Combining Metaheuristics with ILP Solvers in Combinatorial Optimization

Christian Blum

UNIVERSITY OF THE BASQUE COUNTRY IKERBASQUE, BASQUE FOUNDATION FOR SCIENCE

Preliminaries: Preparing the Grounds

Motivation and Outline (1)

Motivation:

▶ In the field of metaheuristics we have rules of thumb :

- 1. If, for your problem, there is a **good greedy heuristic** apply **GRASP** or **Iterated Greedy**
- 2. If, for your problem, there is an **efficient neighborhood** apply Iterated Local Search or Tabu Search

> In contrast, for hybrid metaheuristics nothing like that is known

- * We only have very few generally applicable techniques
- \star We do not really know for which type of problem they work well

Motivation and Outline (2)

Outline:

- **Short Intro:** Hybrid metaheuristics
- ► How to combine metaheuristics with ILP solvers?
 - *** Standard method:** Large neighborhood search (LNS)
- **Hypothesis** about the conditions in which LNS does NOT work
- > What can we use instead of LNS?
 - * New hybrid: Construct, Merge, Solve & Adapt (CMSA)

Hybrid Metaheuristics

Short introduction

Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

Problem: a precise definition is not possible

Possible characterization:

A technique that results from the combination of a metaheuristic with other techniques for optimization

What is meant by: other techniques for optimisation?

- Metaheuristics
- ▶ Branch & bound
- Dynamic programming
- ▶ Integer Linear Programming (ILP) techniques

Hybrid metaheuristics: history

History:

- ► For a long time the different communities co-existed quite isolated
- ▶ Hybrid approaches were developed already early, but only sporadically
- Only since about 15 years the published body of research grows significantly:
 - 1. 1999: CP-AI-OR Conferences/Workshops
 - 2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)
 - **3. 2006:** Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research

Specific topic of this presentation

Specific topic today: Combination between metaheuristics and ILP Solvers

Available general purpose ILP solvers:

- **IBM ILOG CPLEX:** free for academic purposes
- **Gurobi:** free for academic purposes
- **FICO Xpress:** 30 days free trial. Restricted student version for free
 - MOSEK: free for academic purposes

GUROB

FICO

Xpress

Example of an integer linear program (1)

Optimization problem: Minimum weight dominating set (MWDS)

- ▶ <u>**Given:**</u> An undirected graph G = (V, E); each $v_i \in V$ has a weight $w(v_i) \ge 0$
- ▶ <u>Valid solutions</u>: Any subset $S \subseteq V$ is a valid solution iff

 $\forall v_i \in V: N[v_i] \cap S \neq \emptyset$

Optimization goal: Find a solution S^* that minimizes

Given graph G

 $f(S^*) := \sum_{v_i \in S^*} w(v_i)$

A valid solution

The optimal solution

Example of an integer linear program (2)

Stating the MWDS problem as an ILP:

$$\begin{array}{l} \min \sum_{v_i \in V} w(v_i) \cdot x_i \\ \text{subject to:} \\ \sum_{v_j \in N[v_i]} x_j \ge 1 \quad \text{for } v_i \in V \\ x_i \in \{0, 1\} \quad \text{for } v_i \in V \end{array} \tag{2}$$

Beware:

▶ In this ILP: linear number of variables and constraints

Any problem may be expressed as an ILP in various different ways

Why combining metaheuristics with ILP Solvers?

General advantage of metaheuristics:

- ► Very good in exploiting information on the problem (greedy heuristics)
- Generally very good in obtaining high-quality solutions for medium and even large size problem instances

However:

- ▶ Metaheuristics may also reach their limits with growing problem instance size
- ▶ Metaheuristics fail when the information on the problem is misleading

Goal: Taking profit from valuable optimization expertise that went into the development of ILP solvers even in the context of large problem instances

ILP-based Large Neighborhood Search

Principle: Use of an ILP solver for finding the best neighbor in a large neighborhood of a solution

David Pisinger, Stefan Ropke. Large Neighborhood Search, Handbook of Metaheuristics, International Series in Operations Research & Management Science Volume 146, 2010, pp 399-419

Neighborhood search (1)

- Crucial ingredient of neighborhood search: Choice of a neighborhood
- Usual in metaheuristics based on neighborhood search: rather small neighborhoods

Example of a small neighborhood: 2-opt neighborhood for the TSP. Each solution has $O(n^2)$ neighbors.

Neighborhood search (2)

General tradeoff in neighborhood search

Small neighborhoods:

- 1. Advantage: It is fast to find an improving neighbor (if any)
- 2. Disadvantage: The average quality of the local minima is low

Large neighborhoods:

- 1. Advantage: The average quality of the local minima is high
- 2. **Disadvantage:** Finding an improving neighbor might itself be *NP*-hard due to the size of the neighborhood

Ways of examining large neighborhoods:

> Heuristically

Exact techniques: for example an ILP solver

ILP-based large neighborhood search: ILP-LNS

Crucial aspect of ILP-LNS

- ▶ Important: Applying an ILP solver to find the best solution containing a specific partial solution S_{partial} means applying the ILP to a reduced search space.
- <u>Consequence</u>: In comparison to the ILP solver, ILP-LNS can be applied to much bigger problem instances

Application example: Minimum weight dominating set

Original ILP:

$$\begin{split} \min \sum_{v_i \in V} w(v_i) \cdot x_i \\ \text{subject to:} \\ \sum_{v_j \in N[v_i]} x_j \geq 1 \quad \text{for } v_i \in V \\ x_i \in \{0, 1\} \quad \text{for } v_i \in V \end{split}$$

How to search for the best solution containing S_{partial} ?

Adding the following constraints: $x_i = 1$ for $v_i \in S_{\text{partial}}$

Generating the initial solution: GREEDY (1)

$$S = \{v_1, v_7\}, \quad V_{\text{cov}} = \{v_1, v_2, v_4, v_6, v_7, v_8\}, \quad d(v_3 | V_{\text{cov}}) = 1$$

Generating the initial solution: GREEDY (2)

Pseudo-code of GREEDY:

- 1: **input:** a graph G = (V, E) with node weights
- 2: $S := \emptyset$
- 3: $V_{\text{cov}} := \emptyset$
- $\begin{array}{ll} 4: \ \mathbf{while} \ V_{\mathrm{cov}} \neq V \ \mathbf{do} \\ 5: \quad v^* := \mathrm{argmax}_{v \in V \setminus V_{\mathrm{cov}}} \left\{ \frac{d(v|V_{\mathrm{cov}})}{w(v)} \right\} \\ 6: \quad S := S \cup \{v^*\} \\ 7: \quad V_{\mathrm{cov}} := V_{\mathrm{cov}} \cup N[v^*] \end{array}$
- 8: end while
- 9: output: S

Partial destruction of a solution

General principle: removing a certain percentage $perc_{dest}$ of the nodes in S_{cur}

How to select nodes to be removed?

- **Destruction type** $type_{dest} = random$: nodes are chosen uniformly at random
- Destruction type $type_{dest}$ = heuristically guided): node choice biased by greedy function

Choice of value for $perc_{dest}$:

- ▶ A value is chosen dynamically from $[perc_{dest}^l, perc_{dest}^u]$
- ► Initially $perc_{dest} := perc_{dest}^{l}$
- ▶ When no better solution found: $perc_{dest} := perc_{dest} + 5$
- ▶ When better solution found of upper bound reached: $perc_{dest} := perc_{dest}^{l}$

Benchmark instances

- ▶ Random graphs with $|V| = \{100, 1000, 5000, 10000\}$ nodes
- ▶ Different edge probabilities e_p (low, medium, high):
 - ★ For |V| = 100: $e_p \in \{0.03, 0.04, 0.05\}$
 - ★ For |V| > 100: $e_p \in \{0.01, 0.03, 0.05\}$

Tuning of ILP-LNS

 $\triangleright type_{dest}$ can be random or heuristically guided

- ▶ Lower and upper bound $(perc_{dest}^l, perc_{dest}^u)$ for the destruction percentage:
 - 1. (X, X) where $X \in \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$
 - **2**. $(X, Y) \in \{(10, 30), (10, 50), (30, 50), (30, 70)\}$
- > t_{max} : maximum CPU time for each application of the ILP solver

Selected values after tuning with irace:

V	$type_{\text{dest}}$	$(perc_{ ext{dest}}^l, perc_{ ext{dest}}^u)$	$t_{\rm max}$
100	1	(60, 60)	2.0
1000	0	(90, 90)	10.0
5000	1	(50, 50)	5.0
10000	1	(40, 40)	10.0

MWDS results: improvement over GREEDY (in percent)

MWDS results: improvement over CPLEX (in percent)

Hypothesis and subsequent question

Hypothesis after studying the LNS literature:

LNS works especially well when the number of solution components (variables) is linear concerning the input parameters of the tackled problem

Question:

What can we do when the ILP of our tackled problem has a large number of solution components (variables)???

Construct, Merge, Solve & Adapt

Principle: Exact solution of sub-instances obtained by joining solutions

Christian Blum, Borja Calvo. A matheuristic for the minimum weight rooted arborescence problem. Journal of Heuristics, 21(4): 479-499 (2015)

Principal Idea

Observation: In the presence of a large number of solutions components, many of them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

- Iteratively generate presumably good solutions in a probabilistic way
- **Assemble a sub-instance** from the used solution components
- ► Solve the sub-instance by means of an ILP solver
- ► Delete useless solution components from the sub-instance

CONSTRUCT, MERGE, SOLVE & ADAPT (CMSA)

Application example: Minimum Common String Partition (1)

Input:

- 1. Two related strings of length n over a finite alphabet Σ
- 2. <u>Note</u>: Two strings s_1 and s_2 are related iff the frequency of each letter in each string is equal.

Valid solutions:

- ▶ Generate a partition P_1 of non-overlapping substrings of s_1
- ▶ Generate a partition P_2 of non-overlapping substrings of s_2
- ► Solution $S = (P_1, P_2)$ is a valid solution iff $P_1 = P_2$
- ▶ Obj. function value: $f(S) := |P_1| = |P_2|$

Objective: Minimization

Minimum Common String Partition (2)

Example:

- ► $s_1 := \mathbf{AGACTG}, s_2 := \mathbf{ACTAGG}$
- **Trival solution:**
 - $\star P_1 = P_2 = \{\mathbf{A}, \mathbf{A}, \mathbf{C}, \mathbf{T}, \mathbf{G}, \mathbf{G}\}$
 - *** Obj. function value:** 6
- Optimal solution S^* :
 - $\star P_1 = P_2 = \{\mathbf{ACT}, \mathbf{AG}, \mathbf{G}\}$
 - *** Obj. function value:** 3

Related Literature

Basic facts:

- ▶ Introduced in 2005 in the context of genome rearrangement
- **Problem difficulty:** NP-hard

Works from the literature:

- ► 2005: Greedy approach
- ▶ 2007: Introduction of approximation algorithms
- ► 2008: Study concerning fixed-parameter tractability (FPT)
- > 2013: An ant colony optimization metaheuristic

Preliminaries

Definitions: Given input strings s_1 and s_2 ...

► A common block b_i is a triple $(t_i, k1_i, k2_i)$ where

1. t_i is a string starting at position $1 \le k 1_i \le n$ in string s_1

2. t_i is a string starting at position $1 \le k 2_i \le n$ in string s_2

▶ Set B is the set of all common blocks of s_1 and s_2

> Any valid (partial) solution S is a subset of B such that

1. $\sum_{b_i \in S} |t_i| = n$ (in the case of complete solutions)

2. $\sum_{b_i \in S} |t_i| < n$ (in the case of **partial solutions**)

3. For any $b_i, b_j \in S$ it holds: t_i and t_j do not overlap neither in s_1 nor in s_2

Common Block Example

Input strings: $s_1 = \mathbf{AGACTG}$ and $s_2 = \mathbf{ACTAGG}$ is as follows:

Set B of all common blocks:

$$\begin{cases} b_1 = (\mathbf{ACT}, 3, 1) & b_8 = (\mathbf{A}, 3, 4) \\ b_2 = (\mathbf{AG}, 1, 4) & b_9 = (\mathbf{C}, 4, 2) \\ b_3 = (\mathbf{AC}, 3, 1) & b_{10} = (\mathbf{T}, 5, 3) \\ b_4 = (\mathbf{CT}, 4, 2) & b_{11} = (\mathbf{G}, 2, 5) \\ b_5 = (\mathbf{A}, 1, 1) & b_{12} = (\mathbf{G}, 2, 6) \\ b_6 = (\mathbf{A}, 1, 4) & b_{13} = (\mathbf{G}, 6, 5) \\ b_7 = (\mathbf{A}, 3, 1) & b_{14} = (\mathbf{G}, 6, 6) \end{cases}$$

Solution $\{\mathbf{ACT}, \mathbf{AG}, \mathbf{G}\}$: $S = \{b_1, b_2, b_{14}\}$

ILP Model (1)

Input strings: $s_1 = \mathbf{AGACTG}$ and $s_2 = \mathbf{ACTAGG}$

	$b_1 = (\mathbf{ACT}, 3, 1)$			$\left(0 \right)$	0	1	1	1	0		(1)	1	1	0	0	0						
	$b_2 = (\mathbf{AG}, 1, 4)$	AG , 1, 4)		1	1	0	0	0	0		0	0	0	1	1	0						
	$b_3 = (\mathbf{AC}, 3, 1)$		M1 =										$0 \ 0 \ 1 \ 1$	0	0		1	1	0	0	0	0
	$b_4 = (\mathbf{CT}, 4, 2)$				0	0	0	1	1	0		0	1	1	0	0	0					
	$b_5 = (\mathbf{A}, 1, 1)$			1	0	0	0	0	0		1	0	0	0	0	0						
	$b_6 = (\mathbf{A}, 1, 4)$			1	0	0	0	0	0		0	0	0	1	0	0						
R =	$b_7 = (\mathbf{A}, 3, 1)$			0	0	1	0	0	0	M2 -	1	0	0	0	0	0						
$\begin{array}{c} D = \\ b_{1} \\ b_{2} \\ b_{3} \\ b_{3} \\ b_{3} \end{array}$	$b_8 = (\mathbf{A}, 3, 4)$			0	0	1	0	0	0 0 0 0 0 0 0 0 0 0	0	0	0	1	0	0							
	$b_9 = (\mathbf{C}, 4, 2)$			0	0	0	1	0	0		0	1	0	0	0	0						
	$b_{10} = (\mathbf{T}, 5, 3)$			0	0	0	0	1 0 0	0	0	1	0	0	0								
	$b_{11} = (\mathbf{G}, 2, 5)$			0	1	0	0	0	0		0	0	0	0	1	0						
	$b_{12} = (\mathbf{G}, 2, 6)$			0	1	0	0	0	0		0	0	0	0	0	1						
	$b_{13} = (\mathbf{G}, 6, 5)$			0	0	0	0	0	1		0	0	0	0	1	0						
	$b_{14} = (\mathbf{G}, 6, 6)$			$\sqrt{0}$	0	0	0	0	1	1	$\setminus 0$	0	0	0	0	1						

ILP Model (2)

$$\min \sum_{i=1}^{m} x_i$$
subject to:

$$\sum_{i=1}^{m} |t_i| \cdot x_i = n$$
(4)

$$\sum_{i=1}^{m} M \mathbf{1}_{i,j} \cdot x_i = 1 \quad \text{for } j = 1, \dots, n$$
(5)

$$\sum_{i=1}^{m} M \mathbf{2}_{i,j} \cdot x_i = 1 \quad \text{for } j = 1, \dots, n$$
(6)

$$x_i \in \{0, 1\} \quad \text{for } i = 1, \dots, m$$

Set of solution components: properties

Note: Most common blocks of length 1 and 2 will not appear in good solutions

Simple Greedy Algorithm

Given a valid partial solution S_{partial} : $B(S_{\text{partial}}) \subset B$ are the common blocks that may be used in order to extend S_{partial}

Pseudo-code:

- 1. $S_{\text{partial}} := \emptyset$
- 2. while S_{partial} is not a complete solution

> Choose the longest common block b_i from $B(S_{\text{partial}})$

$$\triangleright S_{\text{partial}} := S_{\text{partial}} \cup \{b_i\}$$

Note: This algorithm is used in CMSA in a probabilistic way

Benchmark instances and tuning

Benchmark instances: 300 instances

- ▶ String length $n \in \{200, 400, \dots, 1800, 2000\}$
- ► Alphabet size $|\Sigma| \in \{4, 12, 20\}$

Tuning results with irace:

n	n_a	age_{max}	$d_{ m rate}$	$l_{ m size}$	$t_{\rm max}$
400	50	10	0.0	10	60
800	50	10	0.5	10	240
1200	50	10	0.9	10	480
1600	50	5	0.9	10	480
2000	50	10	0.9	10	480

MCSP results: improvement over prob. GREEDY ($|\Sigma| = 4$)

MCSP results: improvement over prob. GREEDY ($|\Sigma| = 12$)

MCSP results: improvement over prob. GREEDY ($|\Sigma| = 20$)

MCSP results: improvement over CPLEX ($|\Sigma| = 4$)

MCSP results: improvement over CPLEX ($|\Sigma| = 12$)

MCSP results: improvement over CPLEX ($|\Sigma| = 20$)

Evolution of the (sub-)instance sizes

© C. Blum

Differences between ${\rm LNS}$ and ${\rm CMSA}$: summarized

CMSA: Generating new solutions and removing **old** solution components

Summary and Possible Research Directions

Summary:

- **CMSA:** A new hybrid algorithmm for combinatorial optimization
- ► Hypothesis:
 - \star LNS better for problems with a linear number solution components
 - \star **CMSA** better for problems with a super-linear number of components

Possible Research Directions:

- **Solution construction:** adaptive probabilities over time
- ► A more intelligent version of the aging mechanism
- ► Theoretical studies about the differences between LNS and CMSA

© C. Blum

People involved in this research

Christian Blum

Borja Calvo

Pedro Pinacho

Jóse Antonio Lozano

Manuel López-Ibáñez

Questions?

Literature:

- C. Blum, B. Calvo. A matheuristic for the minimum weight rooted arborescence problem. Journal of Heuristics, 21(4): 479-499 (2015)
- C. Blum, J. Puchinger, G. R. Raidl, A. Roli. Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6): 4135–4151 (2011)

Artificial Intelligence: Foundations, Theory, and Algorithms

Forthcoming book: C. Blum, G. R. Raidl. Hybrid Metaheuristics – Powerful Tools for Optimization, Springer Series on Artificial Intelligence, 2015