
Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Combining Metaheuristics with ILP
Solvers in Combinatorial Optimization

Christian Blum

University Of The Basque Country

Ikerbasque, Basque Foundation For Science

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Preliminaries: Preparing the Grounds

...

...

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Motivation and Outline (1)

Motivation:

▶ In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic

apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

▶ In contrast, for hybrid metaheuristics nothing like that is known

⋆ We only have very few generally applicable techniques

⋆ We do not really know for which type of problem they work well

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Motivation and Outline (2)

Outline:

▶ Short Intro: Hybrid metaheuristics

▶ How to combine metaheuristics with ILP solvers?

⋆ Standard method: Large neighborhood search (LNS)

▶ Hypothesis about the conditions in which LNS does NOT work

▶ What can we use instead of LNS?

⋆ New hybrid: Construct, Merge, Solve & Adapt (CMSA)

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Hybrid Metaheuristics

Hybrid Metaheuristics

Short introduction

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

▶ Problem: a precise definition is not possible

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimiation ?

▶ Metaheuristics

▶ Branch & bound

▶ Dynamic programming

▶ Integer Linear Programming (ILP) techniques

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Hybrid metaheuristics: history

History:

▶ For a long time the different communities co-existed quite isolated

▶ Hybrid approaches were developed already early, but only sporadically

▶ Only since about 15 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Specific topic of this presentation

Specific topic today: Combination between metaheuristics and ILP Solvers

Available general purpose ILP solvers:

▶ IBM ILOG CPLEX: free for academic purposes

▶ Gurobi: free for academic purposes

▶ FICO Xpress: 30 days free trial. Restricted student version for free

▶ MOSEK: free for academic purposes

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Example of an integer linear program (1)

Optimization problem: Minimum weight dominating set (MWDS)

▶ Given: An undirected graph G = (V,E); each vi ∈ V has a weight w(vi) ≥ 0

▶ Valid solutions: Any subset S ⊆ V is a valid solution iff

∀ vi ∈ V : N [vi] ∩ S ̸= ∅

▶ Optimization goal: Find a solution S∗ that minimizes

f(S∗) :=
∑

vi∈S∗ w(vi)

1 2

3 1

4

1 2

3 1

4

1 2

3 1

44

1

1

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Example of an integer linear program (2)

Stating the MWDS problem as an ILP:

min
∑
vi∈V

w(vi) · xi

subject to:∑
vj∈N [vi]

xj ≥ 1 for vi ∈ V

xi ∈ {0, 1} for vi ∈ V

(1)

(2)

Beware:

▶ In this ILP: linear number of variables and constraints

▶ Any problem may be expressed as an ILP in various different ways

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Why combining metaheuristics with ILP Solvers?

General advantage of metaheuristics:

▶ Very good in exploiting information on the problem (greedy heuristics)

▶ Generally very good in obtaining high-quality solutions for medium and even

large size problem instances

However:

▶ Metaheuristics may also reach their limits with growing problem instance size

▶ Metaheuristics fail when the information on the problem is misleading

Goal: Taking profit from valuable optimization expertise that went into the

development of ILP solvers even in the context of large problem instances

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Hybrid metaheuristics

ILP-based Large Neighborhood Search

Principle: Use of an ILP solver for finding the best neighbor
in a large neighborhood of a solution

David Pisinger, Stefan Ropke. Large Neighborhood Search, Handbook of

Metaheuristics, International Series in Operations Research & Management Science

Volume 146, 2010, pp 399-419

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Neighborhood search (1)

▶ Crucial ingredient of neighborhood search: Choice of a neighborhood

▶ Usual in metaheuristics based on neighborhood search: rather small

neighborhoods

Example of a small neighborhood: 2-opt neighborhood for the TSP. Each

solution has O(n2) neighbors.

Traveling Salesman Problem: 2-opt move

current solution possible neighbor

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Neighborhood search (2)

Example of a large neighborhood: in the context of the TSP

Traveling Salesman Problem: large neighborhood

current solution destroy partially: find best solution contining

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

General tradeoff in neighborhood search

▶ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

▶ Large neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

▶ Heuristically

▶ Exact techniques: for example an ILP solver

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

ILP-based large neighborhood search: Ilp-Lns

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Crucial aspect of Ilp-Lns

▶ Important: Applying an ILP solver to find the best solution containing a

specific partial solution Spartial means applying the ILP to a

reduced search space .

▶ Consequence: In comparison to the ILP solver, Ilp-Lns can be applied to

much bigger problem instances

Search Space

LNS

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Application example: Minimum weight dominating set

Original ILP:

min
∑
vi∈V

w(vi) · xi

subject to:∑
vj∈N [vi]

xj ≥ 1 for vi ∈ V

xi ∈ {0, 1} for vi ∈ V

How to search for the best solution containing Spartial?

Adding the following constraints: xi = 1 for vi ∈ Spartial

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Generating the initial solution: Greedy (1)

Definitions:

▶ Vcov: set of covered nodes (w.r.t. a partial solution S)

▶ d(v|Vcov): current degree of v only considering covered nodes

Example:

v1 2

v6 1

v4

v2 v3

v7 v8

v5

S = {v1, v7}, Vcov = {v1, v2, v4, v6, v7, v8}, d(v3|Vcov) = 1

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Generating the initial solution: Greedy (2)

Pseudo-code of Greedy:

1: input: a graph G = (V,E) with node weights

2: S := ∅
3: Vcov := ∅
4: while Vcov ̸= V do

5: v∗ := argmaxv∈V \Vcov

{
d(v|Vcov)

w(v)

}
6: S := S ∪ {v∗}
7: Vcov := Vcov ∪N [v∗]

8: end while

9: output: S

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Partial destruction of a solution

General principle: removing a certain percentage percdest of the nodes in Scur

How to select nodes to be removed?

▶ Destruction type typedest = random : nodes are chosen uniformly at random

▶ Destruction type typedest = heuristically guided): node choice biased by

greedy function

Choice of value for percdest:

▶ A value is chosen dynamically from [percldest, perc
u
dest]

▶ Initially percdest := percldest

▶ When no better solution found: percdest := percdest + 5

▶ When better solution found of upper bound reached: percdest := percldest

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Benchmark instances

▶ Random graphs with |V | = {100, 1000, 5000, 10000} nodes

▶ Different edge probabilities ep (low, medium, high):

⋆ For |V | = 100: ep ∈ {0.03, 0.04, 0.05}
⋆ For |V | > 100: ep ∈ {0.01, 0.03, 0.05}

1

7 9

8 7

9 8

2

8

9 6

9

2 8

3 7

4 3

1 0 0

3

3 5

6 5

6 7

8 5

8 8

6 1

6 6

7 0

9 4 4

1 5

5 7

6 9

9 0

8 9

6 4

8 0

8 3

5

2 6

4 1

6 2

7 8

8 6

4 0

5 3

9 9

7 5

9 7

7 6

8 4

9 5

9 3

6

2 7

9 2

5 4

3 3

7

4 7

5 0

9 1

3 8

5 5

7 2

1 0

5 2

6 8

1 1

1 8

3 9

6 0

3 6

5 9

1 2

2 4

4 6

1 3

2 2

1 4

1 6

1 7

4 4

4 5

7 3

1 9

2 0

4 8

2 1

2 3

2 5

4 9

8 1

5 8

2 9

3 0

7 7

3 1

5 6

3 2

7 1

3 4

7 4

8 2

4 2

5 1

6 3

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Tuning of Ilp-Lns

▶ typedest can be random or heuristically guided

▶ Lower and upper bound (percldest, perc
u
dest) for the destruction percentage:

1. (X,X) where X ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}
2. (X,Y) ∈ {(10, 30), (10, 50), (30, 50), (30, 70)}

▶ tmax: maximum CPU time for each application of the ILP solver

Selected values after tuning with irace:

|V | typedest (percldest, perc
u
dest) tmax

100 1 (60, 60) 2.0

1000 0 (90, 90) 10.0

5000 1 (50, 50) 5.0

10000 1 (40, 40) 10.0

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MWDS results: improvement over Greedy (in percent)

10

15

20

25

30

n

Im
pr

ov
em

en
t o

f I
LP

−
LN

S
 o

ve
r

G
R

E
E

D
Y

100 1000 5000 10000

10

20

30

40

50

n

Im
pr

ov
em

en
t o

f I
LP

−
LN

S
 o

ve
r

G
R

E
E

D
Y

100 1000 5000 10000

5

10

15

20

25

30

35

n

Im
pr

ov
em

en
t o

f I
LP

−
LN

S
 o

ve
r

G
R

E
E

D
Y

100 1000 5000 10000

Low density Medium density High density

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MWDS results: improvement over Cplex (in percent)

●0

2

4

6

8

n

Im
pr

ov
em

en
t o

f I
LP

−
LN

S
 o

ve
r

C
P

LE
X

100 1000 5000 10000

●●

●

●

●

0

2

4

6

8

10

n

Im
pr

ov
em

en
t o

f I
LP

−
LN

S
 o

ve
r

C
P

LE
X

100 1000 5000 10000

●●

0

2

4

6

8

10

n

Im
pr

ov
em

en
t o

f I
LP

−
LN

S
 o

ve
r

C
P

LE
X

100 1000 5000 10000

Low density Medium density High density

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Hypothesis and subsequent question

Hypothesis after studying the LNS literature:

LNS works especially well when the number of solution components

(variables) is linear concerning the input parameters of the tackled
problem

Question:

What can we do when the ILP of our tackled problem has a

large number of solution components (variables)???

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Hybrid metaheuristics

Construct, Merge, Solve & Adapt

Principle: Exact solution of sub-instances obtained by joining
solutions

Christian Blum, Borja Calvo. A matheuristic for the minimum weight rooted

arborescence problem. Journal of Heuristics, 21(4): 479-499 (2015)

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Principal Idea

Observation: In the presence of a large number of solutions components, many of

them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

▶ Iteratively generate presumably good solutions in a probabilistic way

▶ Assemble a sub-instance from the used solution components

▶ Solve the sub-instance by means of an ILP solver

▶ Delete useless solution components from the sub-instance

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Construct, Merge, Solve & Adapt (Cmsa)

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Application example: Minimum Common String Partition (1)

Input:

1. Two related strings of length n over a finite alphabet Σ

2. Note: Two strings s1 and s2 are related iff the frequency of each letter in each

string is equal.

Valid solutions:

▶ Generate a partition P1 of non-overlapping substrings of s1

▶ Generate a partition P2 of non-overlapping substrings of s2

▶ Solution S = (P1, P2) is a valid solution iff P1 = P2

▶ Obj. function value: f(S) := |P1| = |P2|

Objective: Minimization

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Minimum Common String Partition (2)

Example:

▶ s1 := AGACTG, s2 := ACTAGG

▶ Trival solution:

⋆ P1 = P2 = {A,A,C,T,G,G}
⋆ Obj. function value: 6

▶ Optimal solution S∗:

⋆ P1 = P2 = {ACT,AG,G}
⋆ Obj. function value: 3

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Related Literature

Basic facts:

▶ Introduced in 2005 in the context of genome rearrangement

▶ Problem difficulty: NP-hard

Works from the literature:

▶ 2005: Greedy approach

▶ 2007: Introduction of approximation algorithms

▶ 2008: Study concerning fixed-parameter tractability (FPT)

▶ 2013: An ant colony optimization metaheuristic

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Preliminaries

Definitions: Given input strings s1 and s2 ...

▶ A common block bi is a triple (ti, k1i, k2i) where

1. ti is a string starting at position 1 ≤ k1i ≤ n in string s1

2. ti is a string starting at position 1 ≤ k2i ≤ n in string s2

▶ Set B is the set of all common blocks of s1 and s2

▶ Any valid (partial) solution S is a subset of B such that

1.
∑

bi∈S |ti| = n (in the case of complete solutions)

2.
∑

bi∈S |ti| < n (in the case of partial solutions)

3. For any bi, bj ∈ S it holds: ti and tj do not overlap neither in s1 nor in s2

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Common Block Example

Input strings: s1 = AGACTG and s2 = ACTAGG is as follows:

Set B of all common blocks:

b1 =(ACT, 3, 1) b8 =(A, 3, 4)

b2 =(AG, 1, 4) b9 =(C, 4, 2)

b3 =(AC, 3, 1) b10 =(T, 5, 3)

b4 =(CT, 4, 2) b11 =(G, 2, 5)

b5 =(A, 1, 1) b12 =(G, 2, 6)

b6 =(A, 1, 4) b13 =(G, 6, 5)

b7 =(A, 3, 1) b14 =(G, 6, 6)

Solution {ACT,AG,G}: S = {b1, b2, b14}

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

ILP Model (1)

Input strings: s1 = AGACTG and s2 = ACTAGG

B =

b1 =(ACT, 3, 1)

b2 =(AG, 1, 4)

b3 =(AC, 3, 1)

b4 =(CT, 4, 2)

b5 =(A, 1, 1)

b6 =(A, 1, 4)

b7 =(A, 3, 1)

b8 =(A, 3, 4)

b9 =(C, 4, 2)

b10 =(T, 5, 3)

b11 =(G, 2, 5)

b12 =(G, 2, 6)

b13 =(G, 6, 5)

b14 =(G, 6, 6)

M1 =

0 0 1 1 1 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

M2 =

1 1 1 0 0 0

0 0 0 1 1 0

1 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

ILP Model (2)

min

m∑
i=1

xi

subject to:

m∑
i=1

|ti| · xi = n

m∑
i=1

M1i,j · xi = 1 for j = 1, . . . , n

m∑
i=1

M2i,j · xi = 1 for j = 1, . . . , n

xi ∈ {0, 1} for i = 1, . . . ,m

(3)

(4)

(5)

(6)

Note: Very large number of solution components

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Set of solution components: properties

0

20

40

60

1 2 3 4 5 6 7 8 9
Common block length

N
um

be
r

of
 b

lo
ck

s
(in

 p
er

ce
nt

)

Note: Most common blocks of length 1 and 2 will not appear in good solutions

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Simple Greedy Algorithm

Given a valid partial solution Spartial: B(Spartial) ⊂ B are the common blocks

that may be used in order to extend Spartial

Pseudo-code:

1. Spartial := ∅

2. while Spartial is not a complete solution

▶ Choose the longest common block bi from B(Spartial)}
▶ Spartial := Spartial ∪ {bi}

Note: This algorithm is used in Cmsa in a probabilistic way

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Benchmark instances and tuning

Benchmark instances: 300 instances

▶ String length n ∈ {200, 400, . . . , 1800, 2000}

▶ Alphabet size |Σ| ∈ {4, 12, 20}

Tuning results with irace:

n na agemax drate lsize tmax

400 50 10 0.0 10 60

800 50 10 0.5 10 240

1200 50 10 0.9 10 480

1600 50 5 0.9 10 480

2000 50 10 0.9 10 480

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MCSP results: improvement over prob. Greedy (|Σ| = 4)

2

4

6

8

10

12

n

200 400 600 800 1000 1200 1400 1600 1800 2000Im
pr

ov
em

en
t o

f C
M

SA
 o

ve
r S

O
LC

O
NS

T

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MCSP results: improvement over prob. Greedy (|Σ| = 12)

0

2

4

6

8

10

n

200 400 600 800 1000 1200 1400 1600 1800 2000Im
pr

ov
em

en
t o

f C
M

SA
 o

ve
r S

O
LC

O
NS

T

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MCSP results: improvement over prob. Greedy (|Σ| = 20)

0

2

4

6

8

10

n

200 400 600 800 1000 1200 1400 1600 1800 2000Im
pr

ov
em

en
t o

f C
M

SA
 o

ve
r S

O
LC

O
NS

T

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MCSP results: improvement over Cplex (|Σ| = 4)

0

5

10

15

20

n

200 400 600 800 1000 1200 1400 1600 1800 2000

Im
pr

ov
em

en
t o

f C
M

SA
 o

ve
r C

PL
EX

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MCSP results: improvement over Cplex (|Σ| = 12)

0

5

10

15

n

200 400 600 800 1000 1200 1400 1600 1800 2000

Im
pr

ov
em

en
t o

f C
M

SA
 o

ve
r C

PL
EX

x

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

MCSP results: improvement over Cplex (|Σ| = 20)

0

5

10

n

200 400 600 800 1000 1200 1400 1600 1800 2000

Im
pr

ov
em

en
t o

f C
M

SA
 o

ve
r C

PL
EX

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Evolution of the (sub-)instance sizes

ILP Σ 4 L

ILP Σ 4 S

ILP Σ 12 L ILP Σ 12 S

ILP Σ 20 L

ILP Σ 20 S

GSA Σ 4 S L

GSA Σ 12 S L

GSA Σ 20 S L

(dashed curves)

0e+00

1e+05

2e+05

200 400 600 800 1000 1200 1400 1600 1800 2000
n

In
st

an
ce

 S
iz

e

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Differences between Lns and Cmsa: summarized

How is the original problem instance reduced?

Search Space

LNS

Search Space

CMSA

How is the sub-instance of the next iteration generated?

▶ Lns: Partial destruction of the incumbent solution

▶ Cmsa: Generating new solutions and removing old solution components

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Summary and Possible Research Directions

Summary:

▶ Cmsa: A new hybrid algorithmm for combinatorial optimization

▶ Hypothesis:

⋆ Lns better for problems with a linear number solution components

⋆ Cmsa better for problems with a super-linear number of components

Possible Research Directions:

▶ Solution construction: adaptive probabilities over time

▶ A more intelligent version of the aging mechanism

▶ Theoretical studies about the differences between Lns and Cmsa

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

People involved in this research

Christian Blum Borja Calvo Pedro Pinacho

Jóse Antonio Lozano Manuel López-Ibáñez

Combining Metaheuristics with ILP Solvers, INISTA 2015, Madrid c⃝ C. Blum

Outlook

Questions?
Literature:

▶ C. Blum, B. Calvo. A matheuristic for the minimum weight rooted

arborescence problem. Journal of Heuristics, 21(4): 479-499 (2015)

▶ C. Blum, J. Puchinger, G. R. Raidl, A. Roli. Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11(6):

4135–4151 (2011)

Forthcoming book: C. Blum, G. R. Raidl. Hybrid Meta-

heuristics – Powerful Tools for Optimization, Springer Series on

Artificial Intelligence, 2015

