
VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

CMSA: A Recent Example of an
ILP-based Hybrid Metaheuristic

Christian Blum

Artificial Intelligence Research Institute (iiia)

Spanish National Research Council (csic)

IIIA
Institut d’Investigació en
Intel·ligència Artificial

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

IIIA-CSIC

CSIC: Spanish National Research Council

▶ Largest public institution dedicated to research in Spain (created in 1939)

▶ Third-largest in Europe

▶ 6% of all research staff in Spain work for the CSIC

▶ 20% of the scientific production in Spain is from the CSIC

IIIA: Artificial Intelligence Research Institute

▶ 18 tenured scientists (of three different ranks)

▶ Around 30 additional staff member (post-docs, PhD students, technicians,

administration)

▶ Three research lines (machine learning, logic and constraint programming,

multi-agent systems)

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Research Topics in Recent Years

Swarm Intelligence

Hybrid Metaheuristics

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

What is swarm intelligence?

In a nutshell: AI discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Swarm intelligence

Properties:

▶ Consist of a set of simple entities

▶ Distributedness: No global control

▶ Self-organization by:

⋆ Direct communication: for example, by visual or chemical contact

⋆ Indirect communication: Stigmergy (Grassé, 1959)

Result: Complex tasks/behaviors can be accomplished/exhibited in cooperation

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Swarm Intelligence topics from last years

▶ Combinatorial optimization: ant colony optimization

Inspiration: foraging behaviour of ant colonies

▶ Distributed optimization: graph coloring, independent set finding

Inspiration: self-desynchronization in Japanese tree frogs

▶ Distributed problem solving: duty-cycling in sensor networks

Inspiration: work-synchronization in ant colonies

More info: On my website

https://www.iiia.csic.es/~christian.blum/

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Main Topic of this Presentation: Preparing the Grounds

...

MHs based on
solution construction

...

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

▶ Problem: a precise definition is not possible/desirable

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimization ?

▶ Metaheuristics

▶ Branch & bound

▶ Dynamic programming

▶ Integer Linear Programming (ILP) techniques

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Hybrid metaheuristics: history

History:

▶ For a long time the different communities co-existed quite isolated

▶ Hybrid approaches were developed already early, but only sporadically

▶ Only since about 15 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a seperate line of

research

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Motivation behind my work on hybrid metaheuristics

▶ It is often possible to exploit synergies between different types of algorithms

▶ In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic

apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

▶ In contrast, for hybrid metaheuristics not much is known

⋆ We only have very few generally applicable techniques

⋆ We do not really know for which type of problem they work well

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Hybrid Metaheuristics

Construct, Merge, Solve & Adapt

(CMSA)

Short description

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Standard: Large Neighborhood Search

▶ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

▶ Large neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

▶ Heuristically

▶ Exact techniques: for example an ILP solver

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

ILP-based large neighborhood search: Ilp-Lns

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Hypothesis and resulting research question

In our experience: LNS works especially well when

1. The number of solution components (variables) is is not high

2. The number of components in a solution is not too small

Question:

What kind of general algorithm can we apply when the above
conditions are not fullfilled?

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Construct, Merge, Solve & Adapt: Principal Idea

Observation: In the presence of a large number of solutions components, many of

them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

▶ Iteratively generate presumably good solutions in a probabilistic way

▶ Assemble a sub-instance from the used solution components

▶ Solve the sub-instance by means of an ILP solver

▶ Delete useless solution components from the sub-instance

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Construct, Merge, Solve & Adapt: Flow Diagram

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Differences between Lns and Cmsa: summarized

How is the original problem instance reduced?

Search Space

LNS

Search Space

CMSA

How is the sub-instance of the next iteration generated?

▶ Lns: Partial destruction of the incumbent solution

▶ Cmsa: Generating new solutions and removing old solution components

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Longest common subsequence (LCS) problem (1)

Notation: What is a subsequence of a string?

A string t is called a subsequence of a string x,

iff t can be produced from x by deleting characters

Example: Is AAT a subsequence of ACAGTTA?

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Longest common subsequence (LCS) problem (2)

Problem definition (restricted to two input sequence)

Given: A problem instance (x, y,Σ), where

▶ x and y are input sequences over the alphabet Σ

Optimization goal:

Find a longest string t∗ that is a subsequence of strings x and y → a longest

common subsequence

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Repetition-free longest common subsequence problem

▶ Restriction: No letter may appear more than once in a valid solution

▶ Proposed in: 2010 in Discrete Applied Mathematics

▶ Hardness: APX-hard (shown in above paper)

▶ Motivation: Genome rearrangement where duplicate genes are basically not

considered

▶ Existing algorithms:

1. Three simple heuristics, Discrete Applied Mathematics, 2010

2. An Evolutionary Algorithm, Operations Research Letters, 2013

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

A simple constructive RFLCS heuristic: Best-Next (1)

Principle: Builds a solution sequentially from left to right

1: input: a problem instance (x, y,Σ)

2: initialization: t := ϵ (where ϵ is the empty string)

3: while |Σnd
t | > 0 do

4: a := ChooseFrom(Σnd
t)

5: t := ta

6: end while

7: output: a repetition-free common subsequence t

Question: How is Σnd
t defined?

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

A simple constructive LCS heuristic: Best-Next (2)

Example: Given is

▶ Problem instance (x, y,Σ = {A,C,T,G}) where
⋆ x = ATCTAGCTG

⋆ y = TACCATGTG

▶ Partial solution t = AC

Result: Σnd
t = {T}

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Greedy function

Greedy function:

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

ILP Model (1)

Set of binary variables:

For each position i of x and j of y such that x[i] = y[j] the model has

a variable zi,j

Example set of variables Example of a conflict

A T C T A G C T G

T A C C A T G T G

A T C T A G C T G

T A C C A T G T G

conflict

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

ILP Model (2)

max
∑

zi,j∈Z

zi,j

subject to:∑
zi,j∈Za

zi,j ≤ 1 for a ∈ Σ

zi,j + zk,l ≤ 1 for all zi,j and zk,l being in conflict

zi,j ∈ {0, 1} for zi,j ∈ Z

(1)

(2)

(3)

(4)

Hereby:

▶ zi,j ∈ Za iff x[i] = y[j] = a

▶ zi,j and zk,l are in conflict iff i < k and j > l OR i > k and j < l

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental evaluation: benchmark instances

Set1: 30 instances for each combination of

▶ Input sequence length: n ∈ {32, 64, 128, 256, 512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8}

Set2: 30 instances for each combination of

▶ Alphabet size: |Σ| ∈ {4, 8, 16, 32, 64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5, 6, 7, 8}

Tuning: Cmsa’s parameters are tuned by irace for each alphabet size

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: performance of CPLEX

Set1:

▶ Input sequence length: n ∈ {32,64,128,256,512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8,n/4,3n/8,n/2, 5n/8, 3n/4, 7n/8}

Set2:

▶ Alphabet size: |Σ| ∈ {4,8,16,32,64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5,6,7,8}

Result: CPLEX is able to solve nearly all exisiting problem instances from the

literature to optimality

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/8

32 64 128 256 512 1024 2048 4096

-1
.0

-0
.5

0.
0

0.
5

1.
0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

32 64 128 256 512 1024 2048 4096

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/2

32 64 128 256 512 1024 2048 4096

0
20

40
60

80
10

0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

32 64 128 256 512 1024 2048 4096

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size 7n/8

32 64 128 256 512 1024 2048 4096

0
20

40
60

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

32 64 128 256 512 1024 2048 4096

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: Set2

Improvement of CMSA over CPLEX: 3 reps

4 8 16 32 64 128 256 512

0
20

40
60

80
10

0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

4 8 16 32 64 128 256 512

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: Set2

Improvement of CMSA over CPLEX: 6 reps

4 8 16 32 64 128 256 512

0
20

40
60

80
10

0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

4 8 16 32 64 128 256 512

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: Set2

Improvement of CMSA over CPLEX: 8 reps

4 8 16 32 64 128 256 512

0
20

40
60

80

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

4 8 16 32 64 128 256 512

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental results: size of sub-instances

0

20

40

60

80

4 8 16 32 64 128 256
Alphabet size

S
ub

−
in

st
an

ce
 s

iz
e

(in
 %

 o
f o

rig
in

al
)

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Hybrid Metaheuristics

Relation between LNS and CMSA

An experimental study

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Reminder: Intuition

▶ CMSA will have advantages over LNS when solutions are small , that is, when

1. solutions consist of few solution components

2. many variables in the corresponding ILP model have value zero

▶ LNS will have advantages over CMSA when the opposite is the case

Problem: how to show this?

▶ Theoretically? hardly possible

▶ Empirically? Maybe with a parametrizable problem

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Example: Multi-dimensional Knapsack Problem (MDKP)

Given:

▶ A set of items C = {1, . . . , n}

▶ A set of resources K = {1, . . . ,m}

▶ Of each resource k we have a maximum quantity ck (capacity)

▶ Each item i requires from each resource k a certain quantity ri,k

▶ Each item i has a profit pi

Valid solutions: Each subset S ∈ C is a valid solution if∑
i∈S

ri,k ≤ ck ∀k ∈ K

Objective function: f(S) :=
∑

i∈S pi for all valid solutions S

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

MDKP: instance tightness

Important parameter: Instance tightness 0 ≤ α ≤ 1

▶ When α close to zero: capacities are low and valid solution only contain very

few items

▶ When α close to one: capacities are very high and solutions contain nearly all

items

Plan:

▶ Apply both LNS and CMSA to instances from the whole tightness range .

▶ Both algorithms are tuned with irace seperately for instances of each

considered tightness.

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Results for instances with 1000 items

Instance size: n = 1000, m = 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

-0
.0

5
0.

00
0.

05

Im
pr

. o
f C

M
SA

 o
ve

r L
N

S

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Results for instances with 5000 items

Instance size: n = 5000, m = 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

-0
.0

15
0.

00
0

0.
01

0

Im
pr

. o
f C

M
SA

 o
ve

r L
N

S

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Results for instances with 10000 items

Instance size: n = 10000, m = 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9-0

.0
10

0.
00

0
0.

01
0

Im
pr

. o
f C

M
SA

 o
ve

r L
N

S

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Hybrid Metaheuristics

What if no Efficient Exact Method

is Known?

Applying a metaheuristic within CMSA

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Weighted Independent Domination Problem: Preliminaries

Given an undirected graph G = (V,E):

▶ A subset D ⊆ V is called a dominating set if and only if

∀ v ∈ V it holds that N [v] ∩D ̸= ∅

▶ A subset I ∈ V is called an independent set if and only if no two vertices

from I are adjacent in G

NP-hard problems:

▶ Minimum Dominating Set problem

▶ Maximum Independent Set problem

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Weighted Independent Domination Problem (WIDP)

Given:

▶ An undirected graph G = (V,E)

▶ Each node v ∈ V has an integer weight w(v) ≥ 0

▶ Each edge e ∈ E has an integer weight w(e) ≥ 0

Valid solutions: Any set D ⊆ V which is at the same time a dominating set and

an independent set

Objective function: given a valid solution D ⊆ V

f(D) :=
∑
u∈D

w(u) +
∑

v∈V \D

min{w(e = (v, u)) | u ∈ {N(v) | v ∈ D}}

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

The WIDP Problem: An Example

2 2

2 2

1 1

4

4

4 5

3

1

5

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Integer Linear Programming (ILP) Model

(ILP) min
∑
v∈V

xvw(v) +
∑
e∈E

zew(e)

s.t. xv + xu ≤ 1 for e = (u, v) ∈ E

xv + xu = ye for e = (u, v) ∈ E

ze ≤ ye for e ∈ E

xv +
∑

u∈N(v)

xu ≥ 1 for v ∈ V

xv +
∑

e∈δ(v)

ze ≥ 1 for v ∈ V

xv ∈ {0, 1} for v ∈ V

ye ∈ {0, 1} for e ∈ E

ze ∈ {0, 1} for e ∈ E

(5)

(6)

(7)

(8)

(9)

(10)

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Greedy Heuristics: General Structure

1: input: a undirected graph G = (V,E) with node and edge weights

2: S := ∅
3: G′ := G

4: while V ′ ̸= ∅ do

5: v∗ := ChooseFrom(V ′)

6: S := S ∪ {v∗}
7: Remove from G′ all nodes from {v∗} ∪N(v∗ | G′) (and the incident edges)

8: end while

9: output: An independent dominating set S of G

Note:

▶ G′ is the graph that remains when removing nodes (and the incident edges)

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Greedy Heuristics: How To Choose a Node?

Greedy1: Implementation of ChooseFrom(V ′)

v∗ := argmax

{
|N(v | G′)|

w(v)
| v ∈ V ′

}
(11)

Note:

▶ This heuristic favors nodes with a high remaining degree and a

low node weight

▶ Edge weights are not considered, only at the time of computing the objective

function value

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Greedy Heuristics: How To Choose a Node?

Greedy2: Given a partial solution S ⊂ V , the contribution c(v | S) of a node

v ∈ V ′ is defined as follows:

1. If v ∈ S: c(v | S) := w(v)

2. If v /∈ S and N(v) ∩ S = ∅: c(v | S) := max{w(e) | e ∈ E}

3. If v /∈ S and N(v) ∩ S ̸= ∅: c(v | S) := min{w(e) | e = (v, u), u ∈ S}

Implementation of ChooseFrom(V ′): Via aux. func. faux(S) :=
∑

v∈V c(v | S)

v∗ := argmin {faux(S ∪ {v}) | v ∈ V ′}

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Population-Based Iterated Greedy (PBIG)

1: input: input graph G, parameters psize > 0, Dl, Du, drate, lsize ∈ [0, 1]

2: P := GenerateInitialPopulation(psize, drate, lsize)

3: while termination condition not satisfied do

4: Pnew := ∅
5: for each candidate solution S ∈ P do

6: Ŝ := DestroyPartially(S)

7: S′ := Reconstruct(Ŝ, drate, lsize)

8: AdaptDestructionRate(S, S′)

9: Pnew := Pnew ∪ {S′}
10: end for

11: P := Best psize solutions from P ∪ Pnew

12: end while

13: output: argmin {f(S) | S ∈ P}

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

PBIG: Probabilistic (Re-)Construction of Solutions

Characteristics:

▶ Uses mechanism and greedy function of Greedy2 .

▶ Makes use of a determinism rate drate and a candidate list size lsize

▶ At each construction step:

⋆ First draw a random number δ ∈ [0, 1].

⋆ If δ ≤ drate: Choose the best node from v ∈ V ′

⋆ If δ > drate: Choose randomly from the best lsize nodes

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

PBIG: Partial Destruction of Solutions

Mechanism:

▶ Randomly remove Dr percent of all nodes from a solution

▶ Dynamic solution-specific destruction rate Dr

Parameters: 0 ≤ Dl ≤ Du ≤ 1

▶ Dl: minimum destruction rate

▶ Du: maximum destruction rate

▶ Dinc: increment of the destruction rate (fixed to 0.05)

Management of Dr:

▶ Start with Dr := Dl. Moreover, whenever a better solution is found set Dr

back to Dl

▶ When no better solution is found: Dr := Dr +Dinc

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental Evaluation: Instances

Considered graphs: random graphs and random geometric graphs

▶ |V | ∈ {100, 500, 1000}

▶ Random graphs: edge probability ep ∈ {0.05, 0.15, 0.25}

▶ Random geom. graphs: radius r ∈ {0.14, 0.24, 0.34}

▶ Neutral graphs node/edge weights uniformly at random from {0, . . . , 100}

▶ Node-oriented graphs node weights from {0, . . . , 1000}, edge weights from

{0, . . . , 10}

▶ Edge-oriented graphs node weights from {0, . . . , 10}, node weights from

{0, . . . , 1000}

Number of graphs: 10 graphs for each comb. of |V |, ep/r and graph type

(a total of 540 graphs)

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Critical Difference Plots: Global Picture

1 2 3 4 5 6

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Critical Difference Plots: Random Graphs

1 2 3 4 5 6

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Critical Difference Plots: Random Geometric Graphs

1 2 3 4 5 6 7

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Critical Difference Plots: Edge-Oriented Graphs

1 2 3 4 5 6 7

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Summary and Possible Research Directions

Summary:

▶ Cmsa: A new hybrid metaheuristic for combinatorial optimization

▶ Goal: Make ILP solvers applicable to larg(er) problem instances

Possible Research Directions:

▶ Solution construction: adaptive probabilities over time

▶ A more intelligent version of the aging mechanism

▶ Identify applications where constraint programming can be useful as exact

technique inside Cmsa

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Thanks to colleagues involved in this research

Pedro Pinacho Jóse Antonio Lozano Manuel López-Ibáñez

VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Outlook

Questions?

Literature:

▶ C. Blum, P. Pinacho, J. A. Lozano, M. López-Ibáñez. Construct, Merge, Solve &

Adapt: A new general algorithm for combinatorial optimization.

Computers & Operations Research, 2016

▶ P. Pinacho, C. Blum, J. A. Lozano. The Weighted Independent Domination

Problem: Integer Linear Programming Models and Metaheuristic

Approaches. European Journal of Operational Research, in press (2017)

Book: C. Blum, G. R. Raidl. Hybrid Metaheuristics – Powerful

Tools for Optimization, Springer Series on Artificial Intelligence,

2016

