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IIIA-CSIC

CSIC: Spanish National Research Council

▶ Largest public institution dedicated to research in Spain (created in 1939)

▶ Third-largest in Europe

▶ 6% of all research staff in Spain work for the CSIC

▶ 20% of the scientific production in Spain is from the CSIC

IIIA: Artificial Intelligence Research Institute

▶ 18 tenured scientists (of three different ranks)

▶ Around 30 additional staff member (post-docs, PhD students, technicians,

administration)

▶ Three research lines (machine learning, logic and constraint programming,

multi-agent systems)
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Research Topics in Recent Years

Swarm Intelligence

Hybrid Metaheuristics
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What is swarm intelligence?

In a nutshell: AI discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools
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Swarm intelligence

Properties:

▶ Consist of a set of simple entities

▶ Distributedness: No global control

▶ Self-organization by:

⋆ Direct communication: for example, by visual or chemical contact

⋆ Indirect communication: Stigmergy (Grassé, 1959)

Result: Complex tasks/behaviors can be accomplished/exhibited in cooperation
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Swarm Intelligence topics from last years

▶ Combinatorial optimization: ant colony optimization

Inspiration: foraging behaviour of ant colonies

▶ Distributed optimization: graph coloring, independent set finding

Inspiration: self-desynchronization in Japanese tree frogs

▶ Distributed problem solving: duty-cycling in sensor networks

Inspiration: work-synchronization in ant colonies

More info: On my website

https://www.iiia.csic.es/~christian.blum/
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Main Topic of this Presentation: Preparing the Grounds

...

MHs based on
solution construction

...
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Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

▶ Problem: a precise definition is not possible/desirable

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimization ?

▶ Metaheuristics

▶ Branch & bound

▶ Dynamic programming

▶ Integer Linear Programming (ILP) techniques
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Hybrid metaheuristics: history

History:

▶ For a long time the different communities co-existed quite isolated

▶ Hybrid approaches were developed already early, but only sporadically

▶ Only since about 15 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a seperate line of

research
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Motivation behind my work on hybrid metaheuristics

▶ It is often possible to exploit synergies between different types of algorithms

▶ In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic

apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

▶ In contrast, for hybrid metaheuristics not much is known

⋆ We only have very few generally applicable techniques

⋆ We do not really know for which type of problem they work well
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Hybrid Metaheuristics

Construct, Merge, Solve & Adapt

(CMSA)

Short description
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Standard: Large Neighborhood Search

▶ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

▶ Large neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

▶ Heuristically

▶ Exact techniques: for example an ILP solver
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ILP-based large neighborhood search: Ilp-Lns
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Hypothesis and resulting research question

In our experience: LNS works especially well when

1. The number of solution components (variables) is is not high

2. The number of components in a solution is not too small

Question:

What kind of general algorithm can we apply when the above
conditions are not fullfilled?
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Construct, Merge, Solve & Adapt: Principal Idea

Observation: In the presence of a large number of solutions components, many of

them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

▶ Iteratively generate presumably good solutions in a probabilistic way

▶ Assemble a sub-instance from the used solution components

▶ Solve the sub-instance by means of an ILP solver

▶ Delete useless solution components from the sub-instance
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Construct, Merge, Solve & Adapt: Flow Diagram
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Differences between Lns and Cmsa: summarized

How is the original problem instance reduced?

Search Space

LNS

Search Space

CMSA

How is the sub-instance of the next iteration generated?

▶ Lns: Partial destruction of the incumbent solution

▶ Cmsa: Generating new solutions and removing old solution components
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Longest common subsequence (LCS) problem (1)

Notation: What is a subsequence of a string?

A string t is called a subsequence of a string x,

iff t can be produced from x by deleting characters

Example: Is AAT a subsequence of ACAGTTA?
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Longest common subsequence (LCS) problem (2)

Problem definition (restricted to two input sequence)

Given: A problem instance (x, y,Σ), where

▶ x and y are input sequences over the alphabet Σ

Optimization goal:

Find a longest string t∗ that is a subsequence of strings x and y → a longest

common subsequence
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Repetition-free longest common subsequence problem

▶ Restriction: No letter may appear more than once in a valid solution

▶ Proposed in: 2010 in Discrete Applied Mathematics

▶ Hardness: APX-hard (shown in above paper)

▶ Motivation: Genome rearrangement where duplicate genes are basically not

considered

▶ Existing algorithms:

1. Three simple heuristics, Discrete Applied Mathematics, 2010

2. An Evolutionary Algorithm, Operations Research Letters, 2013
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A simple constructive RFLCS heuristic: Best-Next (1)

Principle: Builds a solution sequentially from left to right

1: input: a problem instance (x, y,Σ)

2: initialization: t := ϵ (where ϵ is the empty string)

3: while |Σnd
t | > 0 do

4: a := ChooseFrom(Σnd
t )

5: t := ta

6: end while

7: output: a repetition-free common subsequence t

Question: How is Σnd
t defined?
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A simple constructive LCS heuristic: Best-Next (2)

Example: Given is

▶ Problem instance (x, y,Σ = {A,C,T,G}) where
⋆ x = ATCTAGCTG

⋆ y = TACCATGTG

▶ Partial solution t = AC

Result: Σnd
t = {T}
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Greedy function

Greedy function:
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ILP Model (1)

Set of binary variables:

For each position i of x and j of y such that x[i] = y[j] the model has

a variable zi,j

Example set of variables Example of a conflict

A T C T A G C T G

T A C C A T G T G

A T C T A G C T G

T A C C A T G T G

conflict
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ILP Model (2)

max
∑

zi,j∈Z

zi,j

subject to:∑
zi,j∈Za

zi,j ≤ 1 for a ∈ Σ

zi,j + zk,l ≤ 1 for all zi,j and zk,l being in conflict

zi,j ∈ {0, 1} for zi,j ∈ Z

(1)

(2)

(3)

(4)

Hereby:

▶ zi,j ∈ Za iff x[i] = y[j] = a

▶ zi,j and zk,l are in conflict iff i < k and j > l OR i > k and j < l



VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Experimental evaluation: benchmark instances

Set1: 30 instances for each combination of

▶ Input sequence length: n ∈ {32, 64, 128, 256, 512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8}

Set2: 30 instances for each combination of

▶ Alphabet size: |Σ| ∈ {4, 8, 16, 32, 64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5, 6, 7, 8}

Tuning: Cmsa’s parameters are tuned by irace for each alphabet size
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Experimental results: performance of CPLEX

Set1:

▶ Input sequence length: n ∈ {32,64,128,256,512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8,n/4,3n/8,n/2, 5n/8, 3n/4, 7n/8}

Set2:

▶ Alphabet size: |Σ| ∈ {4,8,16,32,64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5,6,7,8}

Result: CPLEX is able to solve nearly all exisiting problem instances from the

literature to optimality
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Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/8
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Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/2
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Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size 7n/8
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Experimental results: Set2

Improvement of CMSA over CPLEX: 3 reps
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Experimental results: Set2

Improvement of CMSA over CPLEX: 6 reps
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Experimental results: Set2

Improvement of CMSA over CPLEX: 8 reps
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Experimental results: size of sub-instances
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Hybrid Metaheuristics

Relation between LNS and CMSA

An experimental study
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Reminder: Intuition

▶ CMSA will have advantages over LNS when solutions are small , that is, when

1. solutions consist of few solution components

2. many variables in the corresponding ILP model have value zero

▶ LNS will have advantages over CMSA when the opposite is the case

Problem: how to show this?

▶ Theoretically? hardly possible

▶ Empirically? Maybe with a parametrizable problem
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Example: Multi-dimensional Knapsack Problem (MDKP)

Given:

▶ A set of items C = {1, . . . , n}

▶ A set of resources K = {1, . . . ,m}

▶ Of each resource k we have a maximum quantity ck ( capacity )

▶ Each item i requires from each resource k a certain quantity ri,k

▶ Each item i has a profit pi

Valid solutions: Each subset S ∈ C is a valid solution if∑
i∈S

ri,k ≤ ck ∀k ∈ K

Objective function: f(S) :=
∑

i∈S pi for all valid solutions S
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MDKP: instance tightness

Important parameter: Instance tightness 0 ≤ α ≤ 1

▶ When α close to zero: capacities are low and valid solution only contain very

few items

▶ When α close to one: capacities are very high and solutions contain nearly all

items

Plan:

▶ Apply both LNS and CMSA to instances from the whole tightness range .

▶ Both algorithms are tuned with irace seperately for instances of each

considered tightness.
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Results for instances with 1000 items

Instance size: n = 1000, m = 10
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Results for instances with 5000 items

Instance size: n = 5000, m = 10
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Results for instances with 10000 items

Instance size: n = 10000, m = 10
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Hybrid Metaheuristics

What if no Efficient Exact Method

is Known?

Applying a metaheuristic within CMSA
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Weighted Independent Domination Problem: Preliminaries

Given an undirected graph G = (V,E):

▶ A subset D ⊆ V is called a dominating set if and only if

∀ v ∈ V it holds that N [v] ∩D ̸= ∅

▶ A subset I ∈ V is called an independent set if and only if no two vertices

from I are adjacent in G

NP-hard problems:

▶ Minimum Dominating Set problem

▶ Maximum Independent Set problem
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Weighted Independent Domination Problem (WIDP)

Given:

▶ An undirected graph G = (V,E)

▶ Each node v ∈ V has an integer weight w(v) ≥ 0

▶ Each edge e ∈ E has an integer weight w(e) ≥ 0

Valid solutions: Any set D ⊆ V which is at the same time a dominating set and

an independent set

Objective function: given a valid solution D ⊆ V

f(D) :=
∑
u∈D

w(u) +
∑

v∈V \D

min{w(e = (v, u)) | u ∈ {N(v) | v ∈ D}}
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The WIDP Problem: An Example
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Integer Linear Programming (ILP) Model

(ILP) min
∑
v∈V

xvw(v) +
∑
e∈E

zew(e)

s.t. xv + xu ≤ 1 for e = (u, v) ∈ E

xv + xu = ye for e = (u, v) ∈ E

ze ≤ ye for e ∈ E

xv +
∑

u∈N(v)

xu ≥ 1 for v ∈ V

xv +
∑

e∈δ(v)

ze ≥ 1 for v ∈ V

xv ∈ {0, 1} for v ∈ V

ye ∈ {0, 1} for e ∈ E

ze ∈ {0, 1} for e ∈ E

(5)

(6)

(7)

(8)

(9)

(10)
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Greedy Heuristics: General Structure

1: input: a undirected graph G = (V,E) with node and edge weights

2: S := ∅
3: G′ := G

4: while V ′ ̸= ∅ do

5: v∗ := ChooseFrom(V ′)

6: S := S ∪ {v∗}
7: Remove from G′ all nodes from {v∗} ∪N(v∗ | G′) (and the incident edges)

8: end while

9: output: An independent dominating set S of G

Note:

▶ G′ is the graph that remains when removing nodes (and the incident edges)
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Greedy Heuristics: How To Choose a Node?

Greedy1: Implementation of ChooseFrom(V ′)

v∗ := argmax

{
|N(v | G′)|

w(v)
| v ∈ V ′

}
(11)

Note:

▶ This heuristic favors nodes with a high remaining degree and a

low node weight

▶ Edge weights are not considered, only at the time of computing the objective

function value
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Greedy Heuristics: How To Choose a Node?

Greedy2: Given a partial solution S ⊂ V , the contribution c(v | S) of a node

v ∈ V ′ is defined as follows:

1. If v ∈ S: c(v | S) := w(v)

2. If v /∈ S and N(v) ∩ S = ∅: c(v | S) := max{w(e) | e ∈ E}

3. If v /∈ S and N(v) ∩ S ̸= ∅: c(v | S) := min{w(e) | e = (v, u), u ∈ S}

Implementation of ChooseFrom(V ′): Via aux. func. faux(S) :=
∑

v∈V c(v | S)

v∗ := argmin {faux(S ∪ {v}) | v ∈ V ′}
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Population-Based Iterated Greedy (PBIG)

1: input: input graph G, parameters psize > 0, Dl, Du, drate, lsize ∈ [0, 1]

2: P := GenerateInitialPopulation(psize, drate, lsize)

3: while termination condition not satisfied do

4: Pnew := ∅
5: for each candidate solution S ∈ P do

6: Ŝ := DestroyPartially(S)

7: S′ := Reconstruct(Ŝ, drate, lsize)

8: AdaptDestructionRate(S, S′)

9: Pnew := Pnew ∪ {S′}
10: end for

11: P := Best psize solutions from P ∪ Pnew

12: end while

13: output: argmin {f(S) | S ∈ P}
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PBIG: Probabilistic (Re-)Construction of Solutions

Characteristics:

▶ Uses mechanism and greedy function of Greedy2 .

▶ Makes use of a determinism rate drate and a candidate list size lsize

▶ At each construction step:

⋆ First draw a random number δ ∈ [0, 1].

⋆ If δ ≤ drate: Choose the best node from v ∈ V ′

⋆ If δ > drate: Choose randomly from the best lsize nodes
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PBIG: Partial Destruction of Solutions

Mechanism:

▶ Randomly remove Dr percent of all nodes from a solution

▶ Dynamic solution-specific destruction rate Dr

Parameters: 0 ≤ Dl ≤ Du ≤ 1

▶ Dl: minimum destruction rate

▶ Du: maximum destruction rate

▶ Dinc: increment of the destruction rate (fixed to 0.05)

Management of Dr:

▶ Start with Dr := Dl. Moreover, whenever a better solution is found set Dr

back to Dl

▶ When no better solution is found: Dr := Dr +Dinc
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Experimental Evaluation: Instances

Considered graphs: random graphs and random geometric graphs

▶ |V | ∈ {100, 500, 1000}

▶ Random graphs: edge probability ep ∈ {0.05, 0.15, 0.25}

▶ Random geom. graphs: radius r ∈ {0.14, 0.24, 0.34}

▶ Neutral graphs node/edge weights uniformly at random from {0, . . . , 100}

▶ Node-oriented graphs node weights from {0, . . . , 1000}, edge weights from

{0, . . . , 10}

▶ Edge-oriented graphs node weights from {0, . . . , 10}, node weights from

{0, . . . , 1000}

Number of graphs: 10 graphs for each comb. of |V |, ep/r and graph type

( a total of 540 graphs )
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Critical Difference Plots: Global Picture

1 2 3 4 5 6



VNS 2017, Ouro Preto (Brazil), October 2017 c⃝ C. Blum

Critical Difference Plots: Random Graphs
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Critical Difference Plots: Random Geometric Graphs
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Critical Difference Plots: Edge-Oriented Graphs
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Summary and Possible Research Directions

Summary:

▶ Cmsa: A new hybrid metaheuristic for combinatorial optimization

▶ Goal: Make ILP solvers applicable to larg(er) problem instances

Possible Research Directions:

▶ Solution construction: adaptive probabilities over time

▶ A more intelligent version of the aging mechanism

▶ Identify applications where constraint programming can be useful as exact

technique inside Cmsa
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Outlook

Questions?
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