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Research Topics in Recent Years

Swarm Intelligence

Hybrid Metaheuristics
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Hybrid metaheuristics

Lines of Research (1)

Swarm Intelligence

c⃝ Alex Wild (http://www.myrmecos.net)
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What is swarm intelligence

In a nutshell: AI discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools
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Swarm intelligence

Properties:

▶ Consist of a set of simple entities

▶ Distributedness: No global control

▶ Self-organization by:

⋆ Direct communication: for example, by visual or chemical contact

⋆ Indirect communication: Stigmergy (Grassé, 1959)

Result: Complex tasks/behaviors can be accomplished/exhibited in cooperation
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Hybrid metaheuristics

SI Topic 1: Self-Synchronized Duty-Cycling in
Sensor Networks

Inspiration: Self-synchronized activity phases of ant colonies
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SI Topic 1: Self-Synchronized Duty-Cycling

Biologist discovered:

▶ Colonies of ants show synchronized activity patterns

▶ Synchronization is achieved in a self-organized way: self-synchronization

▶ Synchronized activity ...

1. ... provides a mechanism for information propagation

2. ... facilitates the sampling of information from other individuals

Mathematical model:

J. Delgado and R.V. Solé. Self-synchronization and task fulfilment in ant

colonies, Journal of Theoretical Biology, 205, 433–441 (2000)
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SI Topic 1: Self-Synchronized Duty-Cycling

Graphic: Mean activity of an ant colony over time
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Self-Synchronized Duty-Cycling: simulation

Example: Behaviour in simulator Shawn
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Advantages: Completely self-organized, adaptive, and robust against packet loss
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Self-Synchronized Duty-Cycling: papers

Representative papers:

▶ H. Hernández and C. Blum. Foundations of ANTCYCLE: Self-synchronized

duty-cycling in mobile sensor networks. The Computer Journal , 2011.

▶ H. Hernández et al. A protocol for self-synchronized duty-cycling in sensor

networks: Generic implementation in WISELIB. Proceedings of the

6th International Conference on Mobile Ad-hoc and Sensor Networks , IEEE Press,

2010.
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Hybrid metaheuristics

SI Topic 2: Distributed Problem Solving in
Wireless Ad-hoc Networks

Inspiration: Self-desynchronization of Japanese tree frogs
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SI Topic 2: Distributed Problem Solving

Biologist discovered:

▶ Male Japanese Tree Frogs de-couple their calls

▶ Why?

⋆ The purpose of the calls is to attract females

⋆ Female frogs cannot distinguish calls close in time

⋆ Result: females cannot determine the location of males

Mathematical model:

I. Aihara, H. Kitahata, K. Yoshikawa and K. Aihara. Mathematical modeling

of frogs’ calling behavior and its possible applications to artificial life

and robotics. Artificial Life and Robotics, 12(1):29–32, 2008.
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SI Topic 2: Distributed Problem Solving

Model components:

▶ A set of pulse-coupled oscillators .

▶ Some oscillators are coupled, others are independent of each other

▶ Each oscillator i has a phase θi ∈ [0, 1) which changes over time
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Distributed Problem Solving: papers

Representative papers:

▶ H. Hernández and C. Blum. Distributed Graph Coloring: An Approach

Based on the Calling Behavior of Japanese Tree Frogs. Swarm Intelligence ,

2012.

▶ C. Blum, B. Calvo, M. J. Blesa. FrogCOL and FrogMIS: new decentralized

algorithms for finding large independent sets in graphs.

Swarm Intelligence , 2015.

Award: Best Paper Award

▶ H. Hernández and C. Blum. Distributed graph coloring in wireless ad hoc

networks: A light-weight algorithm based on Japanese tree frogs’ calling

behaviour. Wireless Mobile Networking Conference 2011 .
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Swarm Intelligence: Quo vadis?

▶ Problem: Swarm intelligence has attracted too many people

▶ As a consequence:

1. Experienced researchers were overwhelmed with reviewing

2. People who should have never been asked to do so did reviewing work

▶ Therefore: nowadays we find numerous papers in the literature that are either

1. Non-sense, or

2. Re-inventing the wheel

First steps against this trend:

▶ Some journals ( J. of Heur. , Comp. & Oper. Res. ) ask for algorithms to be

described in metahpor-free language

▶ Colleagues start to expose the problem ( G. Rudolph , K. Sörensen )
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Hybrid metaheuristics

Lines of Research (2)

Hybrid Metaheuristics

c⃝ www.hemmy.net
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Preliminaries: Preparing the Grounds

...

MHs based on
solution construction

...
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Hybrid metaheuristics: definition

Definition: What is a hybrid metaheuristic?

▶ Problem: a precise definition is not possible/desirable

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimization ?

▶ Metaheuristics

▶ Branch & bound

▶ Dynamic programming

▶ Integer Linear Programming (ILP) techniques
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Hybrid metaheuristics: history

History:

▶ For a long time the different communities co-existed quite isolated

▶ Hybrid approaches were developed already early, but only sporadically

▶ Only since about 15 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research
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Motivation behind my work on hybrid metaheuristics

▶ In the field of metaheuristics we have rules of thumb :

1. If, for your problem, there is a good greedy heuristic

apply GRASP or Iterated Greedy

2. If, for your problem, there is an efficient neighborhood

apply Iterated Local Search or Tabu Search

▶ In contrast, for hybrid metaheuristics not much is known

⋆ We only have very few generally applicable techniques

⋆ We do not really know for which type of problem they work well

▶ Disadvantage of mathematical programming: Considerable amount of expert

knowledge necessary to implement a well-working technique

▶ Goal: take profit from general purpose ILP solvers within metaheuristics
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Hybrid Metaheuristics

Construct, Merge, Solve & Adapt

(CMSA)

Short description
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Why combining metaheuristics with ILP Solvers?

General advantage of metaheuristics:

▶ Very good in exploiting information on the problem (greedy heuristics)

▶ Generally very good in obtaining high-quality solutions for medium and even

large size problem instances

However:

▶ Metaheuristics may also reach their limits with growing problem instance size

▶ Metaheuristics fail when the information on the problem is misleading

Goal: Taking profit from valuable optimization expertise that went into the

development of ILP solvers even in the context of large problem instances
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Standard: Large Neighborhood Search

▶ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantage: The average quality of the local minima is low

▶ Large neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

▶ Heuristically

▶ Exact techniques: for example an ILP solver
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ILP-based large neighborhood search: Ilp-Lns
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Hypothesis and resulting research question

In our experience: LNS works especially well when

1. The number of solution components (variables) is is not high

2. The number of components in a solution is not too small

Question:

What kind of general algorithm can we apply when the above
conditions are not fullfilled?
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Construct, Merge, Solve & Adapt: Principal Idea

Observation: In the presence of a large number of solutions components, many of

them only lead to bad solutions

Idea: Exclude the presumably bad solution components from the ILP

Steps of the proposed method:

▶ Iteratively generate presumably good solutions in a probabilistic way

▶ Assemble a sub-instance from the used solution components

▶ Solve the sub-instance by means of an ILP solver

▶ Delete useless solution components from the sub-instance
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Construct, Merge, Solve & Adapt: Flow Diagram
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Differences between Lns and Cmsa: summarized

How is the original problem instance reduced?

Search Space

LNS

Search Space

CMSA

How is the sub-instance of the next iteration generated?

▶ Lns: Partial destruction of the incumbent solution

▶ Cmsa: Generating new solutions and removing old solution components
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Longest common subsequence (LCS) problem (1)

Notation: What is a subsequence of a string?

A string t is called a subsequence of a string x,

iff t can be produced from x by deleting characters

Example: Is AAT a subsequence of ACAGTTA?
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Longest common subsequence (LCS) problem (2)

Problem definition (restricted to two input sequence)

Given: A problem instance (x, y,Σ), where

▶ x and y are input sequences over the alphabet Σ

Optimization goal:

Find a longest string t∗ that is a subsequence of strings x and y → a longest

common subsequence



BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

Repetition-free longest common subsequence problem

▶ Restriction: No letter may appear more than once in a valid solution

▶ Proposed in: 2010 in Discrete Applied Mathematics

▶ Hardness: APX-hard (shown in above paper)

▶ Motivation: Genome rearrangement where duplicate genes are basically not

considered

▶ Existing algorithms:

1. Three simple heuristics, Discrete Applied Mathematics, 2010

2. An Evolutionary Algorithm, Operations Research Letters, 2013
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A simple constructive RFLCS heuristic: Best-Next (1)

Principle: Builds a solution sequentially from left to right

1: input: a problem instance (x, y,Σ)

2: initialization: t := ϵ (where ϵ is the empty string)

3: while |Σnd
t | > 0 do

4: a := ChooseFrom(Σnd
t )

5: t := ta

6: end while

7: output: a repetition-free common subsequence t

Question: How is Σnd
t defined?
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A simple constructive LCS heuristic: Best-Next (2)

Example: Given is

▶ Problem instance (x, y,Σ = {A,C,T,G}) where
⋆ x = ATCTAGCTG

⋆ y = TACCATGTG

▶ Partial solution t = AC

Result: Σnd
t = {T}
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Greedy function

Greedy function:
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ILP Model (1)

Set of binary variables:

For each position i of x and j of y such that x[i] = y[j] the model has

a variable zi,j

Example set of variables Example of a conflict

A T C T A G C T G

T A C C A T G T G

A T C T A G C T G

T A C C A T G T G

conflict



BENELEARN 2016, Kortrijk, Beligum c⃝ C. Blum

ILP Model (2)

max
∑

zi,j∈Z

zi,j

subject to:∑
zi,j∈Za

zi,j ≤ 1 for a ∈ Σ

zi,j + zk,l ≤ 1 for all zi,j and zk,l being in conflict

zi,j ∈ {0, 1} for zi,j ∈ Z

(1)

(2)

(3)

(4)

Hereby:

▶ zi,j ∈ Za iff x[i] = y[j] = a

▶ zi,j and zk,l are in conflict iff i < k and j > l OR i > k and j < l
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Experimental evaluation: benchmark instances

Set1: 30 instances for each combination of

▶ Input sequence length: n ∈ {32, 64, 128, 256, 512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8}

Set2: 30 instances for each combination of

▶ Alphabet size: |Σ| ∈ {4, 8, 16, 32, 64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5, 6, 7, 8}

Tuning: Cmsa’s parameters are tuned by irace for each alphabet size
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Experimental results: performance of CPLEX

Set1:

▶ Input sequence length: n ∈ {32,64,128,256,512, 1024, 2028, 4048}

▶ Alphabet size: |Σ| ∈ {n/8,n/4,3n/8,n/2, 5n/8, 3n/4, 7n/8}

Set2:

▶ Alphabet size: |Σ| ∈ {4,8,16,32,64, 128, 256, 512}

▶ Maximal number of repetitions of each letter: rep ∈ {3, 4, 5,6,7,8}

Result: CPLEX is able to solve nearly all exisiting problem instances from the

literature to optimality
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Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/8
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Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size n/2
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Experimental results: Set1

Improvement of CMSA over CPLEX: alphabet size 7n/8
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Experimental results: Set2

Improvement of CMSA over CPLEX: 3 reps
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Experimental results: Set2

Improvement of CMSA over CPLEX: 6 reps
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Experimental results: Set2

Improvement of CMSA over CPLEX: 8 reps
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Experimental results: size of sub-instances
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Hybrid Metaheuristics

Relation between LNS and CMSA

First experimental study
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Reminder: Intuition

▶ CMSA will have advantages over LNS when solutions are small , that is, when

1. solutions consist of few solution components

2. many variables in the corresponding ILP model have value zero

▶ LNS will have advantages over CMSA when the opposite is the case

Problem: how to show this?

▶ Theoretically? hardly possible

▶ Empirically? Maybe with a parametrizable problem
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Example: Multi-dimensional Knapsack Problem (MDKP)

Given:

▶ A set of items C = {1, . . . , n}

▶ A set of resources K = {1, . . . ,m}

▶ Of each resource k we have a maximum quantity ck ( capacity )

▶ Each item i requires from each resource k a certain quantity ri,k

▶ Each item i has a profit pi

Valid solutions: Each subset S ∈ C is a valid solution if∑
i∈S

ri,k ≤ ck ∀k ∈ K

Objective function: f(S) :=
∑

i∈S pi for all valid solutions S
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MDKP: instance tightness

Important parameter: Instance tightness 0 ≤ α ≤ 1

▶ When α close to zero: capacities are low and valid solution only contain very

few items

▶ When α close to one: capacities are very high and solutions contain nearly all

items

Plan:

▶ Apply both LNS and CMSA to instances from the whole tightness range .

▶ Both algorithms are tuned with irace seperately for instances of each

considered tightness.
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Results for instances with 1000 items

Instance size: n = 1000, m = 10
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Results for instances with 5000 items

Instance size: n = 5000, m = 10
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Summary and Possible Research Directions

Summary:

▶ Swarm Intelligence: some of our recent/current research topics

▶ Cmsa: A new hybrid metaheuristic for combinatorial optimization

Possible Research Directions (CMSA):

▶ Solution construction: adaptive probabilities over time

▶ A more intelligent version of the aging mechanism

▶ Taking profit from research on column generation
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People involved in certain aspects of this research

Maria J. Blesa Borja Calvo Pedro Pinacho

Evelia Lizárraga Jóse Antonio Lozano Manuel López-Ibáñez
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Outlook

Questions?

Literature:

▶ C. Blum, B. Calvo. A matheuristic for the minimum weight rooted

arborescence problem. Journal of Heuristics, (2015)

▶ C. Blum, P. Pinacho, J. A. Lozano, M. López-Ibáñez. Construct, Merge, Solve &

Adapt: A new general algorithm for combinatorial optimization.

Computers & Operations Research, 2016

New book: C. Blum, G. R. Raidl. Hybrid Metaheuristics –

Powerful Tools for Optimization, Springer Series on Artificial

Intelligence, 2016


