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Abstract. The study of musical expressivity is an active field in sound
and music computing. The research interest comes from different mo-
tivations: to understand or model music expressivity; to identify the
expressive resources that characterize an instrument, musical genre, or
performer; or to build synthesis systems able to play expressively. In this
paper, we present a system that focuses on the study of expressivity in
nylon-string guitars. Specifically, our system combines several state of the
art analysis algorithms to identify guitar left-hand articulations such as
legatos and appoggiaturas. We describe the components of our system
and provide some preliminary results by analyzing single articulations
and some short melodies.

1 Introduction

Expressivity can be described as the differences (deviations) between a musical
score and its execution. These deviations are mainly motivated by two purposes:
to clarify the musical structure [1–3] and as a way to communicate affective
content [4–6]. Moreover, these expressive deviations vary depending on the mu-
sical genre, the instrument, and the performer. Specifically, each performer has
his/her own unique way to add expressivity by using the instrument.

Guitar is the one of the most popular instruments in western music. Thus,
most of the music genres include the guitar. Although plucked instruments and
guitar synthesis have been studied extensively [7–9], expressive articulation anal-
ysis from real guitar recordings has not been fully tackled. This analysis is com-
plex because guitar is an instrument with a rich repertoire of expressive artic-
ulations and because, either when playing guitar melodies, several strings may
be vibrating at the same time. As an additional statement, even synthesis of a
single tone is a complex subject [7].

The first step when analyzing guitar expressivity is to identify and character-
ize the way notes are played, i.e. guitar articulations. The analysis of expressive
articulations has been previously performed with image analysis techniques. In
his dissertation Norton [9] proposed the use of a motion caption system based
on PhaseSpace Inc. Moreover, Burns and Heijink proposed different methods



for analyzing left-hand fingerings of a classical guitar. Heijink and Meulenbroek
[10] used a three-dimensional motion tracking system. Burns and Wanderley [11]
proposed a method to visually detect and recognize fingering gestures.

In guitar playing both hands are used: one hand is used to press the strings
on the fretboard and the other to pluck the strings. Strings can be plucked using
a single plectrum called a flatpick or by directly using the tips of the fingers. The
hand that presses the frets is mainly determining the notes while the hand that
plucks the strings is mainly determining the note onsets and timbral properties.
However, fretting hand is also involved in the creation of a note onset or different
expressive articulations such as legatos, appoggiaturas, glissandi, and vibratos.

Some guitarists use the right hand to pluck the strings whereas others use
the left hand. For sake of simplicity, in the rest of the document we consider the
hand that plucks the strings as the right hand and the hand that presses the
frets as the left hand.

According to Norton [9], guitar articulations can be divided into three main
groups related to the place of the sound where they act: attack, sustain, and
release articulations. In this research we are focusing on the identification of
attack articulations such as legatos and appoggiaturas. The technique used to
play legatos differs depending on whether is an ascending or a descending legato.
An ascending legato (also known as hammer-on) is achieved by fretting a note
with a left-hand finger. A descending legato (also known as pull-off) is achieved
by plucking the string with a left-hand finger currently used to play a previous
note. Legatos are notated with a slur symbol. An appoggiatura (notated with a
grace note) is an expressive articulation where a short note is added, one degree
higher or lower than the principal note, before the principal note. In guitar this
expressive resource is achieved by sliding a left-hand finger from one note to
another.

In this paper we present an automatic detection system from audio record-
ings. Our system is mainly based on a combination of different onset detection
algorithms. The structure of the paper is as follows: Section 2 describes our
methodology for articulation determination. Section 3 focuses on the experi-
ments conducted to evaluate our approach. Last section, Section 4, summarizes
current results and presents the next research steps.

2 Methodology

Articulation refers to how the pieces of something are joined together. In mu-
sic, these pieces are the notes and the different ways of manipulating them are
called articulations. In this paper we propose a system able to identify left-hand
articulations such as legatos and appoggiaturas. In order to achieve our goal, we
combined the information obtained from several audio analysis algorithms.

Our approach is based on first determining the note onsets caused when
plucking the strings. Next, a more finely grained analysis is performed inside the
regions delimited by two plucking onsets. A simple representation diagram of
our model is shown in Figure 1.



Fig. 1: Main diagram of our model.

For this analysis we used Aubio library [12]. Aubio is a library collecting a
collection of state of the art algorithms aimed at annotating audio signals. Aubio
library includes four main applications: aubioonset, aubionotes, aubiocut, and
aubiopitch. Each application gives us the chance of trying different algorithms
and also of tuning several other parameters. In the current prototype we are
using aubioonset for our plucking detection module and aubionotes for our pitch
detection module.

At the end we combine the outputs from both modules and decide whether
there is an expressive articulation or not. In the next two sections the pluck-
ing detection module and the pitch detection module are described. Finally, in
Section 2.3 we explain how we combine the information provided by these two
modules to determine the existence of expressive articulations.

2.1 Plucking Detection

Our first task is to determine the onsets caused by the plucking hand. As we
stated before, guitar performers can apply different articulations by using both of
their hands. However, the kind of articulations that we are investigating (legatos
and appoggiaturas) are performed by the left hand. Although they can cause
onsets, these onsets are not as powerful in terms of both energy and harmonicity
[13]. Therefore, we need an onset determination algorithm suitable to this specific
characterictic.

The High Frequency Content measure (HFC) [14] is a measure taken across
a signal spectrum that can be used to characterize the amount of high-frequency
content in the signal. As Brossier stated, HFC is effective with percussive onsets
but less successful determining non-percussive and legato phrases [15]. As right-
hand onsets are more percussive than left-hand onsets, HFC was the strongest
candidate for the plucking detection algorithm, because is sensitive to abrupt on-
sets but not enough sensitive to the changes of fundamental frequency caused by
left-hand articulations. Thus, this is the main reason we chose HFC to determine
plucking onsets.



Fig. 2: HFC onsets.

Fig. 3: Features of the portion between two onsets.

Aubioonset library gave us the opportunity to tune the peak-picking thresh-
old, which we tested with a set of hand labeled recordings, including both ar-
ticulated and non-articulated notes. We used 1.7 for peak picking threshold and
−95db for silence threshold. We used this set as our ground truth and tuned our
values according to this set.

An example of the resulting onsets proposed by HFC is shown in Figure 2.
Specifically, in the exemplified recording 5 plucking onsets are detected (noted
with vertical lines). HFC succeeds because only onsets caused by the plucking
hand are detected. Moreover, between some of two detected onsets expressive
articulations are present. As expected, these articulations are not detected as
plucking onsets.

Next, each portion between two plucking onsets is analyzed individually.
Specifically, we are interested in determining two points: the end of the attack
and the release start. Because, the portion between these points contains the



most valuable information for pitch detection [16]. From experimental measures,
we determine attack finish position 10ms after the amplitude reaches its local
maximum.

Determining the release point was more difficult. In guitar sustain portions,
which include the most valuable information for pitch detection, and release por-
tions are not separated so distinctively like a key instrument. In key instruments
like a piano, the sustain portion is the time where player keeps pressing the
keys, and release portion starts when the player hold-offs the keys. However in
guitar there is only one pluck for a note and the places where sustain ends and
release starts are not obvious. In order to determine the release start position we
have used a percent measure rather than an absolute threshold. Specifically, we
determine the release starting point as the point where local amplitude is equal
or greater than 3 percent of the local maximum.

For example, in Figure 3, the first portion of the Figure 2 is zoomed. The
first and the last lines are the plucking onsets identified by HFC algorithm. The
first dashed line is the place where attack finishes. The second dashed line is the
place where release starts.

2.2 Pitch Detection

Our second task was to analyze the sound fragment between two onsets. Since we
know the onset values of plucking hand, a peak detection algorithm with a lower
threshold is required in order to capture the changes in fundamental frequency.
Specifically, if fundamental frequency is not constant between two onsets, we
consider that the possibility of the existence of an expressive articulation is
high.

In the pitch detection module, i.e to extract onsets and their corresponding
fundamental frequencies, we used aubionotes. In Aubio library, both onset de-
tection and fundamental frequency estimation algorithms can be chosen from
a bunch of alternatives. At this stage, we used complex domain algorithm [17]
to determine the peaks and Yin [18] for the fundamental frequency estimation
because we require a more sensitive algorithm than the one used to detect the
plucking onsets.

Complex domain onset detection is based on a combination of phase approach
and energy based approach. The algorithm parameters were fixed to 2048 bins
as window size, 512 bins as hop size, 1 as pick peaking threshold, and −95db
as silence threshold. Using these parameters we obtained an output like the one
shown in Figure 4. As shown in the figure, first results were not as we expected.
Specifically, they were noisier than expected. There were noisy parts, especially
at the beginning of the notes, which generated false-positive peaks. For instance
in Figure 4, many false positive note onsets are detected between the interval
from 0 to 0.2 seconds.

A careful analysis of the results demonstrated that the false-positive peaks
were located in the region of the notes frequency borders. Therefore, we propose
a lightweight solution for the problem: to apply a chroma filtering to the regions



Fig. 4: Note Extraction without chroma feature.

that are in the borders of complex domain peaks. As shown in Figure 5, after
applying chroma conversion, the results are drastically improved.

Next, we analyzed the fragments between two onsets based on the segments
provided by the plucking detection module. Specifically, we analyzed the sound
fragment between attack ending point and release starting point (because the
noisiest part of a signal is the attack part and the release part of a signal contains
unnecessary information for pitch detection [16]). Therefore, in this analysis
only the fragment between attack and release parts, where pitch information is
relatively constant, is used.

Figure 6 shows fundamental frequency values and plucking onsets. X-axis
represents the time domain bins and Y-axis represents the frequency. In Figure 6,
vertical lines depict the attack and release parts respectively. In the middle
there is a change in frequency, which was not determined as an onset by the
first module. Although it seems like an error, it is a success result for our model.
Specifically, in this phrase there is an appoggiatura, a left-hand articulation, and
was not identified as an onset by plucking detection module (HFC algorithm),
but identified by the pitch detection module (Complex Domain algorithm). The
output of the pitch detection module for this recording is shown in Table 1.

2.3 Analysis and Annotation

After obtaining the results from plucking detection and pitch detection modules,
the goal of the analysis and annotation module is to determine the candidates
of expressive articulations. Specifically, from the results of the pitch detection
module, we analyze the differences of fundamental frequencies in the segments
between attack and release parts (provided by the plucking detection module).
For instance, in Table 1 the light gray values represent the attack and release
parts, which we did not take into account while applying our decision algorithm.



Fig. 5: Note Extraction with chroma feature.

Note Start (ms.) Fundamental Frequency

0.02 130
0.19 130
0.37 130
0.46 146
0.66 146
0.76 146
099 146
1.10 146
1.41 174
1.48 116

Table 1: Output of the pitch detection module.

The differences of fundamental frequencies are calculated by subtracting
to each bin its preceding bin. Thus, when the fragment examined is a non-
articulated fragment, this operation returns 0 for all bins. On the other side, in
fragments containing expressive articulations some peaks arise (see Figure 7 for
an example).

In Figure 7 there is only one peak, but in other recordings some consecutive
peaks may arise. The explanation is that the left-hand finger also causes an
onset, i.e. it generates a transient part. As a result of this transient, more than
one change in fundamental frequency may be present. If those changes or peaks
are close to each other we consider them as a single peak. We define this closeness
with a pre-determined consecutiveness threshold. Specifically, if the maximum
distance between these peaks is 5 bins we consider there is a single peak, i.e.
the fragment is a candidate to contain an expressive articulation. However, if



Fig. 6: Example of an appoggiatura articulation.

Fig. 7: Difference vector of pitch frequency values of fundamental frequency array.

the peaks are separated each other more than the consecutiveness threshold, the
fragment is not considered as an articulation candidate. Our consideration is
that these peaks respond to a probable noisy part of the signal, a crackle in the
recording, or a digital conversion error.

The final step in our system is to determine the expressive articulation. Be-
cause in the current system we are only analyzing appoggiaturas and legatos,
measuring the duration of the first sub-segment both articulations are easily
differentiated.

We colored the parts where expressive articulations are identified and anno-
tate the articulation. Figure 8 shows the annotation of Phrase 2. As summarized
in Table 3, phrase 2 has two expressive articulations. To show the places of these
expressive articulations, in the wave representation of the sound, in Figure 8, we
colored them black or bold.



Fig. 8: Annotated output of Phrase 2.

3 Experiments

The goal of the experiments is to test the performance of our model. First, we
analyzed the accuracy of our approach in detecting legatos. The hypothesis was
that legatos are the articulations easiest to detect because are composed by two
long notes. Next, we analyzed the accuracy on appoggiaturas. Because in this
situation the first note (the grace note) has a short duration, it can be confused
with the attack.

Additionally, in all of the experiments we were interested in studying two
different issues: (1) the accuracy of ascending or descending articulations and
(2) the accuracy on non-metallic (1st to 3rd guitar strings) and metallic wounded
strings (4th to 6th strings). For the first issue, the hypothesis is that the melodic
direction should not affect the accuracy. Nevertheless, we expect a lower accuracy
in metallic strings because they produce more percussive notes.

We recorded examples using the third (non-metallic) and fourth (metallic)
string. For each combination of string-articulation-direction at least 10 examples
were used. Notice that we also performed recordings with a neutral articulation
(neither legato nor appoggiatura). Totally we had a set of 105 examples of two
notes guitar recordings. Moreover, we studied the accuracy of our system in the
context of short melodies (including 5-6 notes) where different combinations of
expressive articulations were played. Recorded examples and a detailed expla-
nation of the testing set is available at http://www.iiia.csic.es/guitarLab.



Recordings 3rd String 4th String Correct/All

Non-expressive 91.6 % 84.9 % 22/25
Ascending Legatos 80.0 % 90.0 % 17/20
Descending Legatos 90.0 % 70.0 % 16/20
Ascending Appoggiaturas 70.0 % 70.0 % 14/20
Descending Appoggiaturas 80.0 % 70.0 % 15/20

Table 2: Performance of our model applied to single articulations.

Excerpt Name Ground Truth Detected

Phrase 1 1 2
Phrase 2 2 2
Phrase 3 0 0
Phrase 4 2 3
Phrase 5 1 1

Table 3: Results of our model applied to short phrases.

3.1 Basic scenarios

We first applied our system to single expressive and non-expressive articula-
tions. All the recordings were hand labeled; they were also our ground truth. We
compared the output results with expected annotations.

Analyzing the experiments (see Table 2), different conclusions can be ex-
tracted. First, as expected, legatos are easier to detect than appoggiaturas. Sec-
ond, in a non-metallic string the melodic direction do not determine a different
performance. Regarding a metallic string, descending legatos are more difficult to
detect than ascending legatos. This result is not surprising because the plucking
action of left-hand fingers in descending legatos is slightly similar to a right-hand
plucking. However, this difference does not appear in appoggiaturas because the
finger movement is the same.

3.2 Short melodies

As a preliminary test with more realistic recordings, we also recorded a small
set of 5-6 note phrases. They include different articulations in random places
(see Figure 9). As shown in Table 3, each phrase includes different number of
expressive articulations varying from 0-2.

We applied our model to these recordings with the same settings we used with
short phrases except for the release threshold. Specifically, since in short phrase
recordings the transition parts between two notes have more noise, it increases
the average value of the amplitude between two onsets. Because of that, the
release threshold in more realistic recordings has to be increased. Specifically,
after some preliminary tests, we fixed the release threshold to 30%.



(a) Phrase 1 (b) Phrase 2 (c) Phrase 3

(d) Phrase 4 (e) Phrase 5

Fig. 9: Short melodies.

Analyzing the results, the performance of our model was similar to the pre-
vious experiments, i.e. when we analyze single articulations. However, in two
phrases where a note was played with a soft right-hand plucking, these notes
were proposed as legato candidates. In Figures 9a - 9e all short melodies can be
seen. For instance the melody in Figure 8 corresponds to Figure 9b. Phrase 3
which is Figure 9c where there is no expressive articulation and Phrase 4 which
is Figure 9d, is the same notes with Phrase 3 but it includes two expressive
articulations, first one is a legato and second one is an appoggiatura.

4 Conclusions

In this paper we presented a system to identify left-hand articulations such
as legatos and appoggiaturas. Our approach combined the audio information
extracted using several existing audio analysis algorithms. Specifically, we have
used HFC for plucking detection and Complex Domain and YIN algorithms for
pitch detection. Then, combining the data coming from these two sources, we
developed a first decision mechanism to identify attack articulations.

Although we are aware that our current system may be improved, the results
show that it is able to identify successfully these two attack-based articulations
in non-metallic strings. As expected legatos are easier to identify than appog-
giaturas. Specifically, the short duration of appoggiaturas is sometimes confused
as a single note attack.

We are currently working in improving the performance for metallic strings.
Specifically, we are exploring the possibility of dynamically changing the param-
eters of the analysis algorithms. For instance, depending on the string where
notes are played, use different analysis thresholds.

As a next step, we plan to incorporate more analysis and decision components
into our system with the aim of covering all the main expressive articulations
used in guitar playing.
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