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IHHA-CSIC

Spanish National Research Council
» Largest public institution dedicated to research in Spain (created in 1939)
» Third-largest in Europe
» 6% of all research staff in Spain work for the CSIC
» 20% of the scientific production in Spain is from the CSIC

IITA: I Artificial Intelligence Research Institute

» 18 tenured scientists (of three different ranks)

» Around 30 additional staff member (post-docs, PhD students, technicians,

administration)

» Three research lines (machine learning, logic and constraint programming,

multi-agent systems)
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Research Topics in Recent Years
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What is swarm intelligence?

| In a nutshell: I AT discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools
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Swarm intelligence

‘ Properties: I

» Consist of a set of simple entities

» Distributedness: No global control

» Self-organization by:

* Direct communication: for example, by visual or chemical contact

x Indirect communication: Stigmergy (Grassé, 1959)

| Result: I Complex tasks/behaviors can be accomplished /exhibited in cooperation
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Swarm Intelligence topics from last years

» Combinatorial optimization: ant colony optimization

Inspiration: foraging behaviour of ant colonies

» Distributed optimization: graph coloring, independent set finding
Inspiration: self-desynchronization in Japanese tree frogs

» Distributed problem solving: duty-cycling in sensor networks

Inspiration: work-synchronization in ant colonies

| More info: I On my website

https://www.iiia.csic.es/~christian.blum/
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Hybrid metaheuristics: definition

| Definition: I What is a hybrid metaheuristic?

» Problem: a precise definition is not possible/desirable

| Possible characterization: I

A technique that results from the combination of a metaheuristic with

other techniques for optimization

‘ What is meant by: I other techniques for optimization 7

» Metaheuristics
» Branch & bound

» Dynamic programming

» Integer Linear Programming (ILP) techniques
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Hybrid metaheuristics: history

‘ History: I

» For a long time the different communities co-existed quite isolated

» Hybrid approaches were developed already early, but only sporadically

» Only since about 15 years the published body of research grows
significantly:
1. 1999: CP-AI-OR Conferences/Workshops
2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

‘ Consequence: I The term hybrid metaheuristics identifies a seperate line of

research
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Motivation behind my work on hybrid metaheuristics

» It is often possible to exploit synergies between different types of algorithms

» In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic
apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

» In contrast, for hybrid metaheuristics not much is known

* We only have very few generally applicable techniques

* We do not really know for which type of problem they work well



Construct, Merge, Solve & Adapt
(CMSA)

Short description
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Standard: Large Neighborhood Search

» Small neighborhoods:
1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

» Large neighborhoods:
1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be N P-hard

due to the size of the neigbhorhood

‘ Ways of examining large neighborhoods: I

» Heuristically

» Exact techniques: for example an ILP solver
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ILP-based large neighborhood search: ILP-LNS

Generate initial solution S

Spartial := Destroy S partially

SiLp := Apply ILP solver to Spartial

S := Choose between S and Stp
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Hypothesis and resulting research question

‘ In our experience: I LNS works especially well when

1. The number of solution components (variables) is is not high

2. The number of components in a solution is not too small

‘ Question: I

What kind of general algorithm can we apply when the above
conditions are not fullfilled?
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Construct, Merge, Solve & Adapt: Principal Idea

| Observation: I In the presence of a large number of solutions components, many of

them only lead to bad solutions

Exclude the presumably bad solution components from the ILP

‘ Steps of the proposed method: I

» Iteratively generate presumably good solutions in a probabilistic way

» Assemble a sub-instance from the used solution components
» Solve the sub-instance by means of an ILP solver

» Delete useless solution components from the sub-instance
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Construct, Merge, Solve & Adapt: Flow Diagram

C': complete set of solution components
C’ C C: sub-instance
Set the age of all ¢ € C to zero

Probabilistically generate n, solutions
C': used solution comonents

Increment age of all ¢ € C’

Set age of all ¢ € Syp,p to zero
Remove all ¢ € C" \ Syp that have
reached the maximum age agemax

Add all ce C'\ C’ to C
Sip := Apply ILP solver to C’
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Differences between LNS and CMSA: summarized

‘ How is the original problem instance reduced? I

LNS CMSA

Search Space Search Space

Solutions that only contain
components from C/ C C

‘ How is the sub-instance of the next iteration generated? I

» L[NS: Partial destruction of the incumbent solution

» CMSA: Generating new solutions and removing old solution components
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Longest common subsequence (LCS) problem (1)

Notation: § What is a subsequence of a string?

[

A string t is called a subsequence of a string =,

iff ¢ can be produced from x by deleting characters

Example: | Is AAT a subsequence of ACAGTTA?

ACAGTTA

|

© C. Blum
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Longest common subsequence (LCS) problem (2)

Problem definition (restricted to two input sequence)

Given: A problem instance (x,y, ), where

» x and y are input sequences over the alphabet X

Optimization goal:

Find a longest string ¢* that is a subsequence of strings z and y — a longest

common subsequence
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Repetition-free longest common subsequence problem

» Restriction: No letter may appear more than once in a valid solution

» Proposed in: 2010 in Discrete Applied Mathematics

» Hardness: APX-hard (shown in above paper)

» Motivation: Genome rearrangement where duplicate genes are basically not

considered

» Existing algorithms:
1. Three simple heuristics, Discrete Applied Mathematics, 2010
2. An Evolutionary Algorithm, Operations Research Letters, 2013
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A simple constructive RFLCS heuristic: Best-Next (1)

‘ Principle: I Builds a solution sequentially from left to right

input: a problem instance (x,y, )
initialization: ¢t := ¢ (where € is the empty string)
while |27¢| > 0 do

a := ChooseFrom(>}9)

t:=ta
end while

output: a repetition-free common subsequence ¢

‘ Question: I How is >} defined?
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A simple constructive LCS heuristic: Best-Next (2)

‘ Example: I Given is

» Problem instance (z,y,%X = {A,C,T,G}) where
* r = ATCTAGCTG

« y = TACCATGTG

» Partial solution ¢t = AC

xT x~ YT Yy

—T— S ~ N~ % ~

ATC TAGCTAG TAC CATGTAG
b f f o
pxpr Pa Py PyprG

| Result: I Yt ={T}
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Greedy function

‘ Greedy function: I

xT x~ yT Yy
—T - ~ —N— A\ -
ATC TAGCTG TAC CATGTG
b T 1 b
Dz pr Pa Dy PyTP?S}
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ILP Model (1)

‘ Set of binary variables: I

For each position i of x and j of y such that z[i] = y[j] the model has

a variable z; ;

Example set of variables Example of a conflict

ATCTAGC]

;9 ATCTAGCTAG
[ }}@
G

TACCATGTG
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ILP Model (2)

subject to:

Z Zi’jgl for a € X
2;,; €44

zi i+ 21 <1 forall z; ; and 21 ; being in conflict

zii €{0,1} for z;;, € Z

‘ Hereby: I

> 2, € Z, iff x)i]=ylj] =a

» z;; and 2 are in conflict iff i <k and j >[I OR i >k and 5 <

© C. Blum
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Experimental evaluation: benchmark instances

30 instances for each combination of

» Input sequence length: n € {32,64,128,256,512,1024,2028,4048}

» Alphabet size: |X| € {n/8,n/4,3n/8,n/2,5n/8,3n/4,7n/8}

30 instances for each combination of
» Alphabet size: || € {4,8,16, 32,64, 128,256,512}

» Maximal number of repetitions of each letter: rep € {3,4,5,6,7,8}

Tuning: I CMSA’s parameters are tuned by irace for each alphabet size
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Experimental results: performance of CPLEX

» Input sequence length: n € {32,64, : : , 1024, 2028, 4048}
» Alphabet size: |X| € {n/&, : : ,on/8,3n/4,Tn/8}

» Alphabet size: |X| € {4,8,16,32,64,128,256,512}

» Maximal number of repetitions of each letter: rep € {3,4,5,0, 7,2}

© C. Blum

| Result: I CPLEX is able to solve nearly all exisiting problem instances from the

literature to optimality
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Experimental results: Setl

I Improvement of CMSA over CPLEX: I alphabet size n/8

Impr. of CMsA over CPLEX
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Experimental results: Setl

I Improvement of CMSA over CPLEX: I alphabet size n /2
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Experimental results: Setl

IImprovement of CMSA over CPLEX: I alphabet size Tn /8

Impr. of CMsA over CPLEX
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Experimental results: Set?2

‘ Improvement of CMSA over CPLEX: I 3 reps

Impr. of CMsA over CPLEX
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Experimental results: Set?2

‘ Improvement of CMSA over CPLEX: I 6 reps

Impr. of CMsA over CPLEX
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Experimental results: Set?2

I Improvement of CMSA over CPLEX: I 8 reps

Impr. of CMsA over CPLEX
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Experimental results: size of sub-instances
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Relation between LNS and CMSA

An experimental study
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Reminder: Intuition

» CMSA will have advantages over LNS when solutions are small , that is, when

1. solutions consist of few solution components

2. many variables in the corresponding ILP model have value zero

» LNS will have advantages over CMSA when the opposite is the case

| Problem: I how to show this?

» Theoretically? hardly possible

» FEmpirically? Maybe with a parametrizable problem
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Example: Multi-dimensional Knapsack Problem (MDKP)

| Given: I

A set of items C' ={1,...,n}

A set of resources K ={1,...,m}

>
>
» Of each resource k£ we have a maximum quantity c; ( capacity )
» Each item ¢ requires from each resource k a certain quantity r; x
>

Each item ¢ has a profit p;

|Valid solutions: I Each subset S € C is a valid solution if

Zm,k <c VkeK

1eS

‘ Objective function: I f(S) == > _,cqpi for all valid solutions S
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MDKP: instance tightness

‘ Important parameter: I Instance tightness 0 < a <1

» When « close to zero: capacities are low and valid solution only contain very

few items

» When « close to one: capacities are very high and solutions contain nearly all

1tems

» Apply both LNS and CMSA to instances from the whole tightness range .

» Both algorithms are tuned with irace seperately for instances of each
considered tightness.
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Results for instances with 1000 items

|Instance size: I n = 1000, m = 10

Impr. of CMSA over LNS
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Results for instances with 5000 items

| Instance size: I n = 5000, m = 10

Impr. of CMSA over LNS
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Results for instances with 10000 items

|Instance size: I n = 10000, m = 10
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What if no Efficient Exact Method

1s Known?

Applying a metaheuristic within CMSA
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Weighted Independent Domination Problem: Preliminaries

Given an undirected graph G = (V, E):

» A subset D C V is called a dominating set if and only if

Vv € V it holds that N[v]N D # ()

» A subset I € V is called an independent set if and only if no two vertices

from I are adjacent in GG

‘ NP-hard problems: I

» Minimum Dominating Set problem

» Maximum Independent Set problem
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Weighted Independent Domination Problem (WIDP)

| Given: I

» An undirected graph G = (V, F)

» Fach node v € V has an integer weight w(v) > 0

» Fach edge e € F has an integer weight w(e) > 0

|Valid solutions: I Any set D C V which is at the same time a dominating set and

an independent set

‘ Objective function: I given a valid solution D C V

f(D):=> w(u)+ » minfw(e=(v,u))|ue{N(@)|veD}}

ueD veV\D
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The WIDP Problem: An Example

@L@ e Complexity: shown to be NP-hard

e Only algorithmic approach: A linear time
4 5 algorithm for series parallel graphs
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Integer Linear Programming (ILP) Model

(ILP) min Z r,w(v) + Z zew(e) (5)
veV ec
s.t. Xy, +xy <1 for e = (u,v) € K (6)
Ty + Ty = Ye for e = (u,v) € E (7)
Ze < Ye fore e £ (8)
Ty + Z T, > 1 forveV (9)
ueN (v)
xU—I—Zzezl for v e V (10)
e€d(v)
z, € {0,1} forveV
Yy € {0,1} foree E

ze € {0,1} foree E
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Greedy Heuristics: General Structure

1: input: a undirected graph G = (V, F) with node and edge weights
2: S =1

3: G =@

4: while V' # () do

5. v* := ChooseFrom(V”)
6: S:=SU{v*}

7 Remove from G’ all nodes from {v*} U N(v* | G’) (and the incident edges)
8: end while

9

output: An independent dominating set .S of G

» (' is the graph that remains when removing nodes (and the incident edges)
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Greedy Heuristics: How To Choose a Node?

‘ GREEDY1: IImplementation of ChooseFrom(V”")

N /
v* = argmax{| ] &) |U€V’} (11)

w(v)

» This heuristic favors nodes with a high remaining degree and a

low node weight

» Edge weights are not considered, only at the time of computing the objective

function value
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Greedy Heuristics: How To Choose a Node?

‘ GREEDY2: I Given a partial solution S C V, the contribution c(v | S) of a node

v € V' is defined as follows:
1. fves: c(v]|S):=w)
2. Ifvég Sand N(v)NS=0: c(v]|S):=max{w(e) | e € E}

3. fvéSand Nw)NS #D: c(v]8):=min{w(e)|e=(v,u),uecS}

Implementation of ChooseFrom(V'): { Via aux. func. f**(S) :=>_ ., c(v |S)

v* = argmin { f*"*(SU {v}) | v € V'}
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Population-Based lterated Greedy (PBIG)

1: input: input graph G, parameters pgise > 0, D', D%, d;ate, lsize € [0, 1]

2: P := GeneratelnitialPopulation(psize, drate, lsize)
3: while termination condition not satisfied do
4 Paew =10

5. for each candidate solution S € P do

6: S := DestroyPartially(S)

7: S’ = Reconstruct(g, drate, lsize)

8: AdaptDestructionRate(S, S”)

9: Poow = Puew U{S5"}

10: end for

11: P := Best pgize solutions from P U P,
12: end while

13: output: argmin {f(S)|S € P}
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PBIG: Probabilistic (Re-)Construction of Solutions

| Characteristics: I

» Uses mechanism and greedy function of GREEDY2 .

» Makes use of a determinism rate d,.,t. and a candidate list size lg,e

» At each construction step:
x First draw a random number ¢ € [0, 1].

* If 6 < d,ate: Choose the best node from v € V'’

* If 0 > d;ate: Choose randomly from the best [g;,. nodes
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PBIG: Partial Destruction of Solutions

| Mechanism: I

» Randomly remove D, percent of all nodes from a solution

» Dynamic solution-specific destruction rate D,

Parameters: | 0 < D! < D% < 1

[

» D! minimum destruction rate
» D% maximum destruction rate

» D' increment of the destruction rate (fixed to 0.05)

Management of D,.: I

» Start with D, := D'. Moreover, whenever a better solution is found set D,
back to D'

» When no better solution is found: D,. := D,. + D™¢
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Experimental Evaluation: Instances

‘ Considered graphs: I random graphs and random geometric graphs

» |V]| € {100,500, 1000}
» Random graphs: edge probability ep € {0.05,0.15,0.25}

» Random geom. graphs: radius r € {0.14,0.24,0.34}

» Neutral graphs node/edge weights uniformly at random from {0,...,100}

» Node-oriented graphs node weights from {0,...,1000}, edge weights from
{0,...,10}

» Edge-oriented graphs node weights from {0,...,10}, node weights from
[0, ...,1000}

‘ Number of graphs: I 10 graphs for each comb. of |V, ep/r and graph type

(a total of 540 graphs )
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Critical Difference Plots: Global Picture

1 2 3 4 5 6
l | | | | |
CMSA-PBIG ILp-1
PBiG (GGREEDY?2
ILp-2 — GREEDY1

ILp-3
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Critical Difference Plots: Random Graphs
1 2 3 4 5 6
| | | | | |
CMSA-PBIG I I.P-3
PBic GREEDY?2
ILp-2 GREEDY1
ILp-1
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Critical Difference Plots: Random Geometric Graphs

1 2 3 4 5 6 7
l | | | | | |
CMSA-PBIG ul ILp-1
PBiG GREEDY?2
ILP-2 GREEDY1

ILp-3
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Critical Difference Plots: Edge-Oriented Graphs

1 2 3 4 5 6 7
I I I I I I |
CMSA-PBIG ILP-3
PBIG ILp-1
ILp-2 GREEDY1
GREEDY?2




VNS 2017, Ouro Preto (Brazil), October 2017 © C. Blum

Summary and Possible Research Directions

‘ Summary: I

» CMSA: A new hybrid metaheuristic for combinatorial optimization

» Goal: Make ILP solvers applicable to larg(er) problem instances

| Possible Research Directions: I

» Solution construction: adaptive probabilities over time

» A more intelligent version of the aging mechanism

» Identify applications where constraint programming can be useful as exact
technique inside CMSA
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Questions?

| Literature: I

» C. Blum, P. Pinacho, J. A. Lozano, M. Lépez-Ibanez. Construct, Merge, Solve &
Adapt: A new general algorithm for combinatorial optimization.

Computers € Operations Research, 2016

» P. Pinacho, C. Blum, J. A. Lozano. The Weighted Independent Domination
Problem: Integer Linear Programming Models and Metaheuristic

Approaches. Furopean Journal of Operational Research, in press (2017)

Hybrid
Metaheuristics

Book: C. Blum, G. R. Raidl. Hybrid Metaheuristics — Powerful
Tools for Optimization, Springer Series on Artificial Intelligence,

2016




