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Abstract

In the literature, little attention has been paid to the development of solvers for systems of mathematical fuzzy logic, and in
particular, there are few works concerned with infinitely-valued logics. In this paper it is presented mNiBLoS (a modal Nice BL-
Logics Solver): a modular SMT-based solver complete with respect to a wide family of continuous t-norm based fuzzy modal logics
(both with finite and infinite universes), restricting the modal structures to the finite ones. At the propositional level, the solver works
with some of the best known infinitely-valued fuzzy logics (including BL, Łukasiewicz, Gödel and product logics), and with all
the continuous t-norm based logics that can be finitely expressed in terms of the previous ones; concerning the modal expansion,
mNiBLoS imposes no boundary on the cardinality of the modal structures considered. The solver allows to test 1-satisfiability of
equations, tautologicity and logical consequence problems. The logical language supported extends the usual one of fuzzy modal
logics with rational constants and the Monteiro-Baaz ∆ operator. The code of mNiBLoS is of free distribution and can be found in
the web page of the author.
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1. Introduction

Mathematical Fuzzy Logic (MFL) is a sub discipline of
Mathematical Logic that studies a certain family of formal log-
ical systems whose algebraic semantics involve some notion of
truth degree.These truth degrees have motivations coming from
different fields, like philosophy, fuzzy set theory and many-
valued logics. Along the XXth century, and particularly from
the 90s, MFL have been widely studied, and there is a large
number of studies on the applications of this framework to
model knowledge and reasoning with incomplete and uncertain
information. However, in the literature, with a few exceptions
mainly for finitely valued Łukasiewicz logics [29, 31, 30], little
attention has been paid to the development of efficient solvers
for systems of mathematical fuzzy logic, even though there is
an important number of studies on complexity and proof the-
ory for them [28, 22, 23, 3, 20]. This is a problem that limits
the use of fuzzy logics in real applications, while the number of
theoretical proposals relying on these logics has rapidly grown.
Moreover, the relative poor knowledge of more complex t-norm
based logics outside the fuzzy logic community, and in partic-
ular, in more applied areas, limits the use of these logics in sit-
uations where ad-hoc logics (i.e., logics where the behavior of
the connectives is defined accordingly to the user’s necessities)
could be very interesting.
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In [5] it is proposed a new approach for implementing a the-
orem prover (i.e., that checks validity of a given formula) for
Łukasiewicz, Gödel and product fuzzy logics using Satisfiabil-
ity Modulo Theories (SMT). The idea of using SMT solvers in
order to solve this problem is new and allows to treat infinitely-
valued logics without relying on reductions to finite universes,
and so being able to solve the validity problem over the pre-
vious logics. The results are very interesting in particular for
Łukasiewicz and Gödel logics because the execution times turn
out to be optimistically efficient. In the case of product logic,
while the importance of this new solver is clear since no pre-
vious automatic tool for product logic existed before, the re-
sults are however not very satisfactory: the execution times are
quite long, mainly due to the fact that the implementation of
this logic uses theories of the SMT-solver with non-linear arith-
metic. Inspired by the previous work, in [35] it is presented a
solver for the whole family of logics based on a (finitely rep-
resentable) continuous t-norm and BL, and the particular case
of the product logic is strongly enhanced relying on theoretical
results from [19]. However, if truth constants are added to the
language, their behavior (for what concerns the product logic)
following this new approach is completely uncontrolled. More-
over, it is not studied how to include this new treatment of the
product logic when considering arbitrary continuous t-norms
that included some product t-norm in their representation as or-
dinal sums. Thus, the new approach is limited to product logic
only.
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On the other hand, modal expansions of MFL, which allow
to reason over qualified concepts (like always, sometimes, etc.),
have also been intensively studied in the latter years, partially
motivated by the rich expressive power of these logics and their
possible applications. Concerning the development of applica-
tions oriented to automatically reason over these kind of logics,
the main works lie within the framework of the so-called Fuzzy
Description Logics (FDL), multi-modal logics oriented to rep-
resent ontologies of different areas (see for instance [33, 8, 34]).
In relation to the present paper, we can cite two works present-
ing a reasoner for some FDLs which, while developing several
very involved tools related to FDL, are however quite restricted
in terms of the logics and basic tasks implemented. In [9] it
is presented a solver that checks satisfiability over Łukasiewicz
and Zadeh logics. It considers finite sets of truth values, suf-
ficient to deal with the satisfiability problem in a very efficient
way over the implemented logics, but not enough to check va-
lidity or to work with other logics that do not allow a finitary
reduction (like for instance Hájek’s BL or product logic). On
the other hand, some notes towards the implementation of a
solver that works with the problem of positive satisfiability for
product description logic can be found in [4]. The approach fol-
lowed to solve reason at a propositional level over the product
standard algebra is the same one followed in [35]. On the other
hand, concerning the expansion to FDL, it relies in the possibil-
ity of reducing a problem of positive satisfiability to the satisfi-
ability of a quantifier free boolean formula, which is, however,
not likely to work in more general cases (like 1-satisfiability
or validity). Moreover, the resulting formula has non-linear
real arithmetic properties, making it quite challenging, as we
already commented above, from an efficiency point of view.

Our objective within this paper is expanding the solver pre-
sented in [35] and solve several problems left open in the pre-
vious work and in [5]. We present a solver (mNiBLoS) with a
quite simple interface, a rich expressive power and a reasonable
level of efficiency, that hopefully can help a non-specialized
community to work with several fuzzy modal logics through
a quite short process of intuitive learning. Even if the software
presented is command-line only, interested users needs not to
be more than slightly familiar with continuous t-norms and log-
ical languages in order to be able to use it: only the decomposi-
tion of the t-norm, the desired task and the formulas/equations
associated to the desired task are asked to the user. We offer
the possibility of working with a large set (countable infinitely
many) of infinitely valued logics, including Hajek’s Basic Logic
and logics based on finite ordinal sums of Gödel, Łukasiewicz
and product t-norms. mNiBLoS also supports a rich language,
including rational truth constants, ∆ and the usual modal oper-
ators � and ♦. We have implemented the basic operations that
seem to be of most interest concerning the use of a fuzzy modal
logic: validity, logical deduction and 1-satisfiability (united to
the generation of a solution when possible) of sets of formu-
las or equations. Focusing on the efficiency of the solver, we
have proven that reasoning over a logic based on a continuous
t-norm that includes a product t-norm can be equally done over
the same structure but whose product components are moved
into the negative cone of the real numbers, by means of a trans-

lation that allows to keep working with rational truth constants.
Moreover, we give a constructive proof of the fact that the op-
erations we are concerned with are decidable over over finite
Kripke structures, in a similar fashion as it was done in [24] for
Łukasiewicz FDL. For doing this, we present an algorithm that
builds the minimum (finite) structure that is necessary to check
in order to determine, for a finite set of formulas/equations, the
answer for the theoremhood, logical deduction and satisfiability
problems.

Structure of the paper. Section 2 introduces the propositional
logics considered and some of their characteristics, the modal
expansions we are going to implement and gives a brief intro-
duction to SMT. Section 3 presents the theoretical results de-
veloped for the design of mNiBLoS: the approach to product
logic based on linear arithmetic, the treatment of BL and the
study of the expansions with truth constants and modal opera-
tors. Section 4 comments on the design decisions of the solver
and explains some details of its implementation, and shows sev-
eral empirical studies run on mNiBLoS. We conclude the paper
with Section 5, by outlining the conclusions after this research
and some possible future work.

2. Preliminaries

With the objective of being as self-contained as possible, we
first describe in this section the logical background necessary to
present the theoretical results of Section 4. With this in mind,
we mainly focus on semantic aspects of the logics, which are
the ones further used in the development of mNiBLoS. We refer
the interested reader for details on the topics presented in this
section to well-known monographs on fuzzy and many-valued
logics like [23] and [20]. In the last part of this section we
briefly present Satisfiability Modulo Theories and provide some
details concerning the particular theories used in our proposal
from Section 4.

2.1. Continuous t-norm based fuzzy logics
Fuzzy logic in its narrow/technical sense, as presented by

Zadeh in his foundational paper, is a term that refers to log-
ics with more than two truth vales that handle gradual prop-
erties (as opposed to fuzzy logic in its wide sense, which is a
generic expression that mostly refers to that part of soft com-
puting that uses fuzzy sets and rules). A formalism that has
been commonly adopted in order to uniformly approach the
study of fuzzy logics is that of taking as truth values subsets
of the real unit interval, and generalizing the definition of the
usual logical operations (conjunction, implication, negation,
etc) to this framework. Already the first generalizations studied
for the conjunction (for instance, the Łukasiewicz and Gödel
strong conjunctions) are particular cases of triangular norms (t-
norms): binary operations ∗ on [0, 1] that are associative, com-
mutative, monotonically increasing and have 1 as the neutral
element. Concerning the implication, the operation that fits the
best with the previous definition of strong conjunction ∗ is the
one arising from its residuated operation (whenever it exists):

x⇒∗ y = max{z : x ∗ z ≤ y}
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It is known that the necessary and sufficient condition for a t-
norm to have a residuum is that it is left-continuous, but the
more restricted class of continuous t-norms enjoys other im-
portant characteristics that made us restrict the current work to
them. Namely, it is possible to easily build new continuous t-
norms from others in the following way.

Lemma 2.1. Let {∗i}i∈I for I countable be a set of continuous
t-norms and {(bi, ti)}i∈I a family of pairwise disjoint open inter-
vals of [0, 1] such that

⋃
i∈I[bi, ti] = [0, 1]. Then, the function

∗ : [0, 1] × [0, 1]→ [0, 1] defined as

x ∗ y =

bi + (ti − bi) ·
( x−bi

ti−bi
∗i

y−bi
ti−bi

)
if x, y ∈ [bi, ti]

min{x, y} otherwise

is a continuous t-norm.

The t-norm resulting from the previous construction is
called the ordinal sum of {〈∗i, (bi, ti)〉}i∈I and is denoted by

∗ =
⊕

i∈I

〈∗i, (bi, ti)〉

When I is finite with cardinal n, we also refer to it by

∗ = 〈∗1, (b1, t1)〉 ⊕ . . . ⊕ 〈∗n, (bn, tn)〉

Intuitively, the construction of an ordinal sum is just “pil-
ing” different t-norms and considering the ordered structure
generated with this union.

In can be checked that the residuum of the previous
construction also has a nice characterization in terms of
{〈∗i, (bi, ti)〉}i∈I . If ∗ =

⊕
i∈I〈∗i, (bi, ti)〉, its residuum ⇒∗ is

given by:

x⇒∗ y =


1 if x ≤ y
bi + (ti − bi) ·

( x−bi
ti−bi
⇒∗i

y−bi
ti−bi

)
if bi ≤ y < x ≤ ti

y otherwise

The three best-known continuous t-norms are the Łukasie-
wicz Gödel and product t-norms, defined by:

Gödel t-norm

x ∗G y = min(x, y)

x⇒G y =

{
1, if x ≤ y
y, otherwise.

Łukasiewicz t-norm

x ∗Ł y = max(x + y − 1, 0)

x⇒Ł y =

{
1, if x ≤ y
1 − x + y, otherwise.

Product t-norm

x ∗Π y = x · y (product of reals)

x⇒Π y =

{
1, if x ≤ y
y/x, otherwise.

The following is the well-known result by Mostert and
Shields of decomposition of continuous t-norms in terms of the
three previous ones.

Lemma 2.2 (c.f. [27]). Any continuous t-norm can be ex-
pressed as an ordinal sum of countably many components
〈∗i, (bi, ti)〉 with ∗i ∈ {∗Π, ∗Ł, ∗G}.

This decomposition allows to work with any continuous t-
norm in a modular way, paying attention only to the t-norms
{∗Π, ∗Ł, ∗G} and to the ordinal sum construction.

When we talk about a logic based on a continuous t-norm
∗, what formally is done is considering a logical calculi with
the real interval [0, 1] as set of truth values and 1 as only des-
ignated element, and connectives given by a strong conjunction
&, an implication → and the truth constant 0, interpreted re-
spectively by the t-norm ∗, its residuum⇒∗, and number 0 (see
for instance [23]). Further connectives in the language can be
defined as follows:

¬ϕ is ϕ→ 0,
ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ ∨ ψ is ((ϕ→ ψ)→ ψ) ∧ ((ψ→ ϕ)→ ϕ),
ϕ ≡ ψ is (ϕ→ ψ)&(ψ→ ϕ).

Given a continuous t-norm, ∗-evaluations of propositional vari-
ables are mappings e assigning to each propositional variable p
a truth value e(p) ∈ [0, 1], which is uniquely extended to com-
pound formulas as follows:

e(0) = 0
e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

e(ϕ→ ψ) = e(ϕ)⇒ e(ψ)

Each continuous t-norm defines an algebra

[0, 1]∗ = ([0, 1],min,max, ∗,⇒, 0, 1)

called standard ∗-algebra, and ∗-evaluations are simply the ho-
momorphisms (i.e., mappings that preserve the connectives)
from the formulas to [0, 1]∗. More in general, ∗-algebras are
those algebras that are defined using the same set of equations
that the standard one, but over different universes, i.e., the alge-
bras belonging to the variety generated by [0, 1]∗.

Note that, from the above definitions, e(¬ϕ) = e(ϕ) ⇒ 0,
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)), e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) and
e(ϕ ≡ ψ) = e(ϕ→ ψ) ∗ e(ψ→ ϕ).

For a continuous t-norm ∗ and any finite1 set of formulas
Γ∪{ϕ}we say that ϕ is logical consequence of Γ in the logic of ∗,
and write Γ |=[0,1]∗ ϕ, whenever for any ∗-evaluation e such that
e(γ) = 1 for all γ ∈ Γ, it holds that e(ϕ) = 1 too. In the particular
case of Γ being the empty set, we say that ϕ is a theorem of the
logic, or equivalently, that it is valid in [0, 1]∗. A formula ϕ is
1-satisfiable in L∗ if e(ϕ) = 1 for some L∗-evaluation e.

1It is not in the scope of this paper, for the obvious motivation of applica-
bility, to treat infinitary logics, i.e., those that consider also the deductions from
infinite sets of premises.
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If we consider instead a set C of continuous t-norms, we de-
fine the finitary logical deduction similarly, letting Γ |={[0,1]∗:∗∈C}
ϕ whenever for any ∗ in C, Γ |=[0,1]∗ ϕ. The notions of theorems
of the logic and 1-satisfiability are defined accordingly. More
in general, a logic L is simply a logical deduction relation, and
we write Γ `L ϕ whenever ϕ is consequence of Γ in L.

The most well known fuzzy logics, namely Łukasiewicz
(Ł), Gödel (G) and product (Π) logics are defined as above
using their corresponding t-norms. Moreover, the logic of the
standard algebras of all continuous t-norms, BL, is introduced
and studied by Hajek in [23] as the most basic logic that has the
deductions shared by all continuous t-norm based logics. 2 It is
known that any axiomatic extension of BL is the logic of a con-
tinuous t-norm, and so we can call BL-logics the logics arising
from a continuous t-norm. Analogously, we call BL-algebras
to the ∗-algebras for ∗ being a continuous t-norm.

An expansion of a logic consist on the addition of new con-
nectives, and possibly, axioms and inference rules, to it. Usual
expansions of BL-logics are the ones that include truth con-
stants different from {0, 1} and the Monteiro-Baaz ∆ operator,
that acts as a de-fuzzyfier. Semantically, the inclusion of truth
constants assigned to the rational numbers in [0, 1] consists sim-
ply in adding a new set of symbols C = {c : c ∈ [0, 1] ∩ Q}3

to the language and fixing, for each continuous t-norm ∗ and
∗-interpretation e

e(c) = c

The unary ∆ connective is interpreted in the standard algebra4

of a continuous t-norm is given by

∆a =

1 if a = 1
0 otherwise

We denote the standard algebra of ∗ expanded with rational
truth constants and ∆ by [0, 1]Q∗ , and sometimes refer to it as
the canonical standard algebra of ∗.

The previous expansions seem of great interest if the logic
is oriented to represent real-world behaviors, since they offer a
more precise language that allows to explicitly refer to the truth
values in the logic and to determine, in some sense, the strict
truth of terms.

2.2. Fuzzy Modal Logics

Modal logics expand classical propositional logic with
modal operators, that allow to qualify sentences and talk about
concepts like possibly or always, using ♦ and � as usual con-
nectives to denote these concepts. The most intuitive semantics
for these logics is based on (classical) Kripke models: struc-
tures of the form 〈W,R,V〉, where W is a non-empty set of so-
called worlds, R ⊆ W ×W is an accessibility relation between
worlds and V : Var → P(W), which determines the worlds
where a variable is true. Propositional formulas are evaluated

2For simplicity, we will write `BL instead of |={[0,1]∗:∗ continuous t-norm }.
3Clearly, constants 0 and 1 coincide with the ones already existing in BL.
4We denote the algebraic operation and the connective in the language by

the same symbol ∆, since there is no risk of confusion.

depending only on the mapping V , while the interpretation of
modal operators depends also on R: for a formula ϕ, �ϕ is
true in a world u whenever ϕ is true in all the worlds accessible
(trough R) from u (and similarly, ♦ϕ is true whenever there is
some accessible world where ϕ is true). It is usual to think in
the previous semantics like a possible-world semantics, where
〈v, u〉 ∈ R means that u is a world (i.e., interpretation of vari-
ables) that can be reached from v by means of a certain action
or change in the universe determined by R.

This semantics can be naturally generalized to a fuzzy
setting by simply enriching the structures with fuzzy evalua-
tions. Some previous works on modal expansions of continu-
ous t-norm based fuzzy logics are [17, 16], [14][25] and [36].
Other works, mainly corresponding to FDL (see for instance
[33, 8, 34]), expand this semantics with more than one acces-
sibility relation (and so, more modal operators). The defini-
tion adapted to complete (i.e., where all arbitrary infima and
suprema exist) linearly ordered BL-algebras, with ∆ and truth
constants from C, as presented in the previous section, is the
following one.

Definition 2.3. Let A = 〈A,�,⇒,∆, {cA
}c∈C〉 be a complete

linearly ordered BL-algebra with ∆ and truth constants from C.
An A-Kripke model is a tripleM = 〈W,R, e〉 where

• W is a non-empty set (of so called worlds)

• R is a fuzzy accessibility relation in W, i.e., a mapping
from W ×W to A

• e is a mapping of the variables at each world to A, i.e., a
mapping from W ×Var ∪ C to [0, 1], uniquely extended
to the whole set of formulas by letting:

– e(w, c) = c

– e(w,∆ϕ) = ∆e(w, ϕ)
– e(w, ϕ&ψ) = e(w, ϕ) � e(w, ψ)
– e(w, ϕ→ ψ) = e(w, ϕ)⇒ e(w, ψ)
– e(w,�ϕ) = inf{R(w, v)⇒ e(v, ϕ) : v ∈ W}

– e(w,♦ϕ) = sup{R(w, v) � e(v, ϕ) : v ∈ W}

If the set W is finite we say that the model is finite.

We say that a formula ϕ is true in a world w from a A-Kripke
model M, and write M,w  ϕ when e(w, ϕ) = 1. From here,
two notions of logical deduction arise (the local and global one),
but we will focus on the first one for being more representative
of the meaning behind the modal operators (since the other one
only depends on the structure as a whole). We refer the inter-
ested reader to well-known manuals on modal logics like [18],
[7],. We say that a formula ϕ is local consequence of a finite
set of premises Γ in a model M when for each world w of the
model for which e(w, γ) = 1 for all γ ∈ Γ, then e(w, ϕ) = 1 too.
Similarly, for a class of Kripke models C, we say that ϕ is local
consequence of Γ in C whenever it happens for all models in C.
In this case, we write Γ C ϕ.

We are also interested in checking the satisfiability of equa-
tions in classes of models. In our framework, we let an equa-
tion to be a triple 〈op, ϕ1, ϕ2〉 with ϕ1, ϕ2 are formulas and
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op ∈ {<,≤,=,≥, >}. We say that an equation 〈op, ϕ1, ϕ2〉 is
locally satisfiable in a class of models C when there is a model
M ∈ C and a world w ∈ W such that e(w, ϕ1) op e(w, ϕ2).5

It is not known in general whether the local modal logic
of an arbitrary BL-algebra as above (or even of an standard
BL-algebra [0, 1]∗) is decidable (that is to say, the problems
of 1-satisfiability and logical deduction), so in what follows we
will mainly consider classes of models with a finite number of
worlds.

Let us conclude this brief introduction to fuzzy modal log-
ics by remarking some deep differences between classical and
fuzzy modal logics, that can give the reader an idea of the new
behavior of the modalities. First, it is not hard to see that the
well-known normality axiom K : �(x → y) → (�x → �y) ,
valid in all normal modal logics (including the minimum clas-
sical modal logic), is no longer necessarily true in the fuzzy
context. Indeed, it keeps being valid whenever the acces-
sibility relation is crisp (see for instance [14]), but in other
cases, it is very simple to build a counter-model with only two
worlds for it. Another important difference we have already
commented above is that, while the minimum classical (local)
modal logic K and many of its extensions, including the most
well known modal logics (whose models’ accessibility relations
enjoy properties like reflexivity, transitivity, seriality, etc.) are
complete with respect to finite models, and theoremhood and
1-satisfiability problems are decidable thanks to this fact, this is
not so clear in the many-valued setting. It has been proved in
the case of Gödel logic [15], and arises naturally in the partic-
ular case of Łukasiewicz modal logic linked to the concept of
witnessed models, but in other t-norms this is not known. On
some ongoing works we have proved that global modal

2.3. Satisfiability Modulo Theories (SMT)

The satisfiability problem, i.e., determining whether a for-
mula expressing a constraint has a solution, is one of the main
problems in theoretical computer science. If this constraint
refers to Boolean variables, then we are facing a well-known
problem, the propositional satisfiability problem (SAT).

On the other hand, some problems require to be described
in more expressive logics (like first order logics or many val-
ued logics), and so a formalism extending SAT has also been
widely studied: Satisfiability Modulo Theories (SMT). A SMT
instance is the generalization of a Boolean formula in which
some propositional variables are replaced by predicates with
predefined interpretations from background theories. These
predicates can then be bi-valued functions over non-binary vari-
ables.

The most common approach [32? ] for the existing SMT
solvers is the integration of a T -solver, i.e. a decision procedure
for a given theory T , and a SAT solver. In this model, the SAT
solver is in charge of the Boolean formula, while the T -solver
analyzes sets of atomic constraints in T . With this, the T -solver
checks the possible assignments generated by the SAT solver

5Observe this is well defined since we are considering linearly ordered al-
gebras only.

and rejects them if there exist inconsistencies with the theory.
In doing so, it gets the efficiency of the SAT solvers for Boolean
reasoning, long time tested, and the capability of the more con-
crete T -oriented algorithms inside the respective theory T .

The current general-use library for SMT is SMT-LIB [6],
and there are several implementations of SMT-solvers for it.

For our experiments, we are using an established SMT-
solver developed by Microsoft Research, Z3 [37, 21], which
implements the two theories we need for our purposes, and
which has been proved quite efficient. The main theory we re-
quire is the linear real arithmetic theory (i.e., 〈R,+,−〉), and we
also make use of arrays, even though this last theory could be
removed by manually unraveling the variables of type array of
length n in n new variables.

Nevertheless, mNiBLoS generates a code in SMT 2.0 for-
mat, so any other SMT-solver that implements the necessary
theories can be used instead.

3. Theory behind mNiBLoS

As we commented in the Introductory section, the software
application presented in this paper is oriented to open the prac-
tical use of many-valued logics to a public not exclusively be-
longing to the logic research community. For this reason we
consider it is important to allow the use of a large family of
logics without overlooking the efficiency when reasoning over
these systems. For this reason, mNiBLoS is focused on working
with a wide class of continuous t-norm based logics, which will
be called “Nice BL Logics” (because they allow a “nice” repre-
sentation). The only continuous t-norms not treated by mNiB-
LoS are those whose representation in terms of the Mostert and
Shields theorem need an infinite number of components, with
the exception of the BL logic, which is treated in an alternative
fashion.

The motivation behind the interest in these Nice BL Log-
ics is mainly practical. For an arbitrary left-continuous t-norm
there is no general form to simplify the reasoning and thus, a
reasoner for a logic based on it would simply consist on coding
the operation specified by the user (and also its residuum) into
the SMT solver. However, for Nice BL logics, a certain prepro-
cessing of the operations can be done, codifying the reasoning
over them in such a way that a much faster behavior (that the
general approach commented above) can be obtained. On the
other hand, we think that the potential users of this software
have, with this amount of logics, a large enough basis to start
exploiting the versatility of the t-norm based fuzzy logics.

Concerning the expansion of these fuzzy logics with modal-
ities, a similar reasoning has lead us to face the problem in what
we think is the most practical way. On the one hand, while it
seems natural to think of problems that can be modeled within
a Kripke structure (for instance, those that resort to graphs, or
those related with the field of temporal logics), for what con-
cerns non-theoretical uses it does not seem clear which kind
of problems would need of a structure with an infinite number
of worlds. Moreover, 1-satisfiability and deduction problems
over these arbitrary structures, as we commented before, are
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not known to be decidable. Since the objectives of this paper
do not aim to cope with these issues we think that a first practi-
cal and useful solution is consider the modal logics arising from
models with a finite set of worlds.

We present now some theoretical results that allow to design
mNiBLoS in such a way that a greater modularity and gain of
efficiency (respect to the solvers presented in [5] and [35]) is
obtained.

3.1. The propositional level
3.1.1. Nice BL logics

Recall that any continuous t-norm can be expressed as an
ordinal sum of countable many t-norms of the form the Łukasi-
ewicz, Gödel and product t-norms. From this result, we know
that a reasoner for the axiomatic extensions of the BL logic can
be designed focusing only over intervals of [0, 1] with the three
previous t-norms. On the other hand, a computer application
treating logics arising from one of these t-norms needs to take as
an argument the t-norm itself. Since this is a function in [0, 1], it
does not seem clear how can this value can be specified if not as
a list of Łukasiewicz Gödel and product components (each one
associated with an interval in [0, 1] determining the universe
of that component), or with a unique name for some particular
cases. This naturally limits the possible t-norms, expressed as
lists, to those that are a finite ordinal sums of the three basic
t-norms. However, logics arising from ordinal sums of the ∗Ł,
∗G and ∗Π t-norms with a finite number of components are the
main part but not the totality of the logics that will be accepted
by our software application.

First, thinking in the possible applications, we have also in-
cluded an additional family of operations (not strictly speak-
ing continuous t-norms) that, in the same way that above, have
naturally an associated (semantically defined) logic. We are
talking about ordinal sums (with a finite number of compo-
nents!) whose components can be either the previously com-
mented three basic ones, or range over a finite universe, with
uniformly distributed points. While it is well known that there
do not exist finite linearly ordered product algebras different
from the Boolean one (see for instance [19]), and thus there is
no way to reason with the product operations over a finite uni-
verse, the cases of the Gödel and Łukasiewicz logics can enjoy
this behavior. It is then possible to consider as components of
an ordinal sum restrictions of the Łukasiewicz and Gödel ones
to a finite universe over which the operations are closed. In
order to simplify the notation, in this case we denote the oper-
ations in the representation of the ordinal sum by ∗Łn and ∗Gn,
for n being the number of (equidistant) elements considered in
the universe.

We can extend the definition of ordinal sum in order to in-
clude these new operations as possible components in such a
way that the sum of just one of them respectively coincides with
the usual algebraic definition of the n-valued Łukasiewicz and
Gödel logics over the real interval [0, 1]:

• Łn is the subalgebra of [0, 1]∗Ł with universe
{0, 1

n−1 , ...,
n−1
n−1 }.

• Gn is the subalgebra of [0, 1]∗G with universe
{0, 1

n−1 , ...,
n−1
n−1 }.

From now on, we abuse notation regarding ordinal sums,
and generalize that name to a wider family of operations. Given
{∗i}i∈I a set of operations in {∗Ł, ∗G, ∗Π} ∪ {∗Łn, ∗Gn}n∈Z,n>1, and
{(bi, ti)}i∈I a family of pairwise disjoint open intervals of [0, 1],
we call ordinal sum of {〈∗i, (bi, ti)〉}i∈I and is denoted by

∗ =
⊕

i∈I

〈∗i, (bi, ti)〉

to the operation defined as in 2.1 but with restricted universe
U ⊆ [0, 1] given by

U =
⋃
i∈I

[bi, ti] if ∗i ∈ {∗Ł, ∗G, ∗Π}

bi + (ti − bi) · {0, 1
n−1 , ...,

n−1
n−1 } if ∗i is either ∗Łn or ∗Gn

where for X ∪ {y} ⊆ [0, 1], we write y · X to denote the set
{y · x}x∈X .

This new notion allows to specify the well known n-valued
Łukasiewicz and Gödel logics (which seem likely to be useful
from an applied point of view), and also combinations of these
with infinitely valued components.

On the other hand, thanks to several theoretical results con-
cerning Hajek’s BL, we can also work with this logic too. It
is proven (see for instance [1, 26]) that BL is complete with
respect to the standard algebra

⊕
i∈N

[0, 1]∗Ł .6

With just this, it could seem that BL does not fall in the
cases detailed above since it is associated to a t-norm with in-
finitely many (Łukasiewicz) components. However, when deal-
ing with a particular deduction (with a finite amount of vari-
ables), whether it is valid or not on BL coincides with the an-
swer to the same question on an ordinal sum of finitely many
components, as proven in the following result.

Lemma 3.1. (cf. [2]) For a finite set of formulas Γ ∪ {ϕ},

Γ `BL ϕ if and only if Γ |=(n+1)[0,1]∗Ł ϕ

where n is the number of different variables appearing in
Γ ∪ {ϕ} and by (n + 1)[0, 1]∗Ł we denote the BL-algebra⊕
i∈{n,··· ,1}

〈∗Ł, ( n−i
n ,

n−i+1
n )〉.7

After all the previous details, we can finally provide a for-
mal definition of the logics that are supported by the reasoner.

Definition 3.2. A logic L is a Nice BL Logic when one of the
following cases holds:

1. L is equivalent to BL. That is to say, for any set of for-
mulas Γ ∪ {ϕ}

Γ `L ϕ if and only if Γ `BL ϕ

6We write
⊕
i∈N

[0, 1]∗Ł to denote the algebras isomorphic to⊕
i∈N
〈∗Ł, ( i

i+1 ,
i+1
i+2 )〉.

7Simply a standard algebra isomorphic to n + 1 copies of the standard Łu-
kasiewicz algebra.
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2. L coincides with the logic associated to the ordinal sum ∗
of {〈∗i, (bi, ti)〉}i∈I for I finite, {∗i}i∈I a set of operations in
{∗Ł, ∗G, ∗Π} ∪ {∗Łn, ∗Gn}n∈Z,n>1 and {(bi, ti)}i∈I a family of
pairwise disjoint open intervals of [0, 1]. That is to say,
for ∗ ordinal sum as above, and for any set of formulas
Γ ∪ {ϕ}

Γ `L ϕ if and only if Γ |=[0,1]∗ ϕ

In this case we say that ∗ is a composed Nice BL t-norm.

3.1.2. Efficiency issues: the product components

Studying previous works towards the development of a
solver for fuzzy logics, we found out that the reasoners that
had implemented the product logic case (see [5]) showed much
worse results, in terms of reasoning time, than the other cases
(Łukasiewicz and Gödel). This is a problem intrinsic to the op-
erations of the associated algebra: while reasoning with linear
operations (sums, subtractions and minimum/maximum oper-
ations) is fast in general and also in the particular case of the
SMT-solvers, finding solutions for equation systems with mul-
tiplication and division operations is a much harder problem
(since it makes the solver face non-linear equations) .

Cignoli and Torrens presented in [19] important studies
concerning the product logic from an algebraic perspective. In
particular, they proved a categorical equivalence between the
standard product algebra and a fragment of the so-called Pres-
burger arithmetic, which entirely omits multiplication. This fact
was exploited in [35], and product logic was implemented over
Z−• , the negative cone of the integers with bottom element with
addition and (bounded) subtraction. However, the treatment of
constant symbols different from {0, 1} was out of question fol-
lowing this approach (since they cannot be moved from [0, 1]
toZ−• consistently). Moreover, it was not proven how this treat-
ment could be applied if the t-norm considered is not ∗Π but an
ordinal sum containing one component of this form.

In the current approach, we gain inspiration in some of the
ideas in [19], but we resort to an alternative codification of the
product logic and also, as shown below, of the product compo-
nents of any Nice BL logic. Motivated by the possibility of the
addition of rational constants to the language, we rather consid-
ered to use the extension over the negative real numbers, R−• ,
instead of Z−• itself. Formally,

R−• = 〈{x ∈ R : x ≤ 0} ∪ {−∞},+,−′, 0,−∞〉

where

x + y =

x + y if x, y , −∞
−∞ otherwise

x −′ y =


0 if x ≤ y
−∞ if x > y and y = −∞

y − x otherwise

R−• is also a product algebra, and all its operations are linear,
which is what we need in order to gain practical efficiency. We
will see that using real arithmetic instead of integer arithmetic

(as in [35]) does not increase the execution times, probably due
to the treatment of Z3 of these theories. Moreover, it is easy
to see that the standard product algebra is in fact isomorphic to
R−• and so the logics arising from them coincide.

Lemma 3.3. For any pair 〈a, b〉 ∈ (0, 1) × {z ∈ R : z < 0}, the
function σ〈a,b〉 : [0, 1]→ {x ∈ R : x ≤ 0} ∪ {−∞} defined by

σ〈a,b〉(x) =

−∞ if x = 0
b · logax otherwise

is an isomorphism between [0, 1]Π and R−• (sending · to + and
→ to −).

Proof. It is first clear that σ is order preserving: being a ∈
(0, 1), the function loga is monotonically decreasing (in (0, 1])
and being b a negative number, b · loga is monotonically in-
creasing. With the same basic calculations we know that it is
also a bijection and its extension by mapping 0 to −∞ results in
a bijective mapping between [0, 1] and {x ∈ R : x ≤ 0} ∪ {−∞}.

In order to prove it is a homomorphism, it is first clear that
the top and bottom elements are properly mapped between the
two algebras. For what concerns the operations, the results fol-
low naturally using basic properties of the logarithm function.

Let x, y ∈ [0, 1]. If x = 0, then clearly σ〈a,b〉(x · y) =

σ〈a,b〉(0) = −∞ = σ〈a,b〉(0) + σ〈a,b〉(x). On the other hand, if
both x, y > 0, then σ〈a,b〉(x · y) = b · loga(x · y). By the properties
of the logarithm, this is equal to b · (logax + logby) and so to
σ〈a,b〉(x) + σ〈a,b〉(y).

For what concerns the → operation, consider x, y ∈ [0, 1].
If x ≤ y, then σ〈a,b〉(x ⇒Π y) = σ〈a,b〉(1) = 0. On the other
hand, since σ〈a,b〉 is order preserving, we know that σ〈a,b〉(x) ≤
σ〈a,b〉(y) and so σ〈a,b〉(x) −′ σ〈a,b〉(y) = 1 too. If x > y, then
by definition we know that σ〈a,b〉(x ⇒Π y) = σ〈a,b〉(y/x). If
y = 0 then clearly σ〈a,b〉(y/x) = σ〈a,b〉(0) = −∞ = σ〈a,b〉(y) −
σ〈a,b〉(x). Otherwise, σ〈a,b〉(y/x) = b · loga(y/x). Again, by
simple properties of the logarithm function, this is equal to b ·
(logay−logax) which is the definition ofσ〈a,b〉(x)−′σ〈a,b〉(y).

With the previous result in mind, it becomes clear how to
translate each product component from an ordinal sum to a
component formed by 〈R−• , i〉, where i denotes the index of the
original product component. In fact and due to the behavior
of the product algebras, it is enough to translate only the inte-
rior of the product components (to the interior of copies ofR−• ),
and thus we avoid the problem of having the same element ad-
dressed in two ways.8

Let ∗ =
⊕

i∈I〈∗i, (bi, ti)〉 for I a finite indexes set, {∗i}i∈I a set
of operations in {∗Ł, ∗G, ∗Π} ∪ {∗Łn, ∗Gn}n∈Z,n>1, and {(bi, ti)}i∈I a
family of pairwise disjoint open intervals of [0, 1]. Our objec-
tive is to substitute the product fragments (i.e., (bi, ti) such that
∗i = ∗Π) by copies of the R−• properly positioned. First of all,

8 Observe that, naturally, the elements bi of component of these type could
either be referred to by bi ∈ [0, 1], as belonging to the component below, or
by 〈−∞, i〉 and the same happens for ti, which could lead to problems in the
computation of the problem.
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the universe of the new conjunction operation shall be no longer
[0, 1], but is given by

S =
(
[0, 1] \

⋃
i∈I:∗i=∗Π

{(bi, ti)}
)
∪

⋃
i∈I:∗i=∗Π

{〈x, i〉 : x ∈ R, x < 0}

The order relation in S is the natural one, understanding that
the 〈x, i〉 elements (for a fixed i) are placed (strictly) in between
bi and ti Formally the definition is a follows.

Definition 3.4. Let S be the universe defined above and x, y ∈
U. Then x is smaller or equal to y in S (x ≤S y) whenever one
of the following cases holds:

• x, y ∈ [0, 1] and x ≤ y

• x = 〈z, i〉, y ∈ [0, 1] and y ≥ ti

• x ∈ [0, 1], y = 〈z, i〉 and x ≤ bi

• x = 〈z1, i1〉, y = 〈z2, i2〉 with i1 , i2 and ti1 ≤ bi2

• x = 〈z1, i〉, y = 〈z2, i〉 and z1 ≤ z2.

We can define a new strong conjunction operation ∗′ over
the universe S as follows:

x ∗′ y =



x ∗ y if x, y ∈ [0, 1]

min{x, y} if


x ∈ [0, 1] and y = 〈z, i〉 or
x = 〈z, i〉 and y ∈ [0, 1] or
x = 〈z1, i1〉, y = 〈z2, i2〉 and i1 , i2

〈z1 + z2, i〉 if x = 〈z1, i〉 and y = 〈z2, i〉

Clearly, the corresponding residuated operation is given by
x⇒∗′ y =

1 if x ≤S y
x→ y if x >S y and x, y ∈ [0, 1]

y if x >S y and


x ∈ [0, 1] and y = 〈z, i〉 or
x = 〈z, i〉 and y ∈ [0, 1] or
x = 〈z1, i1〉, y = 〈z2, i2〉 and i1 , i2

〈z2 − z1, i〉 if x >S y and x = 〈z1, i〉 and y = 〈z2, i〉

We denote S∗′ the BL-algebra defined from these two oper-
ations over S , i.e.,

S∗′ = 〈S , ∗′,→′, 0, 1〉

Theorem 3.5. Let ∗ be a composed Nice BL t-norm. Then
[0, 1]∗ and S∗′ are isomorphic BL-algebras.

Proof. It is easy to see that we can define an embedding from
[0, 1]∗ into S∗′ that moreover is surjective, by adjusting the
proof of Lemma 3.3. It is just necessary to take into account
a normalization of the values of the product components be-
fore applying the σ mapping defined before (and the identity
function as the mapping from the elements outside the products
components).

For each i ∈ I with ∗i = ∗Π, define the normalization
function ni : (bi, ti) → (0, 1) by ni(x) = x−bi

ti−bi
. Note that for

x, y ∈ (bi, ti), it holds that ni(x ∗ y) = ni(x) · ni(y).

xi
h�vxi

, ii

h�vz, ii

1 1

0 0

bi bi

ti ti

ni
�1(ni(xi)

vz
vxi )

�

h�vxi
· logni(xi)ni(y), iiy

Figure 1: Diagram of the isomorphism σP over a product component

Given that in the case of Lemma 3.3 each pair of elements
from (0, 1)×{z ∈ R : z < 0} determines a different isomorphism,
it is natural that now each set with one of this pairs for each
product component determines different isomorphisms between
the two algebras.

Let then P be a set of pairs of values from the product com-
ponents at each side, i.e., for each P = {〈xi, 〈−vxi , i〉〉 : i ∈
I with ∗i = ∗Π, xi ∈ (bi, ti), vxi ∈ R, vxi > 0}.

We define the function σP : [0, 1]→ S by

σP(x) =

〈−vxi · logni(xi)ni(x), i〉 if x ∈ (bi, ti) for i ∈ I s.t ∗i = ∗Π

x otherwise

Following the same reasoning that in the proof of Lemma
3.3, and taking in consideration that outside the product compo-
nents we have the identity, it is easy to check that σP is injective
and surjective because the identity function and the logarithm
are so. As for proving that σP is a homomorphism, the methods
coincide with those of Lemma 3.3, taking into consideration the
possible types of pairs of elements depending on their position
in [0, 1] for what concerns the components.

Observe that the inverse of σP is the identity function for all
the elements outside a product component and for the rest, it is

σ−1
P (〈−v, i〉 = n−1

i (ni(x
v

vxi
i )).

Figure 1 represents the σ isomorphism in both directions,
where (bi, ti) is a product component.

From the previous theorem, it is immediate that the logics
arising from [0, 1]∗ and those from S∗′ coincide, which allows
us to use the later algebra in order to equivalently compute the
solutions of different questions on the logic.

3.1.3. Rational constants and ∆ operator

Two different ways to expand at propositional level the pre-
viously presented logics are very interesting to point out: truth
constants and the Monteiro-Baaz ∆ projection operator. Both
are natural extensions of the classical fuzzy language and have
been widely studied from a theoretical point of view. On the
other hand, the applicability, or we could even say necessity, of
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this more expressive language from the point of view of appli-
cations is clear: it allows to address a particular variable of the
system and fix its value to a previously known one (that is, use
a constant), or being able to reason differently if a variable is
equal to 1 or not (which is reachable using the ∆ operator).

For what this work is concerned, it is clear how to work
with the ∆ operation, since it has a very determined semantic
definition (over linearly ordered algebras, which is our case).
By definition, in any linearly ordered BL-algebra

∆(x) =

1 if x = 1
0 otherwise

In the case of Nice BL-logics, the two associated algebras we
are concerned with (namely [0, 1]∗ and S∗′ ) are linearly ordered
and so the definition of the ∆ operation coincides with the one
above in both cases. Moreover, it is clear that the σ and σ′

mappings used in the proof of Theorem 3.5 keep behaving as
restricted embeddings when the ∆ operation is also considered.

On the other hand, the inclusion of (rational) truth constants
in the language was the main reason behind the use of the nega-
tive cone of the real numbers instead of that of the naturals when
facing a t-norm containing some product component. The key
fact in order to understand the treatment of constants in these
components is that the function f (x) = xk is an endomorphism
of the standard product algebra [0, 1]Π for any k ∈ Rwith k > 0.
This means that the deductions over [0, 1]Q

Π
coincide with those

over [0, 1]Π with the constants ”moved” in the interior of the
component consistently among them (and left canonically inter-
preted in the non-product components). That is to say, for each
product component, the interpretation of one arbitrary constant
c can be set to any value (different from the top and bottom
elements), and the other ones are evaluated depending on this
value (and on the relation of their names).

In what follows, let ∗ be a composed Nice BL t-norm with
∗ =

⊕
i∈I〈∗i, (bi, ti)〉. Our objective is expanding with ratio-

nal truth constants (and ∆, but this is immediate) the algebra
S∗′ in such a way that the logical deduction over this expansion
coincides with that over [0, 1]Q∗ . This means fixing an interpre-
tation of the constants in this new algebra. For our purposes,
we need not to address a unique rational expansion of S∗ (that
is to say, fix a unique interpretation of the rational constants).
It suffices that, while the constants that fall out of any prod-
uct component maintain their interpretations as rationals from
[0, 1], the other ones are interpreted consistently among them.
Let Ci = [0, 1]Q ∩ (bi, ti) for i ∈ I,that is to say, the rationals
from the component i.

Definition 3.6. We say that an algebra A is a rational expan-
sion of S∗′ when A = 〈S , ∗′,⇒∗′ , 0, 1, {cA

}c∈[0,1]Q〉 and the fol-
lowing holds:

• For i ∈ I such that ∗i = ∗Π there is di ∈ Ci such that di
A

=

〈−vi, i〉 for some vi ∈ R, vi > 0, and for all c ∈ Ci it holds
that cA

= 〈−vi · logn(di)n(c), i〉 (where n stands for the
normalization function defined in the proof of Theorem
3.5).

• For each c ∈ [0, 1]Q such that c < Ci for any i ∈ I such
that ∗i = ∗Π, cA

= c.

Now, the addition of constants slightly changes the formu-
lation of Theorem 3.5 and its proof.

Lemma 3.7. [0, 1]Q∗ is isomorphic to any rational expansion of
S∗′ .

Proof. The proof is analogue to that of Theorem 3.5 in almost
all aspects. The only different point is that of not having an
embedding for each pair of values of the product components,
but now the set of pairs is limited to pairs of constants from
each side. For simplicity on the calculus, we consider these
constants to be the di outlined at the definition of free rational
expansion of S∗′ . Let A be a free rational expansion of S∗′ and
P = {〈di, di

A
〉 : i ∈ I with ∗i = ∗Π, di ∈ (bi, ti) ∩ [0, 1]Q} where

di
A

= 〈−vi, i〉 for some vi ∈ R, vi > 0.
The rest of the proof coincides with the one of Theorem

3.5 and the only point that needs to be checked is that σP is
a homomorphism for the constants too. First, it is clear that
σP behaves as the identity for all the constants whose name is
a rational value outside the product components, and so these
are sent to their interpretation in A. Let c ∈ (bi, ti) where ∗i =

∗Π. By definition of σ we know that σ(c) = σ(c) = 〈−vi ·

logni(di)ni(c), i〉. This coincides with the definition of cA, which
concludes the proof.

As before, this implies that the logic arising from [0, 1]Q
∗

coincides with that of any free rational expansion of S∗′ . It is
natural to see that using the inverse of σ, we can translate a
particular evaluation over any rational expansion of S∗′ A, to
[0, 1]Q∗ , and thus, if we generate an evaluation in A, we can
translate it to the more intuitive framework of [0, 1]Q∗ .

3.2. Some modal expansions

As commented in the preliminaries section, fuzzy modal
logics do not enjoy in general the finite model property, and it is
then unclear whether the process to decide if a formula is valid
or satisfiable in them is decidable. It is not in the scope of this
paper to study this problem, even though in ongoing works we
have proven some undecidabiliy results over product modal log-
ics that will be presented in future publications. Since our main
objective was producing an application useful from a practical
point of view, we also wondered whether a real-world problem
would truly require modal structures with an infinite number
of worlds. For this, we restrict the solver to reason over finite
Kripke structures, even though the logic defined from these may
not fully coincide with the intended modal logic of a continuous
t-norm.

Definition 3.8. Let L be a Nice BL logic with strong conjunc-
tion ∗. We denote by ML the class of finite [0, 1]∗-Kripke mod-
els.

By relying on the results shown in the previous section, the
following characterization is immediate:
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Lemma 3.9. Let L be a Nice BL logic with strong conjunction
∗, and ML

∧
the local modal logic of the class of finite A-Kripke

models, where A is an arbitrary rational expansion of S∗′ . Then

• For any finite set of formulas Γ ∪ {ϕ}

Γ ML ϕ if and only if Γ 
ML

∧ ϕ

• A formula ϕ is locally satisfiable in ML if and only if it is
locally satisfiable in ML

∧
.

This allows us to equivalently work with the second class of
models, in a much more efficient way over Z3.

To treat the problem of generating a finite model (either to
prove that a certain formula is not a theorem, or to prove that
a set of equations are satisfiable), we exploit the notion of wit-
ness of a modal formula in a world. This is, the existence of a
particular world among the successors of the of the original one
where the effective value of the modal formula on the original
world is taken by the non-modal version of the formula. This
clearly exists, since working over a finite model, the definitions
of the � and ♦ operations now become min and max of a set of
values.

Formally and in order to get a clear design of the application
and low computing times, for a given formula (or equivalently,
a finite set of formulas) we generate a Kripke frame (i.e., a re-
striction 〈W,R〉 of a Kripke model) with some additional infor-
mation attached to it. This allows to quickly generate a model
that evaluates a non-theorem to a value less than 1. (and also for
a set Γ∪{ϕ} such that Γ 6|=Kω

L
ϕ), and makes that mNiBLoS does

not impose a maximum cardinality on the models checked. The
construction of this frame is similar to the approach followed by
Hájek in [24] in the context of fuzzy description logics. For our
purposes, we define it here explicitly and in a purely modal way,
since the algorithm is later implemented within mNiBLoS. It is
based on the decomposition of the formulas up to modal level,
which are the elements that end up determining the structure
and complexity of this general frame.

Definition 3.10. Let ϕ be a formula. The set of propositional
subformulas of ϕ, PS(ϕ) is inductively defined by:

PS(p) = {p} for p prop. variable or constant
PS(Mψ) = {Mψ} for M ∈ {�,♦}

PS(ψ&χ) = PS(ψ) ∪ PS(χ)
PS(ψ→ χ) = PS(ψ) ∪ PS(χ)

PS(∆ψ) = PS(ψ)

Using the previously defined set and taking into account that
any formula has a finite number of subformulas (in the usual
sense of the word), it is possible to generate recursively the
structure commented above. It consists on a tree where all the
worlds except for the root one are pairs of the form 〈n,Mψ〉 with
n ∈ N, M ∈ {�,♦} and ϕ ∈ Fm. The Mψ modal formula asso-
ciated to each world indicates that the value of Mψ at the father
of the world (it is only one, since it is a tree) coincides with the
value of ψ in the current world.

0

h1,⇤(x&(⌃x ! ⇤(y&x&⌃y))i

h2,⌃xi

h5,⌃xi

h3,⇤(y&x&⌃y)i

h4,⌃yi

y&⌃x ! ⇤(x&(⌃x ! ⇤(y&x&⌃y))

0

h1,⌃xi

h2,⇤yi

h3,⌃(x&y)i

⌃x&⇤y ! ⌃(x ! y)

Figure 2: Examples of the Skeleton tree

The following algorithm shows how this structure can be
constructed recursively, starting from a structure with only a
root note S = {〈0, ∅〉}, the index of that world ( f = 0), that
indicates the father of successor worlds that will be added to
the structure, and an empty set of accessibility relations R = ∅.
We write mod(χ) to the denote the function that returns true if χ
is of the form Mψ and false otherwise. Also, for a set of worlds
as the above one, we denote by last(S ) the greatest index in the
worlds from S .

Skeleton(Formula, S, R, f):
NewS = S
NewR = R
MPS(Formula) = {g in PS(Formula) such that mod

(g)}
if MPS(Formula) is empty, return S, R

otherwise do:
for each g in MPS(Formula) do:
newIndex = last(NewS)+1
NewS = NewS U < newIndex, g >
NewR = NewR U < f, newIndex >
NewS, NewR = Skeleton(g, NewS, NewR,

newIndex)

Figure 2 shows some examples of this construction.
The Skeleton algorithm generates a finite tree for a given

formula ϕ, with maximum depth given by the maximum num-
ber of nested modalities in ϕ (MMD(ϕ)). Following the al-
gorithm, it is easy to check that that the size of the skeleton
tree (i.e., the number of worlds of the frame) is given by the
amount of modal operators appearing in the formula. Indeed,
a new world is only added for each formula beginning by � or
♦. If several formulas are involved in the problem, the Skeleton
frame for all of them is simply the one resulting from calling the
algorithm with the conjunction of all the formulas involved (re-
call this is always a finite set, so this operation is well defined).

We can see that this skeleton is enough in order to ”witness”
the value of a formula in a particular world from an arbitrary
model.

We say that 〈W,R〉 is a restriction of 〈W ′,R′〉whenever W =

W ′ and for each v,w ∈ W2 it holds that R(v,w) ≤ R′(v,w).

Lemma 3.11. Let M = 〈W,R, e〉 be a finite ∗-kripke model,
w0 ∈ W and ϕ a formula. Then, there is a model U =

〈WU ,RU , e′〉 where 〈WU ,RU〉 is a restriction of the S keleton(ϕ)
frame and

e(w0, ϕ) = e′(0, ϕ)

(where 0 is the root of the skeleton tree).
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Proof. Let us define the set of witnessing worlds of a modal
formula inM by

WS (M,w, Mψ) =

{v ∈ W : e(w,�ψ) = R(w, v)⇒∗ e(v, ψ)} if M ≡ �
{v ∈ W : e(w,♦ψ) = R(w, v) ∗ e(v, ψ)} if M ≡ ♦

Since W is finite, we know the model is witnessed, and thus, the
previous set is always non-empty, and we can chose an arbitrary
element from it and denote it by wit(M,w,Mψ).

We can consider a submodelM′ofM that behaves likeM in
all the subformulas of ϕ. We endow each world (except for the
initial one) with information related to whose is this a witness-
ing successor, and for which formula. Namely, let

W0 = {〈w0,−1, ∅〉}
W1 = {〈wit(M,w0,Mψ),w0,Mψ〉 : Mψ ∈ PS (ϕ)}
Wi+2 = {〈wit(M, v,Mψ), v,Mψ〉 : 〈v,M1ψ1〉 ∈ Wi+1,Mψ ∈ PS (ψ1)}

For some k it holds that Wk = ∅, since ϕ is a formula (and
as such, it has finite modal depth). Let W ′ =

⋃
1≤i Wi and put

R′(〈w1, f1, δ1〉, 〈w2, f2, δ2〉) =

R(w1,w2) if f2 = w1

0 otherwise

and
e′(〈w, f , δ〉, p) = e(w, p)

for each propositional variable p
First, observe that since M′ is a submodel of M that al-

ways preserves some successor of each world, it holds that
e′(〈v, f , δ〉,�ψ) ≥ e(v,�ψ) and e′(〈v, f , δ〉,♦ψ) ≤ e(v,�ψ) for
each 〈v, f , δ〉 ∈ W ′ and any formula ψ. On the other hand,
we can prove by induction on the formula complexity that
e′(〈w, f ,�ψ〉, ψ) = e(w, ψ).

It is obvious for ψ being a propositional variable or a for-
mula whose main connective is non-modal. For the case of
modal operators, let us consider the case �. By definition,

e′(〈w, f ,��ψ〉,�ψ) =

min{R′(〈w, f ,��ψ〉, 〈u, f2, χ〉)⇒∗ e′(〈u, f2, χ〉, ψ)}

Since by construction 〈wit(M,w,�ψ),w,�ψ〉 ∈ W ′, we have

min{R′(〈w, f ,��ψ〉, 〈u, f2, χ〉)⇒∗ e′(〈u, f2, χ〉, ψ)} ≤

R′(〈w, f ,��ψ〉, 〈wit(M,w,�ψ),w,�ψ〉) ⇒∗

e′(〈wit(M,w,�ψ),w,�ψ〉, ψ)

By definition of R′ and applying induction hypothesis this
is equal to R(w,wit(M,w,�ψ)) ⇒∗ e(wit(M,w,�ψ), ψ) which
equals to e(w,�ψ). Since the “≥” direction follows from the
fact thatM′ is a submodel ofM, this proves the case. The proof
of the ♦ operator is analogous.

On the other hand, in a very similar fashion and using
that e′(〈w, f ,�ψ〉, ψ) = e(w, ψ), it is not hard to check that
e′(〈w0,−1, ∅〉, ϕ) = e(w0, ϕ). The propositional cases are again
immediate. For any formula �ψ in the propositional subfor-
mulas of ϕ, observe that the world 〈wit(M,w0,�ψ),w0,�ψ〉 ∈
W1 ⊂ W ′, so we have

e′(〈w0,−1, ∅〉,�ψ) ≤

R′(〈w0,−1, ∅〉, 〈wit(M,w0,�ψ),w0,�ψ〉) ⇒∗

e′(〈wit(M,w0,�ψ),w0,�ψ〉, ψ)

By R′ and applying induction hypothesis this is equal to
R(w0,wit(M,w0,�ψ)) ⇒∗ e(wit(M,w0,�ψ), ψ) and so, to
e(w0,�ψ). Again the “≥” direction holds since M′ is a sub-
model of M, so this concludes the step. The ♦ case can be
proven analogously.

At this point it only lacks to check that M′ is in fact a re-
striction of the frame S keleton(ϕ). This can be easily done by
mapping each world from S keleton(ϕ) into W ′ with a func-
tion σ as follows. For simplicity, for 〈w, f , δ〉 ∈ W ′ we let
N(〈w, f , δ〉) = w.

σ(0) = 〈w0,−1, ∅〉
σ(〈w, Mψ〉) = 〈wit(M,N(σ( f ather(〈w, Mψ〉))), Mψ)

,N(σ( f ather(〈w, Mψ〉))), Mψ)〉

Observe that, by construction of S keleton(ϕ) and ofM′, the
image under σ of any word belongs indeed to W ′. Moreover, if
〈w1, M1ψ1〉 is not related with 〈w2, M2ψ2〉, in the definition of R′

we have also imposed that R′(σ(〈w1, M1ψ1〉), 〈w2, M2ψ2〉) = 0,
soM′ is indeed a restriction of S keleton(ϕ).

With the previous lemma we have shown that the problem
of determining whether a formula (or a derivation) is is true
in all the finite A-Kripke models and the problem of local 1-
satisfiability over finite A-Kripke models is decidable, for A
being any rational expansion of S∗′ (and in particular, also for
A being an standard BL-algebra). Moreover, the computational
complexity of these problems is of the same order than in the
propositional case. The is to say (see [23] or [20]), coNP-
complete for what concerns the theoremhood and derivation
problems and NP-complete in the case of 1-satisfiability.

4. mNiBLoS

4.1. Design issues

The software application presented here, mNiBLoS, per-
forms, over a certain Nice BL logic L with strong conjunction
∗, three possible operations over ML (see 3.8) (the modal ex-
pansion of L):

1. checking whether a formula is a theorem of ML,
2. checking whether a pair formed by a sequence of

premises and a formula hold in the local consequence of
ML,

3. checking whether a set of equations is locally satisfiable
in ML (i.e., hold at some world of some finite A-Kripke
model for A being some rational expansion of S∗′ ) and
providing such model if the answer is affirmative.

It is implemented in python, and an outline of the appli-
cation is first generating a .smt2 file based on the inputs of the
user, which will be the argument of the SMT-solver (in our case,
Z3) and then, processing the output message. The main design
decisions are based on the theoretical results explained in the
previous section, and concern the structure of the .smt2 file gen-
erated. We can remark two main points where the design has
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played an crucial role in the latter development of the applica-
tion.

The first consideration is that we encode the (logical) vari-
ables from the formulas as arrays of length n of pairs, where n is
the number of worlds generated in the Skeleton structure from
in the previous section associated to the original set of formulas.
First, we encode each “local” variable (meaning each variable
at each world) as a pair in order to be able to easily work with
the product components: in the first element of the pair encod-
ing each variable we store the index of the (product) component
in the ordinal sum, or a fixed index that indicates that the com-
ponent is not a product one; the second element of the pair is the
value taken by the variable in [0, 1] (if the component is not a
product one) or inR−• . Second, we consider each variable as an
array of length n since this is a very natural way to encode the
value of the whole variable at each world in the model. This can
be avoided (for instance, if we prefer to use a SMT-solver that
does not implement this theory) by simply letting each variable
split in n new ones, but the use of arrays strongly enhances the
readability of the code. On the other hand, since conceptually
this two things are the same, it is clear that Lemma3.1 must now
be adapted, and it is necessary to take into account that now the
number of Łukasiewicz components necessary to equivalently
compute a task over BL is changed. If we are dealing with a
set of formulas with k variables and a Skeleton structure gen-
erated from these formulas with cardinality n, the number of
Łukasiewicz components necessary is be k · n + 1.

On the other hand, the use of R−• instead of the usual cod-
ification for the product components is not completely correct
for what concerns the truth constants behavior. This is due to
the fact that the exponential function, keystone in the construc-
tion of the isomorphism from Theorem 3.5, is not implemented
in general in the real arithmetic, since it is not known whether
the resulting system is decidable (this is known as Tarski’s ex-
ponential function problem). Thus, it is not possible to exactly
calculate the values of the constants in R−• in such a way that
the bijection is maintained. Our partial solution for this prob-
lem has been forcing a slight modification of the values given
by the user in the product component (except of one, c0, used as
reference), in such a way that the logarithm in base c0 of these
new values are a rational numbers. The modification in this
case depends on the sensibility of the programming language:
the value given by the user and the one used in the reasoner are
indiscernible in the used language. In our case we have a sen-
sibility of 16 decimal numbers. It is also important to remark
that the reasoning over BL does not make any treatment on the
constant symbols. Observe that we are working with an algebra
that has the same behavior as BL, but that does not include con-
stants appart from {0, 1} since we could have chosen any other
algebra isomorphic to (n + 1)Ł. For this reason, the constants,
interpreted canonically, might not behave as the user expects.

4.2. Experimental results

In order to check the efficiency of mNiBLoS, we have run
several tests9 to obtain consistent timings of different logics and
operations, and compared, when possible, the execution times
with other two solvers from the literature that share some of
the problems treated by mNiBLoS. In this latter sense, we have
executed some tests to compare our solver with fuzzyDL (see [9,
11]) concerning 1-satisfiability over Łukasiewicz logic (which
is the only common logic between mNiBLoS and fuzzyDL), and
we have also repeated the tests shown in [5] concerning validity
of formulas over Łukasiewicz Gödel and product logics.

In the first case, we have executed 1-satisfiability over ran-
domly generated formulas of increasing length (understanding
this as number of connectives and variables) and number of
different variables, and it is remarkable that, even if mNiBloS
has a quite good behavior (solving times for formulas of length
around 2000 and 400 different variables are around 35 seconds),
fuzzyDL is extremely better (giving for the same formulas solv-
ing times of at most 2 seconds). This is possibly due to sev-
eral factors that strongly differentiate the two solvers: on the
one hand, fuzzyDL implements several optimization techniques,
while mNiBLoS relies on Z3 solver on this matter. This is
clearly less efficient, since being much more specific, fuzzyDL
can implement tools more oriented to the particular problem
of 1-satisfiability over this particular logic. On the other hand,
while mNiBLoS does not rely on reducing the universe of truth
values to a finite one (among other reasons, because otherwise
theoremhood cannot be computed), fuzzyDL is based on this
semantical simplification, which most probably results on very
good results. It is an interesting open problem to study which
ones of the optimization methods shown in fuzzyDL can be
adapted to our framework, and to observe if, concerning the
1-satisfiability problem, it is possible to reduce the universes of
the Łukasiewicz and Gödel components to finite ones, and to
check if this reduction is well behaved in terms of efficiency
under Z3 or other SMT solvers. 10

On the other hand, the main objective of mNiBLoS was
not solving 1-satisfiability over Łukasiewicz logic (which are
the main fuzzy solvers existing already in the literature, as we
remarked in the introduction of this paper), but rather on of-
fering a large family of t-norm based logics to work with, and
also solving not only 1-satisfiability but also validity and logical
consequence problems. For this, even if the previous compar-
ative did not show a n improvement with respect to fuzzyDL,
we believe the efficiency of mNiBLoS is not well represented
under the previous tests, but by a larger family of proves we
proceed to detail.

Aiming towards a comparative with the results in [5], our
first test-bench for theoremhood proving is the set of axioms of
BL with a generalization based on a natural parameter. Namely,

9We have run two kind of intensive tests over mNiBLoS, over a machine
with a 3.1 GHz I5-2400 processor and 8GB of RAM.

10We have partially implemented the previous reduction, and observed that
the behavior of Z3 under this integer-based semantics does not entail a real
enhancement. This can be due to the methods internally used by Z3 to treat the
integers and reals theories.
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the following family of formulas is checked, variying n ∈ N\{0}

(A1) (pn → qn)→ ((qn → rn)→ (pn → rn))
(A2) (pn&qn)→ pn

(A3) (pn&qn)→ (qn&pn)
(A4) (pn&(pn → qn))→ (qn&(qn → pn))
(A5a) (pn → (qn → rn))→ ((pn&qn)→ rn)
(A5b) ((pn&qn)→ rn)→ (pn → (qn → rn))
(A6) ((pn → qn)→ rn)→ (((qn → pn)→ rn)→ rn)

(1)

Evaluating the validity in Łukasiewicz and Gödel logics of
the generalizations of the log BL axioms (1), ranging n from 0
to 500 with increments of 10, throws in general slightly better
results than the ones obtained in [5], but since the new solver
coincides, on these logics, with the one proposed by them, this
can be assumed to be due to the use of different machines.
For product logic, however, much better timings were obtained.
The difference of using linear arithmetic instead of non-linear
one is clear: complex formulas are solved in a comparatively
short time, whereas in [5] they could not even be processed in
most of the cases. On the other hand, there are no remarkable
differences between the results on the product logic case pre-
sented here and the ones given in [35], implemented over lineal
integer arithmetic. It is remarkable that there is a high level
of irregularity when proving theoremhood of certain axioms,
while others behave more regularly, as in the Łukasiewicz or
Gödel cases. We conjecture this is due to the intrinsic shape of
the formulas, but why does this only happen over the product
logic is not known. We show in Figure 3 the cases of Axiom 3
and Axiom 4, that illustrate the two kind of response we have
obtained.

Remarkably, the functions showed seem to follow a poly-
nomial shape. This lead us to observe that the equations in (1)
might not be a representative test bench for a BL-logics solver.
In [5] the authors refer to [29] to justify why these formulas
can be considered a good test bench for (at least) Łukasiewicz
logic. In our opinion, these formulas have the problem of using
only three variables. We consider this is a serious drawback be-
cause the known results on complexity of BL-logics state that
Łukasiewicz validity is an coNP-complete problem when the
number of variables in the input is not fixed. However, it seems
likely that tautologicity for formulas with three variables can be
solved in polynomial time.

With this in mind, to overcome the drawback of the bounded
number of variables, we present an alternative family of BL-
theorems to be used as a bench test.

For every n ∈ N \ {0},

n∧
i=1

(&n
j=1 pi j) →

n∨
j=1

(&n
i=1 pi j) (2)

is a BL-theorem which uses n2 variables; the length of these for-
mulas grows quadratically with n. As an example, we note that
for n = 2 we get the BL-theorem

(
(p11&p12) ∧ (p21&p22)

)
→(

(p11&p21)∨(p12&p22)
)
. These formulas can be considered sig-

nificantly harder than the ones from 1; indeed, the experimental
results support this claim. It is important to notice that the nat-
ural way to compare this new formula with parameter n with
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Figure 3: Generalizations of BL-axioms given in (1).

the previous set is to consider the formulas from [29] with the
integer part of

√
n as parameter.

The experiments done with (2) (see Figure 4 for the re-
sults) suggests that here the evaluation time is growing non-
polynomially on the parameter n. In the graphs we give here,
only those answers (for parameters n ≤ 70) obtained in at most
3 hours of execution are shown (e.g. for the log BL case an-
swers could be reached within this time only for the problems
with n ≤ 4). The high differences in time when evaluating the
theorems were not surprising: Gödel and product logics answer
quite fast thanks to the easy computation of the operations, Łu-
kasiewicz logic is a bit harder, probably due to the fact that
the connective operations require more effort, and BL is the
more complex with a large difference since the method used for
log BL (considering n2+1 copies of Łukasiewicz, where n is the
parameter of the formula) implies a harder internal reasoning.

To test the efficiency of a family of modal formulas of in-
creasing modal complexity (in terms of the size and depth of
the skeleton structure generated by them), we have run tests on
validity over the family of formulas of the form:

p1&�(p2&�(. . .�(pn−1&�pn) . . .)) (3)

Figure 5 show the execution times obtained in the previous
tests. It can be seen that execution times are quite high, even for
an small parameter n, with an exponential behavior. It is likely
that a recursive simplification of the formulas (as it is done, for
instance, in fuzzyDL), and also optimization strategies oriented
to cut down execution times in particularly simple examples as
the above one might result in better results on this matter. How-
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Figure 5: Theoremhood of the formulas from Equation 3

ever, if we compare this results with the ones from Figure 8,
we can observe that including modalities does not necessarily
imply such long times of execution, but rather the fact that they
are all nested in the formulas from Equation 3.

With the aim of understanding the behavior of mNiBLoS
when faced with a more irregular set of formulas, we designed
and implemented a test that produces random formulas of vary-
ing length (understanding this as number of connectives and
variables) and number of different variables. Using these, we
have executed several kind of tests over the solver, in order to
determine particular behaviors or patterns. In order to reduce ir-
regularities due to marginal kinds of formulas we run each step
of our tests (i.e., each coordinate 〈length of the formula, number
of variables〉) with 10 different formulas (with the same param-
eters), and then obtain the average.

The following tests show, for different expansions of Łuka-
siewicz, Gödel, product and BL logics, the times of response of
mNiBLoS trying to determine whether a formula with certain
length and number of variables is a theorem of the logic or not.

In figure 6, we show the times considering the previous four
logics alone, that is, without accepting constants in the language
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Figure 6: Random formulas, no constants nor modalities
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and not using modalities.
Some characteristics of these graphs fit into our expecta-

tions, but we can only guess concerning some other points of
the experiment. If we focus on the graph showing product logic
execution times, it seems clear that the alternative semantics
of the product components plays a central role in the system:
mNiBLoS treats product logic almost as fast as Gödel logic in
this randomized framework. We consider this to be a very inter-
esting result, since in the only previous works treating product
logic, this one was by far the slowest one, and its faster com-
putation can open the door to more demanding applications re-
lying on the product t-norm. Moreover the relatively fast in-
crement in the reasoning times of BL was expected from the
fact that the t-norm used internally in that case is much more
complex than just one component of the basic ones (it directly
depends on the number of variables).

The graphs obtained show a certain relation of the answer-
ing times and the relation between the length of the formula and
the number of variables appearing in it. Similar in some sense
to the face transition we can find in classical logic, we can see
a peak on the execution times along the line where the rela-
tion length/# variables is between 6 and 8. This is a fact worth
noticing, and in ongoing works this is being further developed
in the particular case of the 1-satisfiability problem for general-
ized clausal forms over Łukasiewicz logic (see [12, 13]). In the
other logics, this relation is not as remarkable, but nevertheless
some interesting general behaviors can be seen. First, in the
case of Gödel logic, the increasing in the number of variables
over a fixed length of the formula does not add a very signifi-
cant difference on the execution times. On the other hand, while
the maximum values on the graph corresponding to the product
logic are within the same range as the ones in Gödel, here the
number of variables indeed modifies the execution times.

Finally, we guess that the BL case does not show a behavior
similar to that of Łukasiewicz in this sense simply because the
large increasing in the complexity due to the addition of vari-
ables (which make the logic much more complex, adding new
Łukasiewicz components to the ordinal sum) makes unnotice-
able any other variation.

Concerning the addition of constants to the language, the
results are clearly fastened, see Figure 7. Using constants sim-
plifies the calculus because, in a sense, they behave like vari-
ables that do not need to be tested by the solver. For this, the
ratio length vs. number of variables of the formula gets much
larger with the same execution times.

On the other hand, concerning the modal tests, the first re-
sult that we want to remark is that the time of preprocessing of
the modal formulas (that is, the creation of the skeleton struc-
ture and of the code concerning the variables management) does
not add any valuable time to the total reasoning time (<2ms in
the worst cases). This happened also in the previous tests, but
it is in the modal case where a more intensive preprocessing of
the data is done .

The graphs in Figure 8 show some examples when adding
modal operators to the formulas’ language.

The processing times of formulas with modalities are much
higher than in the previous cases. This is reasonable, since the
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Figure 7: Random formulas, constants and no modalities
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calculus are in some sense multiplied by the modal complex-
ity of the formula (the skeleton it generates). Up to formulas
of length 60, the solver is able to produce the answer in a quite
short time (no more than 2 seconds in the worst cases), but when
we consider more complex formulas, the reasoning times suf-
fer an almost exponential increasing. We have observed, after
repeatedly running the same tests, that the decreasing on the an-
swering times on certain number of variables is not an isolated
behavior (see the graph of product logic in Figure 8), but we do
not know what can be the reason behind this. It is remarkable
nevertheless that the solver works quite well up to formulas of
length up to 80 elements and up to 25-30 variables, which we
consider to be a good result for a first attempt on automated
reasoning over infinitely-valued modal logics.

5. Conclusions and future work

We consider our objective of offering a tool that allows in
a reasonably easy way to work with modal fuzzy logics has
been reached with mNiBLoS. The theoretical results on these
logics have allowed us to implement a quite efficient solver for
a large family of fuzzy logics, and while the tasks originally
implemented in mNiBLoS are the most basic ones, the modular
codification allows to easily build add-ons if some other task is
find of interest. With this in mind, the whole code of mNiBLoS
can be freely downloaded from the web of the author.

The author is currently working on some problems related
with the present paper, namely decidability problems for modal
fuzzy logics, and topics related with the understanding and ex-
ploitation of generalized forms of conjunctive normal form for-
mulas in a fuzzy setting. Several other interesting problems
remain unsolved after this work, of which we remark the fol-
lowing ones.

• Improvement of the efficiency of mNiBLoS by devel-
oping and adapting optimizing algorithms used in FDL,
studying which ones are applicable in an infinitely-valued
setting without (in general) an involutive negation.

• Better understanding of fuzzy logics via intensive test-
ings. For instance, we have not observed a relation, in the
tests shown in Figure 6 and the following ones, between
the answering time of mNiBLoS over a certain formula
and whether it is or it is not a theorem of the logic. How-
ever, it is remarkable than theoremhood seemed to fol-
low, in some cases, certain patterns concerning the length
and number of variables of the formulas. Not only that:
between our randomly generated formulas, it was much
more common to get a non-theorem that a theorem, even
though the cardinality of both sets is the same. All these
are points worth noticing and an intensive study of these
behaviors could offer a deeper understanding of logics
based on continuous t-norms.

• Study of industrial applications that could benefit from
using logics based on continuous t-norms. Interaction
with a more applied community in order to determine

other interesting features of a solver for fuzzy logics that
might be of interest.

• Study of the complexity of the validity and 1-satisfiability
problems over arbitrary modal expansion of continuous
t-norm based logics (non limited to finite models). Im-
plementation of some of these problems, relying in first
order logics solvers and semi-decidable strategies when
they are undecidable.
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[20] P. Cintula, P. Hájek, and C. Noguera, editors. Handbook of Mathematical
Fuzzy Logic, 2 volumes, volume 37 and 38 of Studies in Logic. Mathe-
matical Logic and Foundation. College Publications, 2011.

[21] L. Mendonça de Moura and N. Bjørner. Z3: An efficient SMT solver. In
C. R. Ramakrishnan et al. editors, Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the ETAPS 2008, p.337–340, 2008.
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