

◮ Ant colony optimization

◮ Particle swarm optimization

◮ Self-synchronized duty-cycling in sensor networks

◮ Distributed graph coloring in wireless ad-hoc networks

Observation:

◮ It is still very much possible to find swarm-intelligent behaviors in the

biological literature, which are still not used for any technical applications.

Course on Metaheuristics and Hybrids c© C. Blum

Swarm Intelligence: Quo vadis?

◮ Problem: Swarm intelligence has attracted too many people

◮ As a consequence:

1. Experienced researchers were overwhelmed with reviewing

2. People who should have never been asked to do so did reviewing work

◮ Therefore: nowadays we find numerous papers in the literature that are either

1. Non-sense, or

2. Re-inventing the wheel

First steps against this trend:

◮ Some journals (J. of Heur. , Comp. & Oper. Res.) ask for algorithms to be

described in metahpor-free language

◮ Colleagues start to expose the problem (G. Rudolph , K. Sörensen)

Course on Metaheuristics and Hybrids c© C. Blum

Outlook

Questions?

