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Motivation and Outline (1)

Motivation:

▶ In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic

apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

▶ In contrast, for hybrid metaheuristics nothing like that is known

⋆ We only have very few generally applicable techniques

⋆ We do not really know for which type of problem they work well
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Motivation and Outline (2)

Outline:

▶ Short Intro: Hybrid metaheuristics

▶ How to combine metaheuristics with ILP solvers?

⋆ Standard method: Large neighborhood search (LNS)

▶ Hypothesis about the conditions in which LNS does NOT work

▶ What can we use instead of LNS?

⋆ New hybrid: Construct, Merge, Solve & Adapt (CMSA)
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Hybrid Metaheuristics

Hybrid Metaheuristics

Short introduction
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Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

▶ Problem: a precise definition is not possible

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimiation ?

▶ Metaheuristics

▶ Branch & bound

▶ Dynamic programming

▶ Integer Linear Programming (ILP) techniques
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Hybrid metaheuristics: history

History:

▶ For a long time the different communities co-existed quite isolated

▶ Hybrid approaches were developed already early, but only sporadically

▶ Only since about 15 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research
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Specific topic of this presentation

Specific topic today: Combination between metaheuristics and ILP Solvers

Available general purpose ILP solvers:

▶ IBM ILOG CPLEX: free for academic purposes

▶ Gurobi: free for academic purposes

▶ FICO Xpress: 30 days free trial. Restricted student version for free

▶ MOSEK: free for academic purposes
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Example of an integer linear program (1)

Optimization problem: Minimum weight dominating set (MWDS)

▶ Given: An undirected graph G = (V,E); each vi ∈ V has a weight w(vi) ≥ 0

▶ Valid solutions: Any subset S ⊆ V is a valid solution iff

∀ vi ∈ V : N [vi] ∩ S ̸= ∅

▶ Optimization goal: Find a solution S∗ that minimizes

f(S∗) :=
∑

vi∈S∗ w(vi)
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Example of an integer linear program (2)

Stating the MWDS problem as an ILP:

min
∑
vi∈V

w(vi) · xi

subject to:∑
vj∈N [vi]

xj ≥ 1 for vi ∈ V

xi ∈ {0, 1} for vi ∈ V

(1)

(2)

Beware:

▶ In this ILP: linear number of variables and constraints

▶ Any problem may be expressed as an ILP in various different ways
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Why combining metaheuristics with ILP Solvers?

General advantage of metaheuristics:

▶ Very good in exploiting information on the problem (greedy heuristics)

▶ Generally very good in obtaining high-quality solutions for medium and even

large size problem instances

However:

▶ Metaheuristics may also reach their limits with growing problem instance size

▶ Metaheuristics fail when the information on the problem is misleading

Goal: Taking profit from valuable optimization expertise that went into the

development of ILP solvers even in the context of large problem instances
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Hybrid metaheuristics

ILP-based Large Neighborhood Search

Principle: Use of an ILP solver for finding the best neighbor
in a large neighborhood of a solution

David Pisinger, Stefan Ropke. Large Neighborhood Search, Handbook of

Metaheuristics, International Series in Operations Research & Management Science

Volume 146, 2010, pp 399-419
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Neighborhood search (1)

▶ Crucial ingredient of neighborhood search: Choice of a neighborhood

▶ Usual in metaheuristics based on neighborhood search: rather small

neighborhoods

Example of a small neighborhood: 2-opt neighborhood for the TSP. Each

solution has O(n2) neighbors.

Traveling Salesman Problem: 2-opt move 

current solution possible neighbor
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Neighborhood search (2)

Example of a large neighborhood: in the context of the TSP

Traveling Salesman Problem: large neighborhood 

current solution destroy     partially: find best solution contining 
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General tradeoff in neighborhood search

▶ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

▶ Large neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

▶ Heuristically

▶ Exact techniques: for example an ILP solver
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ILP-based large neighborhood search: Ilp-Lns
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Crucial aspect of Ilp-Lns

▶ Important: Applying an ILP solver to find the best solution containing a

specific partial solution Spartial means applying the ILP to a

reduced search space .

▶ Consequence: In comparison to the ILP solver, Ilp-Lns can be applied to

much bigger problem instances

Search Space

LNS
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Application example: Minimum weight dominating set

Original ILP:

min
∑
vi∈V

w(vi) · xi

subject to:∑
vj∈N [vi]

xj ≥ 1 for vi ∈ V

xi ∈ {0, 1} for vi ∈ V

How to search for the best solution containing Spartial?

Adding the following constraints: xi = 1 for vi ∈ Spartial
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Generating the initial solution: Greedy (1)

Definitions:

▶ Vcov: set of covered nodes (w.r.t. a partial solution S)

▶ d(v|Vcov): current degree of v only considering covered nodes

Example:

v1 2

v6 1

v4

v2 v3

v7 v8

v5

S = {v1, v7}, Vcov = {v1, v2, v4, v6, v7, v8}, d(v3|Vcov) = 1
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Generating the initial solution: Greedy (2)

Pseudo-code of Greedy:

1: input: a graph G = (V,E) with node weights

2: S := ∅
3: Vcov := ∅
4: while Vcov ̸= V do

5: v∗ := argmaxv∈V \Vcov

{
d(v|Vcov)

w(v)

}
6: S := S ∪ {v∗}
7: Vcov := Vcov ∪N [v∗]

8: end while

9: output: S
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Partial destruction of a solution

General principle: removing a certain percentage percdest of the nodes in Scur

How to select nodes to be removed?

▶ Destruction type typedest = random : nodes are chosen uniformly at random

▶ Destruction type typedest = heuristically guided): node choice biased by

greedy function

Choice of value for percdest:

▶ A value is chosen dynamically from [percldest, perc
u
dest]

▶ Initially percdest := percldest

▶ When no better solution found: percdest := percdest + 5

▶ When better solution found of upper bound reached: percdest := percldest
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Benchmark instances

▶ Random graphs with |V | = {100, 1000, 5000, 10000} nodes

▶ Different edge probabilities ep (low, medium, high):

⋆ For |V | = 100: ep ∈ {0.03, 0.04, 0.05}
⋆ For |V | > 100: ep ∈ {0.01, 0.03, 0.05}
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Tuning of Ilp-Lns

▶ typedest can be random or heuristically guided

▶ Lower and upper bound (percldest, perc
u
dest) for the destruction percentage:

1. (X,X) where X ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}
2. (X,Y ) ∈ {(10, 30), (10, 50), (30, 50), (30, 70)}

▶ tmax: maximum CPU time for each application of the ILP solver

Selected values after tuning with irace:

|V | typedest (percldest, perc
u
dest) tmax

100 1 (60, 60) 2.0

1000 0 (90, 90) 10.0

5000 1 (50, 50) 5.0

10000 1 (40, 40) 10.0
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MWDS results: improvement over Greedy (in percent)
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MWDS results: improvement over Cplex (in percent)
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Hypothesis and subsequent question

Hypothesis after studying the LNS literature:

LNS works especially well when the number of solution components

(variables) is linear concerning the input parameters of the tackled
problem

Question:

What can we do when the ILP of our tackled problem has a

large number of solution components (variables)???
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Hybrid metaheuristics

Construct, Merge, Solve & Adapt

Principle: Exact solution of sub-instances obtained by joining
solutions

Christian Blum, Borja Calvo. A matheuristic for the minimum weight rooted

arborescence problem. Journal of Heuristics, 21(4): 479-499 (2015)
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Principal Idea

Observation: In the presence of a large number of solutions components, many of

them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

▶ Iteratively generate presumably good solutions in a probabilistic way

▶ Assemble a sub-instance from the used solution components

▶ Solve the sub-instance by means of an ILP solver

▶ Delete useless solution components from the sub-instance
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Construct, Merge, Solve & Adapt (Cmsa)



Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Application example: Minimum Common String Partition (1)

Input:

1. Two related strings of length n over a finite alphabet Σ

2. Note: Two strings s1 and s2 are related iff the frequency of each letter in each

string is equal.

Valid solutions:

▶ Generate a partition P1 of non-overlapping substrings of s1

▶ Generate a partition P2 of non-overlapping substrings of s2

▶ Solution S = (P1, P2) is a valid solution iff P1 = P2

▶ Obj. function value: f(S) := |P1| = |P2|

Objective: Minimization
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Minimum Common String Partition (2)

Example:

▶ s1 := AGACTG, s2 := ACTAGG

▶ Trival solution:

⋆ P1 = P2 = {A,A,C,T,G,G}
⋆ Obj. function value: 6

▶ Optimal solution S∗:

⋆ P1 = P2 = {ACT,AG,G}
⋆ Obj. function value: 3
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Related Literature

Basic facts:

▶ Introduced in 2005 in the context of genome rearrangement

▶ Problem difficulty: NP-hard

Works from the literature:

▶ 2005: Greedy approach

▶ 2007: Introduction of approximation algorithms

▶ 2008: Study concerning fixed-parameter tractability (FPT)

▶ 2013: An ant colony optimization metaheuristic
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Preliminaries

Definitions: Given input strings s1 and s2 ...

▶ A common block bi is a triple (ti, k1i, k2i) where

1. ti is a string starting at position 1 ≤ k1i ≤ n in string s1

2. ti is a string starting at position 1 ≤ k2i ≤ n in string s2

▶ Set B is the set of all common blocks of s1 and s2

▶ Any valid (partial) solution S is a subset of B such that

1.
∑

bi∈S |ti| = n (in the case of complete solutions)

2.
∑

bi∈S |ti| < n (in the case of partial solutions)

3. For any bi, bj ∈ S it holds: ti and tj do not overlap neither in s1 nor in s2
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Common Block Example

Input strings: s1 = AGACTG and s2 = ACTAGG is as follows:

Set B of all common blocks:



b1 =(ACT, 3, 1) b8 =(A, 3, 4)

b2 =(AG, 1, 4) b9 =(C, 4, 2)

b3 =(AC, 3, 1) b10 =(T, 5, 3)

b4 =(CT, 4, 2) b11 =(G, 2, 5)

b5 =(A, 1, 1) b12 =(G, 2, 6)

b6 =(A, 1, 4) b13 =(G, 6, 5)

b7 =(A, 3, 1) b14 =(G, 6, 6)


Solution {ACT,AG,G}: S = {b1, b2, b14}
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ILP Model (1)

Input strings: s1 = AGACTG and s2 = ACTAGG

B =



b1 =(ACT, 3, 1)

b2 =(AG, 1, 4)

b3 =(AC, 3, 1)

b4 =(CT, 4, 2)

b5 =(A, 1, 1)

b6 =(A, 1, 4)

b7 =(A, 3, 1)

b8 =(A, 3, 4)

b9 =(C, 4, 2)

b10 =(T, 5, 3)

b11 =(G, 2, 5)

b12 =(G, 2, 6)

b13 =(G, 6, 5)

b14 =(G, 6, 6)



M1 =



0 0 1 1 1 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1



M2 =



1 1 1 0 0 0

0 0 0 1 1 0

1 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1
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ILP Model (2)

min

m∑
i=1

xi

subject to:

m∑
i=1

|ti| · xi = n

m∑
i=1

M1i,j · xi = 1 for j = 1, . . . , n

m∑
i=1

M2i,j · xi = 1 for j = 1, . . . , n

xi ∈ {0, 1} for i = 1, . . . ,m

(3)

(4)

(5)

(6)

Note: Very large number of solution components
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Set of solution components: properties
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Simple Greedy Algorithm

Given a valid partial solution Spartial: B(Spartial) ⊂ B are the common blocks

that may be used in order to extend Spartial

Pseudo-code:

1. Spartial := ∅

2. while Spartial is not a complete solution

▶ Choose the longest common block bi from B(Spartial)}
▶ Spartial := Spartial ∪ {bi}

Note: This algorithm is used in Cmsa in a probabilistic way
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Benchmark instances and tuning

Benchmark instances: 300 instances

▶ String length n ∈ {200, 400, . . . , 1800, 2000}

▶ Alphabet size |Σ| ∈ {4, 12, 20}

Tuning results with irace:

n na agemax drate lsize tmax

400 50 10 0.0 10 60

800 50 10 0.5 10 240

1200 50 10 0.9 10 480

1600 50 5 0.9 10 480

2000 50 10 0.9 10 480
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MCSP results: improvement over prob. Greedy (|Σ| = 4)
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MCSP results: improvement over prob. Greedy (|Σ| = 12)
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MCSP results: improvement over prob. Greedy (|Σ| = 20)
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MCSP results: improvement over Cplex (|Σ| = 4)
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MCSP results: improvement over Cplex (|Σ| = 12)
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MCSP results: improvement over Cplex (|Σ| = 20)
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Evolution of the (sub-)instance sizes
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Differences between Lns and Cmsa: summarized

How is the original problem instance reduced?

Search Space

LNS

Search Space

CMSA

How is the sub-instance of the next iteration generated?

▶ Lns: Partial destruction of the incumbent solution

▶ Cmsa: Generating new solutions and removing old solution components
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Summary and Possible Research Directions

Summary:

▶ Cmsa: A new hybrid algorithmm for combinatorial optimization

▶ Hypothesis:

⋆ Lns better for problems with a linear number solution components

⋆ Cmsa better for problems with a super-linear number of components

Possible Research Directions:

▶ Solution construction: adaptive probabilities over time

▶ A more intelligent version of the aging mechanism

▶ Theoretical studies about the differences between Lns and Cmsa
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Outlook

Questions?
Literature:
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Forthcoming book: C. Blum, G. R. Raidl. Hybrid Meta-

heuristics – Powerful Tools for Optimization, Springer Series on

Artificial Intelligence, 2015


