
BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Combining Metaheuristics with ILP
Solvers: Construct, Merge, Solve & Adapt

Christian Blum

University Of The Basque Country

Ikerbasque, Basque Foundation For Science

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Research Topics in Recent Years

Swarm Intelligence

Hybrid Metaheuristics

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid metaheuristics

Lines of Research (1)

Swarm Intelligence

c⃝ Alex Wild (http://www.myrmecos.net)

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

What is swarm intelligence

In a nutshell: AI discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Swarm intelligence

Properties:

▶ Consist of a set of simple entities

▶ Distributedness: No global control

▶ Self-organization by:

⋆ Direct communication: for example, by visual or chemical contact

⋆ Indirect communication: Stigmergy (Grassé, 1959)

Result: Complex tasks/behaviors can be accomplished/exhibited in cooperation

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid metaheuristics

SI Topic 1: Self-Synchronized Duty-Cycling in
Sensor Networks

Inspiration: Self-synchronized activity phases of ant colonies

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

SI Topic 1: Self-Synchronized Duty-Cycling

Biologist discovered:

▶ Colonies of ants show synchronized activity patterns

▶ Synchronization is achieved in a self-organized way: self-synchronization

▶ Synchronized activity ...

1. ... provides a mechanism for information propagation

2. ... facilitates the sampling of information from other individuals

Mathematical model:

J. Delgado and R.V. Solé. Self-synchronization and task fulfilment in ant

colonies, Journal of Theoretical Biology, 205, 433–441 (2000)

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

SI Topic 1: Self-Synchronized Duty-Cycling

Graphic: Mean activity of an ant colony over time

3700 3800 3900 4000 4100 4200 4300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time steps

ac
tiv

ity

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Self-Synchronized Duty-Cycling: simulation

Example: Behaviour in simulator Shawn

13000 13400 13800 14200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Advantages: Completely self-organized, adaptive, and robust against packet loss

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Self-Synchronized Duty-Cycling: papers

Representative papers:

▶ H. Hernández and C. Blum. Foundations of ANTCYCLE: Self-synchronized

duty-cycling in mobile sensor networks. The Computer Journal , 2011.

▶ H. Hernández et al. A protocol for self-synchronized duty-cycling in sensor

networks: Generic implementation in WISELIB. Proceedings of the

6th International Conference on Mobile Ad-hoc and Sensor Networks , IEEE Press,

2010.

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid metaheuristics

SI Topic 2: Distributed Problem Solving in
Wireless Ad-hoc Networks

Inspiration: Self-desynchronization of Japanese tree frogs

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

SI Topic 2: Distributed Problem Solving

Biologist discovered:

▶ Male Japanese Tree Frogs de-couple their calls

▶ Why?

⋆ The purpose of the calls is to attract females

⋆ Female frogs cannot distinguish calls close in time

⋆ Result: females cannot determine the location of males

Mathematical model:

I. Aihara, H. Kitahata, K. Yoshikawa and K. Aihara. Mathematical modeling

of frogs’ calling behavior and its possible applications to artificial life

and robotics. Artificial Life and Robotics, 12(1):29–32, 2008.

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

SI Topic 2: Distributed Problem Solving

Model components:

▶ A set of pulse-coupled oscillators .

▶ Some oscillators are coupled, others are independent of each other

▶ Each oscillator i has a phase θi ∈ [0, 1) which changes over time

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Distributed Problem Solving: papers

Representative papers:

▶ H. Hernández and C. Blum. Distributed Graph Coloring: An Approach

Based on the Calling Behavior of Japanese Tree Frogs. Swarm Intelligence ,

2012.

▶ C. Blum, B. Calvo, M. J. Blesa. FrogCOL and FrogMIS: new decentralized

algorithms for finding large independent sets in graphs.

Swarm Intelligence , 2015.

Award: Best Paper Award

▶ H. Hernández and C. Blum. Distributed graph coloring in wireless ad hoc

networks: A light-weight algorithm based on Japanese tree frogs’ calling

behaviour. Wireless Mobile Networking Conference 2011 .

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Swarm Intelligence: Quo vadis?

▶ Problem: Swarm intelligence has attracted too many people

▶ As a consequence:

1. Experienced researchers were overwhelmed with reviewing

2. People who should have never been asked to do so did reviewing work

▶ Therefore: nowadays we find numerous papers in the literature that are either

1. Non-sense, or

2. Re-inventing the wheel

First steps against this trend:

▶ Some journals (J. of Heur. , Comp. & Oper. Res.) ask for algorithms to be

described in metahpor-free language

▶ Colleagues start to expose the problem (G. Rudolph , K. Sörensen)

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid metaheuristics

Lines of Research (2)

Hybrid Metaheuristics

c⃝ www.hemmy.net

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Preliminaries: Preparing the Grounds

...

MHs based on
solution construction

...

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

▶ Problem: a precise definition is not possible/desirable

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimization ?

▶ Metaheuristics

▶ Branch & bound

▶ Dynamic programming

▶ Integer Linear Programming (ILP) techniques

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid metaheuristics: history

History:

▶ For a long time the different communities co-existed quite isolated

▶ Hybrid approaches were developed already early, but only sporadically

▶ Only since about 15 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Motivation behind my work on hybrid metaheuristics

▶ In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic

apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

▶ In contrast, for hybrid metaheuristics not much is known

⋆ We only have very few generally applicable techniques

⋆ We do not really know for which type of problem they work well

▶ Disadvantage of mathematical programming: Considerable amount of expert

knowledge necessary to implement a well-working technique

▶ Goal: take profit from general purpose ILP solvers within metaheuristics

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid Metaheuristics

Construct, Merge, Solve & Adapt

(CMSA)

Short description

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Why combining metaheuristics with ILP Solvers?

General advantage of metaheuristics:

▶ Very good in exploiting information on the problem (greedy heuristics)

▶ Generally very good in obtaining high-quality solutions for medium and even

large size problem instances

However:

▶ Metaheuristics may also reach their limits with growing problem instance size

▶ Metaheuristics fail when the information on the problem is misleading

Goal: Taking profit from valuable optimization expertise that went into the

development of ILP solvers even in the context of large problem instances

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Standard: Large Neighborhood Search

▶ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

▶ Large neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

▶ Heuristically

▶ Exact techniques: for example an ILP solver

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

ILP-based large neighborhood search: Ilp-Lns

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hypothesis and resulting research question

In our experience: LNS works especially well when

1. The number of solution components (variables) is is not high

2. The number of components in a solution is not too small

Question:

What kind of general algorithm can we apply when the above
conditions are not fullfilled?

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Construct, Merge, Solve & Adapt: Principal Idea

Observation: In the presence of a large number of solutions components, many of

them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

▶ Iteratively generate presumably good solutions in a probabilistic way

▶ Assemble a sub-instance from the used solution components

▶ Solve the sub-instance by means of an ILP solver

▶ Delete useless solution components from the sub-instance

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Construct, Merge, Solve & Adapt: Flow Diagram

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Differences between Lns and Cmsa: summarized

How is the original problem instance reduced?

Search Space

LNS

Search Space

CMSA

How is the sub-instance of the next iteration generated?

▶ Lns: Partial destruction of the incumbent solution

▶ Cmsa: Generating new solutions and removing old solution components

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Longest common subsequence (LCS) problem (1)

Notation: What is a subsequence of a string?

A string t is called a subsequence of a string x,

iff t can be produced from x by deleting characters

Example: Is AAT a subsequence of ACAGTTA?

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Longest common subsequence (LCS) problem (2)

Problem definition (restricted to two input sequence)

Given: A problem instance (x, y,Σ), where

▶ x and y are input sequences over the alphabet Σ

Optimization goal:

Find a longest string t∗ that is a subsequence of strings x and y → a longest

common subsequence

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Repetition-free longest common subsequence problem

▶ Restriction: No letter may appear more than once in a valid solution

▶ Proposed in: 2010 in Discrete Applied Mathematics

▶ Hardness: APX-hard (shown in above paper)

▶ Motivation: Genome rearrangement where duplicate genes are basically not

considered

▶ Existing algorithms:

1. Three simple heuristics, Discrete Applied Mathematics, 2010

2. An Evolutionary Algorithm, Operations Research Letters, 2013

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

A simple constructive RFLCS heuristic: Best-Next (1)

Principle: Builds a solution sequentially from left to right

1: input: a problem instance (x, y,Σ)

2: initialization: t := ϵ (where ϵ is the empty string)

3: while |Σnd
t | > 0 do

4: a := ChooseFrom(Σnd
t)

5: t := ta

6: end while

7: output: a repetition-free common subsequence t

Question: How is Σnd
t defined?

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

A simple constructive LCS heuristic: Best-Next (2)

Example: Given is

▶ Problem instance (x, y,Σ = {A,C,T,G}) where
⋆ x = ATCTAGCTG

⋆ y = TACCATGTG

▶ Partial solution t = AC

Result: Σnd
t = {T}

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Greedy function

Greedy function:

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

ILP Model (1)

Set of binary variables:

For each position i of x and j of y such that x[i] = y[j] the model has

a variable zi,j

Example set of variables Example of a conflict

A T C T A G C T G

T A C C A T G T G

A T C T A G C T G

T A C C A T G T G

conflict

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

ILP Model (2)

max
∑

zi,j∈Z

zi,j

subject to:∑
zi,j∈Za

zi,j ≤ 1 for a ∈ Σ

zi,j + zk,l ≤ 1 for all zi,j and zk,l being in conflict

zi,j ∈ {0, 1} for zi,j ∈ Z

(1)

(2)

(3)

(4)

Hereby:

▶ zi,j ∈ Za iff x[i] = y[j] = a

▶ zi,j and zk,l are in conflict iff i < k and j > l OR i > k and j < l

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental evaluation: benchmark instances

Set1: 30 instances for each combination of

▶ Input sequence length: n ∈ {32, 64, 128, 256, 512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8}

Set2: 30 instances for each combination of

▶ Alphabet size: |Σ| ∈ {4, 8, 16, 32, 64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5, 6, 7, 8}

Tuning: Cmsa’s parameters are tuned by irace for each alphabet size

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: performance of CPLEX

Set1:

▶ Input sequence length: n ∈ {32,64,128,256,512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8,n/4,3n/8,n/2, 5n/8, 3n/4, 7n/8}

Set2:

▶ Alphabet size: |Σ| ∈ {4,8,16,32,64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5,6,7,8}

Result: CPLEX is able to solve nearly all exisiting problem instances from the

literature to optimality

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/8

32 64 128 256 512 1024 2048 4096

-1
.0

-0
.5

0.
0

0.
5

1.
0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

32 64 128 256 512 1024 2048 4096

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/2

32 64 128 256 512 1024 2048 4096

0
20

40
60

80
10

0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

32 64 128 256 512 1024 2048 4096

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size 7n/8

32 64 128 256 512 1024 2048 4096

0
20

40
60

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

32 64 128 256 512 1024 2048 4096

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: Set2

Improvement of CMSA over CPLEX: 3 reps

4 8 16 32 64 128 256 512

0
20

40
60

80
10

0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

4 8 16 32 64 128 256 512

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: Set2

Improvement of CMSA over CPLEX: 6 reps

4 8 16 32 64 128 256 512

0
20

40
60

80
10

0

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

4 8 16 32 64 128 256 512

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: Set2

Improvement of CMSA over CPLEX: 8 reps

4 8 16 32 64 128 256 512

0
20

40
60

80

Im
pr

. o
f C

ᴍ
sᴀ

 o
ve

r C
ᴘʟ
ᴇx

4 8 16 32 64 128 256 512

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Experimental results: size of sub-instances

0

20

40

60

80

4 8 16 32 64 128 256
Alphabet size

S
ub

−
in

st
an

ce
 s

iz
e

(in
 %

 o
f o

rig
in

al
)

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Hybrid Metaheuristics

Relation between LNS and CMSA

First experimental study

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Reminder: Intuition

▶ CMSA will have advantages over LNS when solutions are small , that is, when

1. solutions consist of few solution components

2. many variables in the corresponding ILP model have value zero

▶ LNS will have advantages over CMSA when the opposite is the case

Problem: how to show this?

▶ Theoretically? hardly possible

▶ Empirically? Maybe with a parametrizable problem

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Example: Multi-dimensional Knapsack Problem (MDKP)

Given:

▶ A set of items C = {1, . . . , n}

▶ A set of resources K = {1, . . . ,m}

▶ Of each resource k we have a maximum quantity ck (capacity)

▶ Each item i requires from each resource k a certain quantity ri,k

▶ Each item i has a profit pi

Valid solutions: Each subset S ∈ C is a valid solution if∑
i∈S

ri,k ≤ ck ∀k ∈ K

Objective function: f(S) :=
∑

i∈S pi for all valid solutions S

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

MDKP: instance tightness

Important parameter: Instance tightness 0 ≤ α ≤ 1

▶ When α close to zero: capacities are low and valid solution only contain very

few items

▶ When α close to one: capacities are very high and solutions contain nearly all

items

Plan:

▶ Apply both LNS and CMSA to instances from the whole tightness range .

▶ Both algorithms are tuned with irace seperately for instances of each

considered tightness.

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Results for instances with 1000 items

Instance size: n = 1000, m = 10

−10

−5

0

5

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tightness

Im
pr

ov
em

en
t o

f C
M

S
A

 o
ve

r
LN

S

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Results for instances with 5000 items

Instance size: n = 5000, m = 10

−175

−150

−125

−100

−75

−50

−25

0

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tightness

Im
pr

ov
em

en
t o

f C
M

S
A

 o
ve

r
LN

S

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Summary and Possible Research Directions

Summary:

▶ Swarm Intelligence: some of our recent/current research topics

▶ Cmsa: A new hybrid metaheuristic for combinatorial optimization

Possible Research Directions (CMSA):

▶ Solution construction: adaptive probabilities over time

▶ A more intelligent version of the aging mechanism

▶ Taking profit from research on column generation

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

People involved in certain aspects of this research

Maria J. Blesa Borja Calvo Pedro Pinacho

Evelia Lizárraga Jóse Antonio Lozano Manuel López-Ibáñez

BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Outlook

Questions?

Literature:

▶ C. Blum, B. Calvo. A matheuristic for the minimum weight rooted

arborescence problem. Journal of Heuristics, (2015)

▶ C. Blum, P. Pinacho, J. A. Lozano, M. López-Ibáñez. Construct, Merge, Solve &

Adapt: A new general algorithm for combinatorial optimization.

Computers & Operations Research, 2016

New book: C. Blum, G. R. Raidl. Hybrid Metaheuristics –

Powerful Tools for Optimization, Springer Series on Artificial

Intelligence, 2016

