
MASTER IN PURE AND APPLIED LOGIC

Universitat de Barcelona
Universitat Politècnica de Catalunya

IIIA-CSIC

Supervised by

Félix Bou and Llúıs Godo
Barcelona - September 17, 2012

NiBLoS: A Nice BL-logics Solver
A solver for most BL-chains

based fuzzy logics

Amanda Vidal Wandelmer

Contents

Chapter 1. Introduction 1

Chapter 2. Basic Logic and its extensions 3
2.1. BL-algebras 3
2.2. BL-chains 5
2.2.1. Concrete Examples of BL-chains 6
2.2.2. BL-chains constructions 9
2.3. Logics 12
2.4. Further relevant results on BL-logics 15
2.4.1. The treatment of the logic BL 15
2.4.2. Finiteness on Infinite Valued Fuzzy Logics 15
2.4.3. An alternative ordinal sum representation 16
2.5. Extensions of BL 21
2.5.1. Constants 21
2.5.2. Baaz’s projection 22

Chapter 3. Complexity Issues 23
3.1. Computational Complexity 23
3.2. Complexity in a many valued frame 24
3.2.1. Lukasiewicz logic 25
3.2.2. Gödel and Product logic 25
3.2.3. Finitely-valued logics 25
3.2.4. Basic Logic 26
3.2.5. BL-chains 26

Chapter 4. Satisfiability Modulo Theories 27
4.1. The Satisfiability Problem 27
4.2. Formal Definitions 28
4.2.1. SAT encodings 29
4.2.2. SMT-solvers approach 30
4.3. Standardisation: Language and Solvers 32

Chapter 5. NiBLoS: The New Solver 35
5.1. What does it do? 35
5.2. Theoretical basis 36

iii

iv 0. Contents

5.3. Usage 39
5.3.1. Pre execution 39
5.3.2. Inputs 39
5.3.3. Internal details 42
5.3.4. Output 47
5.3.5. Examples 48
5.4. Experimental Results 50
5.4.1. Data 51
5.5. The discrete solver 52

Chapter 6. Related Works and Conclusions 55
6.1. Related Works 55
6.2. Conclusions 56
6.3. Future Work 57

Bibliography 59

iv

CHAPTER 1

Introduction

To the best of our knowledge, little attention has been paid to
the development of a solver for systems of mathematical fuzzy logic.
There exist some theoretical works about the approach to the practical
treatment of Lukasiewiczlogic [Rot07, SJV12, SJVC09, BS09] and
there is also an important number of studies on complexity and proof
theory on fuzzy logics too, but a working application that copes with
the most common fuzzy logics has still not been implemented.

We consider this is a problem that limits the use of fuzzy logics in
real applications, mainly in the field of Artificial Intelligence, where sev-
eral theoretical proposals using these logics have long been presented.
On the other hand, no solvers for infinitely many valued fuzzy logics
have been implemented in any way, which is very interesting from a
theoretical point of view for the logic community as a practical chal-
lenge for testing the theoretical results, finding concrete examples and
working with infinitely valued (continuous) concepts.

In [ABMV12], a new approach for implementing a theorem prover
for Lukasiewicz, Gödel and Product fuzzy logics using Satisfiability
Modulo Theories was proposed. The idea of using Satisfiability Mod-
ulo Theories solvers for this problem was new and the results were
interesting for Lukasiewicz and Gödel logics because the results were
optimistically efficient. Also, the modularity this approach enjoys al-
lows to naturally cope with several fuzzy logics. However, in the case
of Product logic, the results were far from being satisfactory.

In the present work, we give details on the theoretical basis neces-
sary for the extension of Ansótegui’s et al. work to an application that
is able to solve problems over a wider family of BL-chains. We present
the implementation details and the obtained results of NiBLoS, a new
solver which is a generalization of the one shown in [ABMV12], that
allows the use of a wide family of logics and the resolution of a bigger
set of problems, and that works (on the problems for which any compa-
ration is possible) more efficiently that the previous existent reasoners.
Our research has led to the implementation of a reasoner that is able
to more efficiently cope with all continuous t-norm based fuzzy logics

1

2 1. Introduction

and with a set of logics defined by certain BL-chains (the ones that
are expressed as some sum of the three main L, G and Π t-norms and
finitely-valued logics of the families Gn and Ln) and also with Basic
Fuzzy Logic BL. Its tasks have also been generalized and the reasoner
can perform satisfiability, theoremhood and logical consequence checks
for any of a wide family of these fuzzy logics. A preliminary version of
this research has been accepted in the Scalable Uncertainty Manage-
ment (SUM) 2012 Conference [VBG12]. A longer version, available
online, is [VBG12].

This Master Thesis is organized as follows:
In Chapter 2 a description of Basic Logic (BL) and its main ex-

tensions, and the theoretical basis necessary for the design of the final
solver are detailed.

In Chapter 3 an overview on the complexity of the worst case sce-
nario for the previously detailed family fuzzy logics is given so the in-
terested reader can have in mind the kind of problems we are working
with.

In Chapter 4 it is done a study on Satisfiabilty Modulo Theories,
comprehending the several existing theoretical approaches implemen-
tation techniques and the reasons that lead to the use of SMT and
specifically, of the SMT-solver we have finally chosen, for the design
and implementation of the fuzzy logics solver.

In Chapter 5, a detailed description of the main results of this re-
search is presented, namely a complete specification NiBLos, the solver
we have developed for working over a wide family of BL-chains based
fuzzy logics. Details on the theoretical approach, the technical im-
plementation and the obtained results are shown. Also we comment
here the results about an alternative solver that works over discrete
algebras.

Finally, in Chapter 6 a review on existing related works is given,
and also a section presenting the conclusions reached after this research
and the future works continuing this line we propose.

2

CHAPTER 2

Basic Logic and its extensions

Hájek presented in [Háj98] a basic logic (BL) that was a common
fragment of the most well known existing fuzzy logics until that date,
namely Lukasiewicz, Gödel and Product logic. It is well known that
the variety BL of BL-algebras is the equivalent algebraic semantics
for Hájek’s basic fuzzy logic BL. Thus, subvarieties of BL naturally
correspond to schematic extensions of BL, i.e., to sets that are closed
under substitution and Modus Ponens. The algebraic counterparts of
the three logics commented above are the varieties of MV-algebras,
Gödel-algebras and Product-algebras (respectively denoted byMV , G
and Π).

A second reason for introducing BL was the search of the logic of
all continuous t-norms and their residuals. In [CEGT00] it is shown
that BL is in fact complete with respect to the class of the so called
t-norm BL-chains.

In this chapter, we will give an overview of the most important defi-
nitions for understanding and working with BL and its main schematic
extension logics and its algebraic counterparts, i.e. BL-algebras and its
main subvarieties. Also, we will recall several important results about
these logics that will be later applied.

2.1. BL-algebras

The logic BL was initially presented as an axiomatic system later
proved complete with respect to a class of algebras.

The class of algebras to which BL is complete is defined as follows:

Definition 2.1.1. A BL-algebra is an algebra

A = 〈A, ∗,→,∧,∨,⊥,>〉
where

(1) 〈A,∧,∨,⊥,>〉 is a lattice with largest element > and least
element ⊥ (with respect to the lattice order ≤),

(2) 〈A, ∗,>〉 is a commutative semigroup with unit element >, i.e.
for all a, b, c ∈ A it holds that
• a ∗ b = b ∗ a

3

4 2. Basic Logic and its extensions

• (a ∗ b) ∗ c = a ∗ (b ∗ c)
• > ∗ a = a,

(3) ∗ and → form a residuated pair, i.e.

for all a, b, c, a ∗ b ≤ c iff b ≤ a→ c,

(4) for all a, b ∈ A, a ∧ b = a ∗ (a→ b),
(5) for all a, b ∈ A, (a→ b) ∨ (b→ a) = >.

Remark 2.1.2. Extra operations are defined from the existing ones
as follows:

¬x := x→⊥
x↔ y := (x→ y) ∧ (y → x)

A more general concept, namely that of hoops, concerning BL-
algebras will be used in the following section. The natural idea is to
present an algebra with operations ∗,→ that maintains some of the
characteristics of the BL-algebras, but might not have a minimum. It
has been proved to be useful in the study of BL-algebras.

Definition 2.1.3.

(1) A hoop is an algebra A = 〈A, ·,→,>〉 such that 〈A, ·,>〉 is a
commutative monoid and for all a, b, c ∈ A
• a→ a = >
• a · (a→ b) = b · (b→ a)
• a→ (b→ c) = (a · b)→ c

(2) A bounded hoop is an algebra A = 〈A, ·,→,⊥,>〉 such that
〈A, ·,→,>〉 is a hoop and ⊥≤ a for all a ∈ A.

(3) A basic hoop is a hoop that satisfies the equation(
((x→ y)→ z) · ((y → x)→ z)

)
→ z = >

This also leads to an alternative characterization of BL-algebras as
follows:

Lemma 2.1.4. Let A = 〈A, ∗,→,∧,∨,⊥,>〉 be an algebra. Then
A is a BL-algebra iff 〈A, ∗,→,⊥,>〉 is a bounded basic hoop and

x ∧ y = x ∗ (x→ y)

x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x)

are valid equations in it.

We will denote the variety of BL-algebras by BL. There are three
important subvarieties of BL.

Definition 2.1.5.

4

2.2. BL-chains 5

(1) An MV-algebra (Many-Valued-algebra) is a BL-algebra in
which the identity

¬¬x = x

is valid. We will denote by MV the variety of MV-algebras.
(2) A G-algebra (Gödel-algebra) is a BL-algebra in which the

identity

x ∗ y = x ∧ y
is valid. We will denote by G the variety of G-algebras.

(3) A Π-algebra (Product-algebra) is a BL-algebra in which the
identities

x ∧ ¬x = ⊥
¬¬z → ((x ∗ z → y ∗ z)→ (x→ y)) = >

are valid. We will denote by P the variety of Π-algebras.

2.2. BL-chains

We are interested in studying a concrete type of BL-algebras called
BL-chains. A BL-chain is a BL-algebra whose universe is totally or-
dered by the order defined through ∧,∨ (i.e. the other such that
a ≤ b iff a ∧ b = a). We are interested in the class of BL-chains
because BL is complete with respect to it. The completeness of BL
with respect to the class of BL-chains comes from the well known fact
([Háj98, Lem. 2.3.16]) that each BL-algebra is a subalgebra of the
direct product of a system of BL-chains.

Definition 2.2.1. A continuous t-norm ∗ is a continuous map-
ping from [0, 1]2 into [0, 1] (in the classical topological sense) such that

(1) ∗ is commutative and associative, i.e, ∀a, b, c ∈ [0, 1],
− a ∗ b = b ∗ a,
− (a ∗ b) ∗ c = a ∗ (b ∗ c).

(2) ∗ is non-decreasing in both components, i.e., ∀a, b, c ∈ [0, 1],
− a ≤ b implies a ∗ c ≤ b ∗ c,
− a ≤ b implies c ∗ a ≤ c ∗ b.

(3) 1 ∗ a = a and 0 ∗ a = 0 ∀a ∈ [0, 1]

For each ∗ operation of a BL-algebra a unique residuum is implicitly
defined (from point (3) in Definition 2.1.1). An explicit specification is
given by the following lemma.

5

6 2. Basic Logic and its extensions

Lemma 2.2.2. Let A = 〈A, ∗,→,∧,∨,⊥,>〉 be a BL-algebra. Then,
the → operation, called the residuum of ∗, is uniquely determined as
the function → : A× A −→ A such that for all a, b ∈ A,

a→ b = max{c ∈ A : a ∗ c ≤ b}

For any continuous t-norm ∗, a BL-chain can be given over the uni-
verse [0, 1] such that ∗ is its conjuntion operation, i.e. A = 〈[0, 1], ∗,→
,∧,∨, 0, 1〉, where → is the residuum of ∗.

The BL-chains defined over [0, 1] are called standard BL-chains,
and the class of all standard BL-chains will be denoted by BLst.

Definition 2.2.3. Let ∗ be a continuous t-norm and→ its residuum.
Then, the algebra [0, 1]∗ := 〈[0, 1], ∗,→,∧,∨,⊥,>〉 (where ∧ = min,
∨ = max, ⊥= 0, > = 1,) is a standard BL-chain, called the standard
*-algebra.

The class of standard BL-chains is a very important family of BL-
algebras because it is proved (see [CEGT00]) that BL is complete
with respect to the standard BL-chains. Also it is proven that each
one of the subvarieties of BL-algebras defined above (MV ,G and P) is
the variety generated by some standard BL-chain that will be detailed
below.

Here some interesting examples of BL-chains are introduced.

2.2.1. Concrete Examples of BL-chains

Example 2.2.4. Lukasiewicz BL-chains

(1) We denote by [0,1] L the MV-algebra 〈[0, 1], ∗L,→ L,∧,∨,⊥,>〉
where

x ∗ L y := max{0, x+ y − 1}

x→ L y :=

{
1 if x ≤ y,

1− x+ y otherwise

x ∨ y := max{x, y}
x ∧ y := min{x, y}
⊥ := 0

> := 1

In the literature, [0,1] L is called the standard MV-algebra and
∗ L, → L are called the Lukasiewicz t-norm and its residuum.
It holds that MV = V ([0,1] L).

6

2.2. BL-chains 7

(2) Let us consider the subalgebra of [0,1] L whose domain is the
set {0, 1

n−1
, 2
n−1

..., 1}. We define

 Ln := 〈{0, 1, ..., n− 1}, ∗ Ln ,→ Ln ,∧,∨,⊥,>〉
to be the BL-algebra isomorphic to the previous subalgebra
through the isomorphism in : {0, 1, ..., n−1} −→ {0, 1

n−1
, 2
n−1

..., 1},
in(x) = x · (n − 1), that is, Ln is the BL-algebra with finite
universe {0, 1, ..., n− 1} where

x ∗ Ln y := max{0, x+ y − (n− 1)}

x→ Ln y :=

{
n− 1 if x ≤ y,

n− 1− x+ y otherwise

x ∨ y := max{x, y}
x ∧ y := min{x, y}
⊥ := 0

> := n− 1

In particular, L2 coincides with the two valued Boolean alge-
bra, which is also denoted by 2.

Example 2.2.5. Gödel BL-chains

(1) We will denote by [0,1]G the G-algebra 〈[0, 1], ∗G,→G,∧,∨,⊥,
>〉 where

x ∗G y := min{x, y}

x→G y :=

{
1 if x ≤ y,

y otherwise

x ∨ y := max{x, y}
x ∧ y := min{x, y}
⊥ := 0

> := 1

In the literature, [0,1]G is also called the standard G-algebra
and ∗G, →G are called the Gödel t-norm and its residuum. It
holds that G = V ([0,1]G).

(2) Let us consider the subalgebra of [0,1]G whose domain is the
set {0, 1

n−1
, 2
n−1

..., 1}. We define

Gn := 〈{0, 1, ..., n− 1}, ∗Gn ,→Gn ,∧,∨,⊥,>〉
to be the BL-algebra isomorphic to the previous subalgebra
through the isomorphism i : {0, 1, ..., n−1} −→ {0, 1

n−1
, 2
n−1

..., 1},
7

8 2. Basic Logic and its extensions

i(x) = x · (n−1), that is, Gn is the BL-algebra with finite uni-
verse {0, 1, ..., n− 1} where

x ∗Gn y := min{x, y}

x→Gn y :=

{
n− 1 if x ≤ y,

y otherwise

x ∨ y := max{x, y}
x ∧ y := min{x, y}
⊥ := 0

> := n− 1

Example 2.2.6. Product BL-chains and hoops

(1) We will denote by [0,1]Π the Π-algebra 〈[0, 1], ∗Π,→Π,∧,∨,⊥,
>〉 where

x ∗Π y := x · y

x→Π y :=

{
1 if x ≤ y,
y
x

otherwise

x ∨ y := max{x, y}
x ∧ y := min{x, y}
⊥ := 0

> := 1

In the literature, [0, 1]Π is also called the standard Π-algebra,
and ∗Π, →Π are called the Product t-norm and its residuum
(Goguen implication). It holds that P = V ([0,1]Π).

(2) Let us consider the subalgebra as a hoop of [0,1]Π whose do-
main is (0, 1]. We define (0,1]Π = 〈(0, 1], ∗Π,→Π,∧,∨,>〉 to
be that subalgebra. Notice it is an unbounded basic hoop.

8

2.2. BL-chains 9

(3) We denote by Z−• the Π-algebra 〈Z− ∪ {−∞}, ∗Z−• ,→Z−•
,∧,∨,

⊥,>〉 where

Z− := {z ∈ Z : z ≤ 0}

x ∗Z−• y :=

{
−∞ if either x = −∞ or y = −∞,

x+ y otherwise.

x→Z−•
y :=

0 if x ≤ y,

−∞ if y = −∞
y − x otherwise

x ∨ y :=

−∞ if x = y = −∞
x if y = −∞
y if x = −∞
max{x, y} otherwise

x ∧ y :=

{
−∞ if either x = −∞ or y = −∞
min{x, y} otherwise

⊥ := −∞
> := 0

It also holds that P = V (Z−•).
(4) Let us consider the subalgebra as a hoop of Z−• whose domain

is Z−. We define Z− := 〈Z−, ∗Z− ,→Z− ,∧,∨,>〉 to be that
subalgebra, i.e., the basic unbounded hoop with universe Z−
such that

x ∗Z− y := x+ y

x→Z− y :=

{
0 if x ≤ y,

y − x otherwise

x ∨ y := max{x, y}
x ∧ y := min{x, y}
> := 0

2.2.2. BL-chains constructions

It is not only interesting to specify BL-chains through its explicit def-
inition, but also to be able to build BL-chains from a family of other
BL-chains or from an adequate family of hoops. For this, we define the
notion of ordinal sum operation.

9

10 2. Basic Logic and its extensions

The original definition of ordinal sum was for continuous t-norms.
The one we provide here adapts this one to non only standard but
general BL-chains.

Definition 2.2.7. ([CT05]) Let 〈I,≤〉 be a chain with a least
element 0 and largest element 1. For each i ∈ I, let

i+ :=

{
inf{j ∈ I : i < j} if it exists,

i otherwise.

Let {Ai}i∈I be a family of BL-chains, where Ai = 〈Ai, ∗i,→i,∨i,∧i,⊥i,
>i〉 and such that

• For all i < j, Ai ∩ Aj = ∅ if j 6= i+,
• For i 6= 1, Ai ∩ Ai+ = {>i} = {⊥i+}.

Then we define its ordinal sum as the BL-chain

�
i∈I

Ai = 〈
⋃
i∈I

Ai, ∗,→,∧,∨,⊥,>〉

where

x ∗ y :=

x ∗i y if x, y ∈ Ai
x if x ∈ Ai, y ∈ Aj and i <I j

y otherwise

x→ y :=

> if x, y ∈ Ai and x ≤i y or x ∈ Ai, y ∈ Aj and i <I j,

x→i y if x, y ∈ Ai and x >i y

y otherwise

x ∨ y :=

x ∨i y if x, y ∈ Ai
x if x ∈ Ai, y ∈ Aj and i >I j

y otherwise

x ∧ y :=

x ∧i y if x, y ∈ Ai
x if x ∈ Ai, y ∈ Aj and i <I j

y otherwise

⊥ := ⊥0

> := >1

Remark 2.2.8.

(1) If I = {0, 1, ..., n} then we can write A0 � ...� An instead of
�
i∈I

Ai.

10

2.2. BL-chains 11

(2) With this definition we assume the BL-chains are disjoint. If
we are considering ordinal sums of non-disjoint BL-chains, we
will just assume the use of isomorphic copies of these algebras.
For example, when saying �

i∈I
[0,1] L, we consider this to be the

sum of I copies of the [0,1] L BL-chain, each one of them with
a different universe but isomorphic to [0,1] L.

An alternative notion of ordinal sum is the one that ranges over
hoops, proposed by Büchi and Owens and presented in [Fer92]. This
alternative ordinal sum will be used in the implementation of our solver.

The definition presented here is a variation over the usual defini-
tion of hoops ordinal sum, where the hoops must be pairwise disjoin
(except from > element). Here, that condition is fixed within the def-
inition working with pairs where the second element just refers to the
component identification.

Definition 2.2.9. (cf. [AFM07]) Let I be an initial segment of
N. For each i ∈ I, let Ai = 〈Ai, ∗i,→i,>i〉 be a linearly ordered hoop
and suppose A0 is also bounded (i.e. a BL-chain).

Then we define its ordinal sum as the BL-algebra

⊕
i∈I

Ai = 〈K, ∗,→,∧,∨,⊥,>〉

where

K := {>K} ∪
⋃
i∈I

{(Ai \ {>i})× {i}}

with >K being an arbitrary element not belonging to
⋃
i∈I{(Ai\{>i})×

{i} that will be the > element in K (for instance, assume >K :=
〈0,−1〉). The order in K is defined by the reversed lexicographic order
with last element >K , i.e.

〈a, i1〉 ≤ 〈b, i2〉 iff (〈b, i2〉 = >K) or (i1 < i2) or (i1 = i2 and a ≤i1 b)
11

12 2. Basic Logic and its extensions

and the operations are defined by

〈x, i1〉 ∗ 〈y, i2〉 :=

{
〈x ∗i1 y, i1〉 if i1 = i2,

min{〈x, i1〉, 〈x, i2〉} otherwise.

〈x, i1〉 → 〈y, i2〉 :=

>K if 〈x, i1〉 ≤ 〈y, i2〉,
〈x→i1 y, i1〉 if i1 = i2 and y <i1 x,

〈y, i2〉 otherwise.

〈x, i1〉 ∨ 〈y, i2〉 := max{〈x, i1〉, 〈y, i2〉}
〈x, i1〉 ∧ 〈y, i2〉 := min{〈x, i1〉, 〈y, i2〉}

⊥ := ⊥0

> := >K

Remark 2.2.10. If I = {0, 1, ..., n} then we can write A0⊕ ...⊕An

instead of ⊕
i∈I

Ai.

2.3. Logics

The set of formulas on BL (from now on, Fm) is built over an al-
phabet with countably many propositional variables, basic connectives
0, &,⇒ and defined connectives 1, ¬, ∧, ∨,⇔ where:

1 is 0⇒ 0

¬ϕ is ϕ⇒ 0

ϕ ∧ ψ is ϕ&(ϕ⇒ ψ)

ϕ ∨ ψ is ((ϕ⇒ ψ)⇒ ψ) ∧ ((ψ ⇒ ϕ)⇒ ϕ)

ϕ⇔ ψ is (ϕ⇒ ψ)&(ψ ⇒ ϕ)

Given a BL-chain L, an L-evaluation of propositional variables is
a mapping e that assigns to each propositional variable p an element
of L. Each evaluation of propositional variables extends uniquely to
propositional formulas as follows:

e(0) := ⊥
e(ϕ&ψ) := e(ϕ) ∗ e(ψ)

e(ϕ⇒ ψ) := e(ϕ)→ e(ψ)

Having the language, we can associate a logic (and its theorems) to
a BL-chain.

Definition 2.3.1. Let A be a BL-chain.

12

2.3. Logics 13

(1) Given Γ a finite set of formulas (notation Γ ⊆ω Fm) and a
formula ϕ,

Γ |=A ϕ if for all e A-evaluation, if e[Γ] ⊆ {>} then e(ϕ) = >;

(2) The logic of A is defined as

Λ(A) := {〈Γ, ϕ〉 : Γ |=A ϕ, ϕ ∈ Fm, Γ ⊆ω Fm};
(3) We say ϕ is a theorem of A if ∅ |=A ϕ. We define

Th(A) := {ϕ : ϕ is a theorem of A};
(4) We say an A-evaluation e is a model of ϕ in A if in A it holds

e(ϕ) = >. If such model exists, ϕ is satisfiable in A.
Given a finite set of formulas {ϕi}i∈I , we say it is satisfiable
in A if there exists an A-evaluation e such that e is a model
of ϕi in A for each i ∈ I.

(5) We define an equation on Fm as a triplet ϕ = ψ where
ϕ, ψ ∈ Fm. We define a generalized equation (g-equation)
if we allow also de use of > as relation symbol (i.e, ϕ > ψ and
ϕ = ψ are generalized equations).

(6) We say an A-evaluation e is a model of a g-equation ϕ R ψ
in A if in A it holds e(ϕ)RAe(ψ). If such model exists, ϕ R ψ
is satisfiable in A.
Given a finite set of g-equations in Fm {eqi}i∈I , we say it is
satisfiable in A if there exists an A-evaluation e such that e
is a model of eqi in A for each i ∈ I.

The most well known cases of logics associated to a BL-chain are
the following:

Example 2.3.2.

(1) Λ([0,1] L) is called Lukasiewicz Logic;
(2) Λ(Ln) is called n-valued Lukasiewicz Logic;
(3) Λ([0,1]G) is called Gödel Logic;
(4) Λ(Gn) is called n-valued Gödel Logic;
(5) Λ([0,1]Π) is called Product Logic.

The extension of the concept of logic to a class of algebras is the
natural one.

Definition 2.3.3. Given a class K of algebras, we define

Λ(K) :=
⋂

A∈K

Λ(A)

Th(K) :=
⋂

A∈K

Th(A)

13

14 2. Basic Logic and its extensions

And given Γ ⊆ω Fm, ϕ ∈ Fm,
Γ |=K ϕ iff Γ |=A ϕ for each A ∈ K

The most well known logic associated to a class of algebras is, as
we said before, Hájek’s Basic Logic

Example 2.3.4. Λ(K) where K is the class of all standard BL-
chains is called the Basic Logic BL.

The following are two folklore results concerning logics and their
theorems. We provide a brief sketch of the proof for the sake of being
self-contained.

Theorem 2.3.5. Let K1,K2 be classes of algebras. Then the fol-
lowing hold:

(1) Λ(K1) = Λ(K2) iff Q(K1) = Q(K2)
(2) Th(K1) = Th(K2) iff V (K1) = V (K2)

where Q(K), V (K) denote respectively the quasivariety and the variety
generated by K.

Proof. (1) To prove this condition we need to see that the fi-
nite consequence relation of a class of algebras is determined by the
quasiequations of that class, and viceversa.

It holds that

γ1, ..., γn |=K ϕ iff
∧
i≤n

(γi = >)⇒ (ϕ = >) is valid in K

for every class of algebras K; so if Q(K1) = Q(K2), then Λ(K1) =
Λ(K2).

On the other hand, given any quasiequation valid in K, then it is
expressible in terms of Λ(K) because:∧

i∈I

(χi = φi)⇒ (ϕ = ψ) is valid in K

iff (χ1 ↔ φ1), ..., (χn ↔ φn) |=K (ϕ↔ ψ)

so if Λ(K1) = Λ(K2) then Q(K1) = Q(K2).
(2) As particular cases of the claims in the previous item, it holds

that

∅ |=K ϕ iff (ϕ = >) is valid in K
and also

(ϕ = ψ) is valid in K iff ∅ |=K (ϕ↔ ψ)

�

14

2.4. Further relevant results on BL-logics 15

2.4. Further relevant results on BL-logics

The computer application presented in Chapter 5 is able to cope,
on the one hand, with BL (in the sense of working in BL with a fixed
set of formulas), and on the other, with all the logics built over finite
ordinal sums of BL-chains that are either standard or finitely-valued.

Several technical results are presented in this section. They will be
used later for the correctness of the implementation of our solver.

2.4.1. The treatment of the logic BL

Theorem 2.4.1. ([Mon05], [AM03])
The variety of BL-algebras is generated as a quasivariety by the

class of all algebras of the form �
i∈I

[0,1] L for any finite I.

Equivalently, the variety of BL-algebras is generated as a quasiva-
riety by the algebra �

i∈N
[0,1] L.

Corollary 2.4.2. (cf. [AG02])
Given a formula ϕ and a finite set of formulas Γ,

Γ |=BL ϕ⇐⇒ Γ |=(n+1)[0,1] L
ϕ

where n is the number of different variables in Γ ∪ {ϕ}, and by (n +
1)[0,1] L we denote the BL-algebra �

i∈{0,...,n}
[0,1] L.

With this corollary, the validity of some formula ϕ in the logic BL
is reduced to validity in the logic defined from the algebra of (n + 1)
copies of [0,1] L, where n is the number of variables in ϕ.

2.4.2. Finiteness on Infinite Valued Fuzzy Logics

Following the results presented by Aguzzoli et. al. in [AC00, Agu04],
we give here a brief selection on results that allow the reducibility of the
decision problem on infinite valued Lukasiewicz, Gödel and BL logics
to suitable finite valued logics.

Theorem 2.4.3. Let ϕ ∈ Fm and consider n to be the numer
of variables in ϕ and | ϕ | to be the total number of occurrences of
propositional variables in ϕ. Then, the following are equivalent.

(1) ϕ ∈ Th([0,1] L);

(2) ϕ ∈ Th(Lk) for all k ≤ (|ϕ|
n

)n + 1);
(3) ϕ ∈ Th(L2|ϕ|−1+1).

15

16 2. Basic Logic and its extensions

Theorem 2.4.4. Let ϕ ∈ Fm and consider n to be the numer
of variables in ϕ and | ϕ | to be the total number of occurrences of
propositional variables in ϕ. Then, the following are equivalent.

(1) ϕ ∈ Th(BL)

(2) ϕ ∈ Th((n + 1) Lk) for all k ≤ (|ϕ|
n

)n + 1), where (n + 1) Lk

denotes the ordinal sum of n+ 1 copies of Lk;

On the other hand, it is well known (cf. [Háj98, Th.4.2.18]) the
following result.

Theorem 2.4.5. Let ϕ ∈ Fm and consider n to be the numer of
variables in ϕ. Then, the following are equivalent.

(1) ϕ ∈ Th([0,1]G);
(2) ϕ ∈ Th(Gk) for all k ≤ n+ 2;
(3) ϕ ∈ Th(Gn+2).

2.4.3. An alternative ordinal sum representation

To work with any standard BL-chain, we know thanks to the following
well known theorem that it is enough to deal with ordinal sums of three
concrete ones, [0,1] L, [0,1]G and [0,1]Π.

Theorem 2.4.6. (Mostert and Shields [MS57], cf. [Háj98]). Any
standard BL-chain is isomorphic to an ordinal sum (�) of the [0,1] L, [0,1]G
and [0,1]Π standard BL-chains.

Our new aim is to introduce a finitary way (through words) to
describe some BL-chains that are ordinal sums.

The words we use for this only involve letters, numbers and the ’+’
character.

Definition 2.4.7.

(1) We define the alphabet as

L := {l,g,p,p1} ∪ {l2,l3,l4...} ∪ {g2,g3,g4...}
A word w over a language L ⊆ L is a sequence of characters
of the form

c0 + c1 + ...+ cn
where for each i ≥ 1, ci ∈ L and + is a literal symbol.
We define the vocabulary of L ⊆ L as the set WL := {w :
w is a word over L}

(2) The BL algebra associated to a word w=c0 + ...+ cn is defined
as

Alg(w) := �
i∈{0,...,n}

Alg(ci)

16

2.4. Further relevant results on BL-logics 17

where, for each letter, we have

Alg(ci) :=

2⊕ (0,1]Π if ci =p,

2⊕ Z− if ci =p1,

[0,1] L if ci = l,

[0,1]G if ci =g,

 Lk if ci =lk with k ∈ N, k ≥ 2,

Gk if ci =gk with k ∈ N, k ≥ 2.

Notice that 2⊕ (0,1]Π ∼= [0,1]Π and 2⊕ Z− ∼= Z−• .

Remark 2.4.8. It is easy to see that for any word w, Alg(w) is a
complete BL-chain in the sense that supremum and infimum of arbi-
trary sets of elements can be considered (since Alg(w) is a finite ordinal
sum of complete BL-chains).

In the solver, internally, product components will be computed in-
tuitively exploiting Theorem 2.4.11 and thus all components of type
p will be treated like the p1 type1. To prove the logic obtained in
this way coincides with the one that the user assumes obtained by the
original BL-chains ordinal sum, a set of theoretical tools is needed.

We proceed to provide a set of important results from algebraic
logic that will allow to formalize and prove this idea.

The following are well known results about BL-algebras concerning
varieties, quasivarieties and their subdirectly irreducible elements.

Theorem 2.4.9. (cf. [BS00])

(1) (Birkhoff)

V(S.I) = V ′(S.I) ⇒ V = V ′

where V(S.I) denotes the subdirectly irreductible algebras from
the variety V.

(2) Jónsson’s Lemma: Let K be a class of algebras, and V (K)
be a congruence-distributive variety. If A is a subdirectly irre-
ducible algebra in V (K) (A ∈ V (K)(S.I)), then

A ∈ HSPu(K).

And hence

V (K) = IPSHSPU(K).

The next result will allow us to use varieties instead of quasivarieties
when working with the algebras associated to words.

1The main reason for this lies on performance issues, see Chapter 5

17

18 2. Basic Logic and its extensions

Theorem 2.4.10. (cf. [BEGR11, Prop. A8]) Let A be a complete
BL-chain. Then Q(A) is a variety.

It is interesting to notice that, from this result, and from Theorem
2.4.13, the following result is directly obtained.

Theorem 2.4.11.

Λ([0,1]Π) = Λ(Z−•)

On the other hand, one of the main results we need is the following,
showed in [NEGM05, Prop.3] based on ideas from [AM03].

Theorem 2.4.12. ([AM03]) Let A0,A1, ...,An be linearly ordered
hoops and assume A0 is also bounded (i.e. it is a linearly ordered BL-
algebra). Then

ISPu(A0 ⊕A1 ⊕ ...⊕An) =
⊕

i∈{0,...,n}

ISPu(Ai)

where
⊕

i∈{0,...,n}
ISPu(Ai) denotes the class of all algebras of the form

⊕
i∈{0,...,n}

Bi

where for Bi : i ∈ I, Bi ⊆ ISPu(Ai) and B0 is bounded.

Finally, the following theorems will be used in the equivalent rep-
resentation of the product component in the ordinal sum we give for
Alg(w).

Theorem 2.4.13. ([CT00])

Th([0,1]Π) = Th(Z−•)

A result obtained in the proof of the previous theorem is remarkable
as it will be useful here.

Theorem 2.4.14.

P = V (2⊕ Z−)

On the other hand, in [AFM07] the following result is shown:

Theorem 2.4.15. If A is a nontrivial totaly ordered cancellative
hoop, then ISPu(A) = ISPu(Z

−)

We are interested in this result because we trivially know that
[0,1]Π is isomorphic to 2 ⊕ (0,1]Π. Having that (0,1]Π is a non-
trivial totaly ordered cancellative hoop, we can conclude the following
result:

18

2.4. Further relevant results on BL-logics 19

Corollary 2.4.16.

ISPu((0,1]Π) = ISPu(Z
−).

On this respect, the following result will be of use later:

Lemma 2.4.17. Let B,B′,A,C be linearly ordered hoops, and let
A be also bounded. If ISPu(B) = ISPu(B

′) then

ISPu(A⊕ 2⊕B⊕C) = ISPu(A⊕ 2⊕B′ ⊕C).

Proof. Let B,B′,A,C be linearly ordered hoops that meet the
assumptions. By Theorem 2.4.12, ISPu(A⊕2⊕B⊕C) = ISPu(A)⊕
ISPu(2) ⊕ ISPu(B) ⊕ ISPu(C). Then, by the condition of B,B′, it
follows that ISPu(A⊕2⊕B⊕C) = ISPu(A)⊕ISPu(2)⊕ISPu(B′)⊕
ISPu(C) and again, by Theorem 2.4.12, ISPu(A ⊕ 2 ⊕ B ⊕ C) =
ISPu(A⊕ 2⊕B′ ⊕C). �

With all these tools, we can finally prove that the representation
given in Definition 2.4.7 really meets the conditions we need to be able
to use indistinctly standard product components [0,1]Π specified by p
or the discrete characterization Z−• given through p1.

We can formalize the idea of two words having the same logic
through an equivalence relation ∼ between words defined as

for all w, v words w ∼ v iff Λ(Alg(w)) = Λ(Alg(v)) .

Definition 2.4.18.

(1) Given a word w=c0 + ... + cn, w ∈ WL, L ⊆ L we define its
simple translation by

w# := c′0 + ...+ c′n

where

c′i :=

{
p1 if i = min{j : 0 ≤ j ≤ n, cj = p},
ci otherwise.

Namely, the first occurrence of p in w is replaced by p1 (if
there is any occurrence).

(2) Given a word w=c0 + ...+ cn, w ∈ WL where L ⊆ L we define
its translation by

wt := c′0 + ...+ c′n

where

c′i :=

{
p1 if ci = p,

ci otherwise.

19

20 2. Basic Logic and its extensions

Example 2.4.19. Consider the word w= l+g3+p+l6+p1+p+g+p.
Then, w# = l + g3 + p1 + l6 + p1 + p + g + p and wt = l + g3 + p1 +
l6 + p1 + p1 + g + p1.

The following result shows the simple translation defined above
preserves the logics associated to words.

Proposition 2.4.20. Let w ∈ WL, L ⊆ L be a word. Then w ∼
w#.

Proof. Assume w 6= w#. Then, we can consider

w = w1 + p + w2

w# = w1 + p1 + w2

To see that w ∼ w# we must prove that Λ(Alg(w)) = Λ(Alg(w#)),
namely Q(Alg(w)) = Q(Alg(w#)).

Now, since the algebra associated to a word is always a complete
BL-algebra, by Theorem 2.4.10 it is enough to prove V (Alg(w)) =
V (Alg(w#)).

V (Alg(w)) = V (Alg(w#)) will be guaranteed if we see V (Alg(w))(S.I) =
V (Alg(w#))(S.I) thanks to Theorem 2.4.9(2).

Thanks to Jónsson’s Lemma, we can reduce this statement to check-
ing HSPu(Alg(w)) = HSPu(Alg(w#)).

Since both sides are closed byH, it is enough to see ISPu(Alg(w)) =
ISPu(Alg(w#)), i.e. that

(1) ISPu(Alg(w1 + p + w2)) = ISPu(Alg(w1 + p1 + w2)).

Reached this point of simplification, the rest of the proof will be devoted
to prove this last equality.

By definition, (1) means

ISPu(Alg(w1)�Alg(p)�Alg(w2)) = ISPu(Alg(w1)�Alg(p1)�Alg(w2)).

At this point, we can represent each one of the two t-norms ordinal sums
in their respective basic (for the p,p1 components) hoops ordinal sum,
i.e. we need to check that

ISPu(Alg(w1)⊕2⊕(0,1]Π⊕Alg(w2)) = ISPu(Alg(w1)⊕2⊕Z−⊕Alg(w2)).

To this aim, it is enough to see that Alg(w1), (0,1]Π, Z
−, and Alg(w2)

satisfy the requirements of Lemma 2.4.17. Just consider A := Alg(w1),C :=
Alg(w2),B := (0,1]Π and B′ := Z− and remember that ISPu((0, 1]Π) =
ISPu(Z

−) (by Corollary 2.4.16).
Then, we can conclude that

ISPu(Alg(w1)⊕2⊕(0,1]Π⊕Alg(w2)) = ISPu(Alg(w1)⊕2⊕Z−⊕Alg(w2)),

i.e., we have shown condition (1). �

20

2.5. Extensions of BL 21

With this result, we can naturally extend the translation operation
to the whole word (since it is finite) and formulate the fact that is the
main axis of the correctness of the new solver:

Corollary 2.4.21. Given a word w ∈ WL, L ⊆ L,

w ∼ wt

This corollary will allow us to replace any word by an equivalent
one defined over L \ {p}.

2.5. Extensions of BL

Two different ways to extend the previously presented logics are
very interesting to point out: constants and the Baaz’s projection op-
erator. Both are natural extensions of the classical fuzzy language and
had been widely studied from a theoretical point of view.

We will provide here a brief explanation of these notions and the
use the reasoner gives for them.

2.5.1. Constants

Expansions of Basic Fuzzy Logic, or indeed of many other systems
of many-valued logic, with propositional truth constants have been
studied from various points of view.

Pavelka [Pav79a, Pav79b, Pav79c] defined a deductive system
allowing for reasoning with degrees of truth via including constants for
all truth values into the propositional language, and his completeness
result stated, for each theory and each formula, the equality of the
provability degree and the validity degree of the formula with respect
to the theory.

For the purpose of this report, it is interesting the more specific case
presented in [EGGN07]. There, the authors start from a standard
BL-algebra [0, 1]∗ and introduce propositional constants for a count-
able subalgebra C ⊆ [0, 1], and present theoretical results on these
extensions.

In our case, due to the definition (by pairs) of the hoops ordinal sum,
and to the internal way of dealing with the Product components in an
ordinal sum, the treatment of constants differs from the approach given
in [EGGN07]. In this work, constants are not expressed as numbers
in [0, 1], but rather in a pair format telling also the component in the
ordinal sum of the constant, formally:

Definition 2.5.1. A constant c for a word w := c0 + c2 + ...+ cn
is given as

c := 〈v, n〉
21

22 2. Basic Logic and its extensions

where 〈v, n〉 ∈ Alg(ci) ∩ Q2 for some 0 ≤ i ≤ n. In particular, this
naturally implies that c ∈ Alg(w).

The interpretation in Alg(w) of each constant will be given by

c := c

Intuitively, with this definition we are simply allowing rational con-
stants for any of the components of the ordinal sum of Alg(w) (i.e. for
each one of the BL-chains associated with each character of the word).
Since all the hoops involved are linearly ordered, the intuitive meaning
of a formula of the shape c→ ϕ is ϕ ≥ c (where ϕ is the interpretation
of ϕ in Alg(w)).

As a future work it is planned to extend the reasoner to accept also
the usual constants written as numbers in [0, 1]. Limits (0, a1)(a2, a3)...
(an−1, an) in [0, 1] should be given for each component of the ordinal
sum, allowing an adequate use of the constants (similar to the treat-
ment presented in [EGGN07]). This will be feasible whenever no
discrete product component is involved.

2.5.2. Baaz’s projection

The Baaz Delta operator ∆ is a ”defuzzification” operator that can be
added to any BL-chain A and which is defined as

∆x :=

{
> if x = >,

⊥ otherwise.

Due to lack of time, the inclusion of the Baaz projector operator as
part the language supported by the solver has not been implemented.
However, the use of constants and the specification of equations in the
solver allows the same expressive power. With this we mean that given
a BL-chain A,

∆ϕ ∈ Th(A) iff ϕ = > is valid in A.

It is noticeable that all the theoretical results we presented on Sec-
tion 2.4 keep holding when the Baaz Projector is added (see for instance
[Mon01]). It is proposed as a future work to add this functionality to
the reasoner.

22

CHAPTER 3

Complexity Issues

The present chapter is devoted to an analysis of computational
complexity of the propositional logics we have presented in Chapter 2.
First we will summarize necessary material about the theory of poly-
nomial complexity and arithmetical hierarchy. In a second section we
will present the main results on complexity about Lukasiewicz Gödel
and Product Logics, and all the logics built over BL-chains.

3.1. Computational Complexity

We will assume the reader is familiar with the concept of a Turing
Machine. We will work with decidable languages, i.e. by definition, the
ones for which there is a Turing Machine that for any input it always
halts.

Definition 3.1.1. Given M a Turing Machine, the language ac-
cepted by M is the set of all words w for which the machine stops and
it is in the accepting internal state.

A Turing machine is deterministic whenever for any pair 〈state,
input symbol〉 there exists at most one possible execution. If that is
not the case, the machine is said to be non-deterministic.

A machine M runs in polynomial time if there is a polynomial p(u)
such that for each word w of length n, each computation with the input
w stops after ≤ p(n) steps.

With these concepts in mind, we can proceed to define two classes
of complexity we are interested in:

Definition 3.1.2.

(1) P is the class of all languages accepted by a deterministic
Turing Machine on polynomial time.

(2) NP is the class of all languages accepted by a non-deterministic
Turing Machine on polynomial time.

(3) A language is in class coNP if its complement is in NP.
(4) A language L is NP-complete if it is in NP and for each L′

in NP exists a function f computed by a deterministic Turing
machine running on polynomial time such that for each word

23

24 3. Complexity Issues

w′ in the alphabet of L′, w′ ∈ L′ iff f(w′) ∈ L. The definition
for coNP-complete is analogous.

In classical propositional logic, the sets

SAT := {ϕ : there is an evaluation v, v(ϕ) = >}
TAUT := {ϕ : for all evaluation v, v(ϕ) = >}

determine the main problems, and because of this reason, they are the
ones that have been studied for determining the complexity of the logic.
It is well known (Cook’s theorem) that the set SAT is NP-complete,
and so TAUT is coNP-complete.

3.2. Complexity in a many valued frame

With a many-valued logic, the definition of the SAT and TAUT
problems is richer, as the classical dichotomy no longer applies. For a
fixed semantics given by an algebra A, we define the following sets of
formulas (cf. [Háj98]):

SATA
> := {ϕ : there is an A-evaluation v, v(ϕ) = >}

SATA
pos := {ϕ : there is an A-evaluation v, v(ϕ) > ⊥}

TAUTA
> := {ϕ : for all A-evaluation v, v(ϕ) = >}

TAUTA
pos := {ϕ : for all A-evaluation v, v(ϕ) > ⊥}

These sets are referred to as >-satisfiable, positively satisfiable, >-
tautologies, and positive tautologies.

The generalization of them to a class of algebras is the natural way,
i.e. given K a class of algebras,

SATK> :=
⋃

A∈K

SATA
>

SATKpos :=
⋃

A∈K

SATA
pos

TAUTK> :=
⋂

A∈K

TAUTA
>

TAUTKpos :=
⋂

A∈K

TAUTA
pos

Notice than unlike in classical logic, for many-valued semantics
there is no simple relationship between its TAUT and SAT problems.

We will provide here a sum up of the main points in complexity
issues for BL and its principal extensions, referring for all the following
results to [AGH05] and [CH09].

24

3.2. Complexity in a many valued frame 25

3.2.1. Lukasiewicz logic

Theorem 3.2.1. (([Mun87], cf. [Háj98]) Consider for θ ∈ [0, 1],

SAT
[0,1] L
θ := {ϕ : ∃x ∈ [0, 1]n, ϕ[0,1] L(x) ≥ θ}.

Then SAT
[0,1] L
θ is NP-complete for each θ ∈ [0, 1] ∩Q.

In particular, if we consider θ = 1, we get

SAT [0,1] L
pos is NP-complete,

SAT
[0,1] L
1 is NP-complete.

And considering the sets Fm \ SAT [0,1] L
pos and Fm \ SAT [0,1] L

1 we have

TAUT [0,1] L
pos is coNP-complete,

TAUT
[0,1] L
1 is coNP-complete.

Corollary 3.2.2. Λ([0,1] L) and Th([0,1] L) are coNP-complete.

3.2.2. Gödel and Product logic

We present here the results shown in [Háj98].

Theorem 3.2.3. SAT
[0,1]G
> = SAT

[0,1]G
pos = SAT

[0,1]Π
> = SAT

[0,1]Π
pos

and all these sets are equal to SAT over the restriction of these algebras
to {0, 1}. Thus, they are NP-complete.

Theorem 3.2.4. TAUT
[0,1]G
pos = TAUT

[0,1]Π
pos = TAUT (classical),

and so are coNP-complete.

Theorem 3.2.5. TAUT
[0,1]G
> and TAUT

[0,1]Π
> are coNP-complete.

Corollary 3.2.6.

(1) Λ([0,1]G) and Th([0,1]G) are coNP-complete.
(2) Λ([0,1]Π) and Th([0,1]Π) are coNP-complete.

3.2.3. Finitely-valued logics

Theorem 3.2.7. SAT Ln
pos, SAT

 Ln
> , SATGn

> and SATGn
pos are in NP.

TAUT Ln
pos, TAUT

 Ln
> , TAUTGn

> and TAUTGn
pos are in coNP.

Corollary 3.2.8. Λ(Ln), Λ(Gn), Th(Ln) and Th(Gn) are in
coNP

25

26 3. Complexity Issues

3.2.4. Basic Logic

The results on the complexity of BL are proved using ordinal-sum de-
composition of standard BL-algebras into [0,1] L, [0,1]G and [0,1]Π
BL-chains. The following result is based on the complexity for each
one of the previously commented logics.

Theorem 3.2.9. ([BHMV02]) Λ(BL) and Th(BL) are coNP-
complete.

3.2.5. BL-chains

Using all the previous results, a more general theorem is obtained for
standard BL-chains. Thanks to the completeness of BL with respect to
this class (BLsc), this result closes the complexity issues that concern
the logics we work with.

We will use the notation

SAT ∗1 :=
⋃

A∈BLst

SATA
>

TAUT ∗1 :=
⋂

A∈BLst

TAUTA
>

for denoting the >-satisfiable formulas and the and >-tautologies of all
the standard BL-chains, determined by a continuous t-norm ∗.

Theorem 3.2.10. ([AGH05], [BHMV02])

(1) SAT ∗1 is NP-complete.
(2) TAUT ∗1 is coNP-complete.

Corollary 3.2.11. For any standard BL-chain A, Λ(A) and Th(A)
are coNP-complete.

26

CHAPTER 4

Satisfiability Modulo Theories

Intuitively, Satisfiability Modulo Theories (SMT) can be seen as
generalization of the SAT problem by adding the ability to handle
arithmetic and other theories. In this work it is an interesting field to
be detailed because after we found studies concerning the adequacy of
SMT solvers for solving Constraint Satisfaction Problems [ABMV12]
, we considered these solvers to be of great use to work with the Basic
Logic and its axiomatic extensions simply by interpreting in them the
constraints imposed by these logics.

In this chapter a formal description of Satisfiability Modulo Theo-
ries (SMT) concept, design and implementations is provided.

4.1. The Satisfiability Problem

Satisfiability, namely the problem of determining if a formula (in
real applications, this formula is expressing a constraint) has a solution
in a certain logic, is one of the most fundamental problems in theoretical
computer science.

Constraint satisfaction problems arise in many diverse areas includ-
ing graph and game theory problems, planning, scheduling, software
and hardware verification, extended static checking, optimization, test
case generation or type inference. The most well-known constraint sat-
isfaction problem is propositional satisfiability SAT , where the logic
checked is the classical propositional logic: decide whether a formula
using classical logical connectives can be made true by choosing true/
false values for its variables.

Many of these constraint satisfaction problems can be encoded by
Boolean formulas and solved using Boolean satisfiability (SAT) solvers.
However, other problems require the added expressiveness of equality,
uninterpreted function symbols, arithmetic, arrays, datatype opera-
tions or quantifiers. For example, many applications of formal meth-
ods that rely on generating First-Order formulas over theories of the
real numbers or integers (including fuzzy logics) are in need of more
expressive logical languages and solvers.

27

28 4. Satisfiability Modulo Theories

Thus, a formalism extending SAT called Satisfiability Modulo The-
ories (SMT), has also been developed to deal with these more general
decision problems. An SMT instance can informally be understood
as a first order Boolean formula in which some propositional variables
are replaced by predicates with predefined interpretations from back-
ground theories. Namely, these predicates are binary-valued functions
over non-binary variables.

In Chapter 3 we have remarked that, for instance, the complexity
of Hájek’s Basic Logic (and its extensions) is coNP-complete. This
is not an exception, as many of the Constraint Satisfaction Problems
reach at least the NP complexity class. Due to this high computational
complexity and to the fact that real problems are not interested in
validity in general, but with respect to a fixed background theory, the
idea is not to build a procedure that can solve arbitrary SMT problems,
but to focus on specialized SMT solvers.

As done with efficient SAT solvers, when working with concrete
problems, the procedures can be highly simplified and fastened paying
attention to implementation details. In recent years, there has been an
enormous progress in the scale of problems that can be solved, thanks
to innovations in core algorithms, data structures, heuristics, and other
methods, and for example, modern SAT procedures can check formulas
with hundreds of thousands variables and millions of clauses.

In the case of SMT, similar progress has been observed in the pro-
cedures for the more commonly occurring theories that not only work
with FOL but also in fragments of it (for instance, quantifier free for-
mulas). For many of these, specialized methods actually yield decision
procedures for the validity ground formulas or some subset of them.
This is for instance the case, thanks to classical results in mathemat-
ics, for the theory of real numbers or the theory of integer numbers
(for formulas with no multiplication symbols). In the last two decades
however, specialized decision procedures have also been discovered for
a long, and still growing, list of theories of other important data types
such as certain theories of arrays and of strings, variants of the theory
of finite sets, the theory of several classes of lattices, the theories of
finite, regular and infinite trees, and the theory of lists, tuples, records,
queues, hash tables, and bit vectors of a fixed or arbitrary finite size.

4.2. Formal Definitions

Based on pioneer works proposing the use of SMT solvers in for-
mal methods in the 80s [NO80, Sho81, BM79], on the last ten years
we have lived an increasing interest on this field, and research on the

28

4.2. Formal Definitions 29

foundational and practical aspects of SMT has rapidly grown. Sev-
eral SMT solvers have been developed in academia and industry with
continually increasing scope and performance. Out of interest, we can
cite here examples integrated into interactive theorem provers for high-
order logic (such as HOL and Isabelle), extended static checkers (such
as CAsCaDE, Boogie, and ESC/Java 2), verification systems (such as
ACL2, Caduceus, SAL, UCLID and Why) or model checkers (such as
BLAST) among others. In industry, as important centers with SMT-
related projects we can name Microsoft Research, Cadence Berkeley
Labs, Intel Strategic CAD Labs and NEC Labs.

Most approaches for automated deduction tools rely on case-analysis
for its core system. In the case of SMT, most of the solvers exploit SAT
procedures for performing case-analysis efficiently.

In this section basic techniques used in state-of-the-art SAT solvers
and the more common approaches to the SMT problem are detailed.

4.2.1. SAT encodings

Most state-of-the-art SAT solvers (Glucose [AS09], Minisat [ES03],
BerkMin [GN07]) today are based on Conflict-Driven Clause Learning
algorithm (CDCL), originally grown from the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [DP60, DLL62].

The DPLL algorithm is is a complete, backtracking-based search
algorithm for deciding the satisfiability of propositional logic formulae
in conjunctive normal form, i.e. for solving the CNF-SAT problem.
The basic backtracking algorithm runs by choosing a literal, assigning
a truth value to it, simplifying the formula and then recursively check-
ing if the simplified formula is satisfiable; if this is the case, the original
formula is satisfiable; otherwise, the same recursive check is done as-
suming the opposite truth value. This is known as the splitting rule,
as it splits the problem into two simpler sub-problems. The simplifica-
tion step essentially removes all clauses which become true under the
assignment from the formula, and all literals that become false from
the remaining clauses.

The great improvements in the performance of DPLL-based SAT
solvers achieved in the last years are due, on the one hand, to bet-
ter implementation techniques, and on the other, to several concep-
tual enhancements on the original DPLL procedure, aimed at reducing
the amount of explored search space, such as backjumping (a form of
non-chronological backtracking), conflict-driven lemma learning, and
restarts. On the other hand, correctness has been proved for each of
these methods, ensuring the coherence of their usage.

29

30 4. Satisfiability Modulo Theories

These advances make it now possible to decide the satisfiability of
very complex SAT problems.

Detailed description of existing procedures is out of the scope of this
work, but a uniform, declarative framework for describing DPLL-based
solvers, Abstract DPLL, can be found in [NOT06].

4.2.2. SMT-solvers approach

Following the more recent SMT literature, given a signature Σ, we
define a theory T over Σ as just one or more (possibly infinitely many)
Σ-models. Then, a ground Σ-formula ϕ is satisfiable in a Σ-theory or
is T -satisfiable) if and only if there is an element of the set T that
satisfies ϕ. Similarly, a set Γ of ground Σ-formulas T -entails a ground
formula ϕ (Γ |=T ϕ) if and only if every model of T that satisfies all
formulas in Γ satisfies ϕ as well.

We say the satisfiability problem for theory T is decidable if there is
a procedure Υ that checks whether any ground (and hence, quantifier
free) formula is satisfiable or not. In this case, we say Υ is a decision
procedure for T or a T -solver.

The proof of correctness of SMT methods for decidable background
theories is a step that has to be checked for each solver. Satisfiability
procedures must be proved sound and complete; while soundness is usu-
ally easy, completeness requires specific model construction arguments
showing that, whenever the procedure finds a formula satisfiable, a sat-
isfying theory interpretation for it does indeed exist. This means that
each new procedure in principle requires a new completeness proof.

Working with a decidable theory T , there are two main approaches
for determining the satisfiability of a formula with respect to T , each
with its own pros and cons: eager and lazy.

4.2.2.1. Eager SMT approach. This approach consists on ad-
hoc translations from an input formula and relevant data from the
theory T into a set of equisatisfiable propositional formulas (see for
instance [SSB02] for this procedure), which is then checked by a SAT
solver for satisfiability.

The good point of this approach is that it can always make use of
the lasts existing SAT solvers, overcoming the problem of relatively big
translation results.

However, the problem lies on the exponential cost of the transla-
tion operation for making the problem treatable by a SAT solver. For
this, sophisticated ad-hoc translations are needed for each theory, and
experiments have shown the explosion on needed resources when es-
calating the problems (see [dMR04]). Also, it has been studied the

30

4.2. Formal Definitions 31

difficulty of combining several theories. To address these issues, the
latest research on SAT encodings focuses on general frameworks that
allow incremental translations and calls to the SAT solver, and general
mechanisms for combining encodings for different theories.

From a theoretical point of view, proving soundness and complete-
ness is relatively simple because it reduces to proving that the transla-
tion is satisfiability invariant (but that proof needs to be done for each
defined translation).

4.2.2.2. Lazy SMT approach. Instead of an ad-hoc translation
for each theory into a SAT problem, a specialized T -solver for deciding
the satisfiability of conjunctions of theory literals can be defined. Then,
the objective is combining the strength of this solver with the existing
SAT-solvers to produce an efficient SMT-solver.

A lot of research has been done in the matter of combining these two
solvers. The most widely used approach in the last few years is usually
referred to as the lazy approach [dMR02, BCLZ04, ACGM05].

The idea behind this approach is such that each atom occurring in
a formula ϕ to be checked for satisfiability is initially considered sim-
ply as a propositional symbol, not taking into account the theory T .
Then, the formula is processed by a SAT solver, which determines its
propositional satisfiability. If ϕ was found unsatisfiable by the SAT
solver, then it also is T -unsatisfiable. In other cases, the SAT solver
returned a propositional model M of ϕ, and then this assignment will
be checked by a T -solver. If M is found T -consistent, it is a T -model
of ϕ. Otherwise, the T -solver generates a ground clause rejecting that
assignment. This formula is then added to ϕ by propositional conjunc-
tion, and the SAT solver is started again. This process is repeated
until a T -model is found or the SAT solver returns that the formula is
unsatisfiable.

For details on satisfiability in first-order theories and results on
combining several theories for working under the lazy approach see for
instance [dMDS07].

Most of the currently implemented solvers follow this approach, and
include a high number of available theories like linear, difference and
non-linear arithmetics, bit-vectors, arrays and free functions among
others. By modularity and correctness of the SAT solvers, the correct-
ness for each particular theory is the main point proving the correctness
of the solver (up to exactness of the implementation).

A general definition for SMT has been studied in [NOT06] pro-
viding the DPLL(T) approach, a general modular architecture based
on a general DPLL engine parametrized by a solver for a theory T of

31

32 4. Satisfiability Modulo Theories

interest. Here details about the theories used in our particular case will
be given. In the implementation of the new solver a combination of the
linear arithmetic and the array theories is used, as it will be detailed
in Section 4.2

• Linear arithmetic
Linear arithmetic (LA) constraints have the form c0 + Σn

i=1ci ·
xi ≤ 0, where each ci for 0 ≤ i ≤ n is a rational constant
and the variables xi range over R. The LA-solver algorithm
implemented by the SMT solver used for the experiments, z3
[dMB08], is based on the method proposed by de Moura and
Dutertre in [DdM06].
• Arrays

This theory was introduced by McCarthy in [McC62], and
its functions are reduced to read (a, i, v) and write(a, i, v).
Depending on the theory over which the arrays are used, and
the dimension specified to the array in its creation, a and i will
differ on type. In our case, the implementation of the solver is
built over arrays of dimension two of real values, so operations
are defined as follows:

write : R2 × R× {0, 1} −→ R2

read : R2 × {0, 1} −→ R

with

write([a, b], c, i) :=

{
[c, b] if i = 0,

[a, c] if i = 1.

read([a, b], i) :=

{
a if i = 0,

b if i = 1.

We use these two theories in the development of NiBLoS. In the SMT-
solver we use, z3, they have been implemented together in a theory
called AUFLIRA.

4.3. Standardisation: Language and Solvers

It seems natural that for different SMT-solvers, given their specific
treatment of problems and so their different working methods, different
interfaces and input formats are given. Until 2002, no standardization
existed, and so comparing different SMT solvers was a difficult task.

To reduce this drawback, the SMT community launched in 2002
the SMT-LIB initiative [BST10] which is currently backed by the vast

32

4.3. Standardisation: Language and Solvers 33

majority of research groups in SMT. SMT-LIB defines standard in-
put/output formats and interfaces for SMT solvers, and also provides
an on-line repository of benchmarks for several theories.

The standardisation led to the creation of a an annual competition
for SMT-solvers, SMT-COMP [SC], where state of the art SMT solvers
show their strengths in different kind of tests. Here we searched for
deciding the more interesting SMT-solver to test our results (see section
5.4). The latest results at SMT-COMP (2011), where Z3[dMB08]
solver from Microsoft Research obtained the best results for the theories
(Linear Real Arithmetic and Arrays) pointed out let us select Z3 for
the experiments.

33

CHAPTER 5

NiBLoS: The New Solver

The main point of this research is the presentation of NiBLoS, a
software application that works as a logical reasoner for the logic BL
and a wide family of its extensions. As we said before, an intermediate
version of this work has been published in [VBG12].

In this chapter a deep description of the new solver is given. It is
provided a complete theoretical justification of the correctness of its
design based on results presented on Chapter 2, and a detailed descrip-
tion of the implementation methods is given for the interested reader.
Secondly, a user manual and several examples of use are provided for
simplicity on the use of the solver. Finally, a section explaining the
performed tests and the efficiency results obtained is shown. As a
short section, we have included here information about an alternative
implementation that is interesting from a theoretical point of view but
whose slow performance leads it to be a non practical application.

5.1. What does it do?

The software application presented here performs, over a given
logic, either the task of checking if a certain formula is a theorem
(valid for all possible evaluations), or if a pair formed by a sequence
of premises and a formula hold in the logical consequence relation, or
if a certain set of g-equations is satisfiable (and how). Explicitly, as
a concise presentation of NiBLoS, its use can be resumed in terms of
input/output through the following lines:

• A logic L shall be given in the input
– bl;
– a word w over the language L := L \ {p1} (see Defi-

nition 2.4.7), i.e. as a chain of characters of the form
"[c1+c2+...+cn]" where each ci is comprehended in
{l,g,l2,l3...,g2,g3...,p} and + is a literal sym-
bol. Here, the solver will assume the logic to work with
is the one obtained from Alg(w).

• An output file will be given which contains the intermediate
SMT-LIB codes.

35

36 5. NiBLoS: The New Solver

• A task must be specified, and this will determine other in-
puts that shall be given and the output of the solver. A brief
specification is as follows:

– If the task is fixed to the theoremhood prover option (th),
a formula shall be given. Then, after the execution, the
program will show a message confirming if the formula is
or is not a theorem in the logic L.

– If the task is fixed to the logical consequence option (c),
a formula and a set of formulas (premises) shall be given.
Then, after the execution, the program will show a mes-
sage confirming if the formula is or is not a logical conse-
quence of the premises set in the logic L.

– If the task is fixed to the satisfiability checking option
(s), a set of equations shall be given. Then, after the
execution, the program will show a message confirming if
the set of equations is satisfiable or not in the logic L, and
if it is, it will show an assignment of the variables that
satisfies it.

5.2. Theoretical basis

Inspired by the approach of Ansótegui et. al in [ABMV12], we
conceived the idea of programming a more general solver for fuzzy
logics using an SMT solver, exploiting theoretical results about these
logics.

In their work, Ansótegui et. al. describe a theorem prover soft-
ware capable of determining whether a formula ϕ of the Lukasiewicz
infinitely-valued logic is a tautology. They do so developing a satisfi-
ability checker for Lukasiewicz logic, and then asking whether there is
an interpretation I such that I(ϕ) < 1. If such interpretation does not
exist, then ϕ is a tautology. In their work they present the Gödel logic
solver too, but the approach to solve product logic was not successful
from a practical point of view because of efficiency matters.

In this work, a generalization of this approach is proposed, exploit-
ing results presented on Chapter 2 to expand the solver tasks and to
enhance its performance. The work presented is NiBLoS, a logical rea-
soner that allows the specification of BL logic and of the logics based
on certain BL-chains, namely the ones defined from a finite number of
components of the [0,1] L, [0,1]G and [0,1]Π standard BL-chains and
finitely valued components of the previous families (Ln and Gn). Also
it is possible to use rational truth-constants in any of these logics.

36

5.2. Theoretical basis 37

Also, it seemed interesting to add to the software more flexibility in
the sense of performing more tasks than just testing the theoremhood
of a formula in a certain logic. In NiBLoS, checking whether a given
formula (possibly with truth-constants) is a logical consequence of a
finite set of formulas (possibly with truth-constants as well) is feasible,
and also is allowed to ask about the models satisfying a certain set of
equations.

The main idea for doing this comes from Theorem 2.4.6, which
asserts that any continuous t-norm v can be expressed as the ordi-
nal sum of the three main continuous t-norms ∗ L, ∗G and ∗Π. From
this result, defining these three t-norms and the ordinal sum within
the SMT-LIB language would provide not only a theoremhood prover
for any continuous t-norm based fuzzy logic (included infinite ordinal
sums), but also an application for checking finite logical consequence
and a model generator tool for these logics (very useful for looking for
counterexamples).

The BL case was not considered in [ABMV12] because the seman-
tics is based on a family of continuous t-norms, and not just on one.
However, by Theorem 2.4.2 we can reduce proofs over BL, when work-
ing with concrete formulas, to proofs over the logic defined with the
t-norm given by an ordinal sum of (n + 1) Lukasiewicz components,
where n is the number of different variables in the set of formulas
involved. This will be the method we use in NiBLoS for the implemen-
tation of BL, since it has performance advantages over using the idea
in Theorem 2.4.4.

To implement the ordinal sum as defined above, as done in [ABMV12],
we initially considered the classical definition of the three t-norms, i.e.
the ones from Definitions 2.2.4, 2.2.5 and 2.2.6 respectively. These def-
initions are given using only addition and multiplication over the real
unit interval (in the case of the finitely-valued Lukasiewicz and Gödel
logics, over a corresponding subset of the natural numbers). Thus, it
is natural to implement a solver for these three kind of logics and all
the family over them using the QF LRA and QF NLRA theories of the
SMT solver, as it was done for each particular case in [ABMV12].
For Lukasiewicz and Gödel t-norms, a lineal real arithmetic theory is
enough to define the needed operations, and whenever the product
t-norm is involved in the decomposition, the non-linear real arithmetic
is used to deal with Product t-norm and residuum. The problem with
this approach is that, computationally, product and division are very

37

38 5. NiBLoS: The New Solver

slow operations, so when the Product t-norm is involved on the defi-
nition of the t-norm of the logic, the efficiency of the solver falls dra-
matically, even for really simple cases, as we will describe on Section
5.4.

For this reason, for the particular case of Product Logic a new
methodology has been designed. To overcome the problems inherited
of the non-linearity in [0, 1] an alternative coding over a linear the-
ory, AUFLIRA, has been defined. This can be partially done thanks
to Theorem 2.4.11, that shows that the variety of Product algebras
is also generated by a discrete linear product algebra: the one gener-
ated by Z−• . Also, we have proven that the operation of ordinal sum
is well behaved (in the sense it preserves the logic) when we do this
exchange (see Corollary 2.4.21). Therefore, for dealing with Product
logic it is enough to deal with this discrete algebra (Z−•); and this par-
ticular algebra can be codified using just natural numbers and addition
over the negative natural numbers with a minimum (i.e., Presburger
Arithmetic). In Section 5.4, the enhancement will be detailed.

Finally, from a pure programming point of view, and for simpler
definition of our program, the notion of Ordinal Sum for hoops given in
Definition 2.2.9 is exploited. Also, the usage of pairs of values for each
variable has been conceived (see the definition of the ordinal sum for
hoops 2.2.9 for details), assigning a real number for the value inside the
component and a natural number to identify the component, allowing
the implementation of the general hoop ordinal sum and providing
naturally the option of specifying ordinal sums of infinite and finite
number of components.

The formal definition of the input of the logic for NiBLoS is directly
based on the Definition 2.4.7 from Section 2.4.3.

Indeed, for working with the t-norm obtained as the ordinal sum of
the input, we can semantically work with the sum of the correspondent
hoops. Moreover, thanks to Corollary 2.4.21, we can exclusively work
with discrete product components instead of with the usual [0,1]Π
component, which is much more efficient: even if operation ∗ from Z−•
is not a t-norm, the resultant logic is the same.

Formally, the reasoner takes as input a word over the language
L = L \ {p1}, i.e., w = c0 + c1 + ... + cn where for each 0 ≤ i ≤ n,
ci ∈ {l,g,p} ∪ {l2,l3...} ∪ {g2,g3...}.

With this, the input w corresponds to the logic generated by the
BL-chain formed by the ordinal sum of each of the BL-chains associated
with each character. Namely,

Logicuser = Λ(Alg(w)),

38

5.3. Usage 39

see Definition 2.4.7 for detais on Alg(w).
Internally, the reasoner will work with the logic generated by the

BL-chain formed with the hoops ordinal sum of the hoops specified by
each component in the translation of w (see Definition 2.4.18), where
a component of type p is changed by a component of type p1 which
can be discretely computed. Namely,

LogicNiBLoS = Λ(Alg(wt)).

We saw on Corollary 2.4.21 that these two logics, Λ(Alg(w)) and
Λ(Alg(wt)), coincide, so the design of the software using this approach
is correct from a theoretical point of view. The answer the user expects
is the one shown, but it is worth saying that using Λ(Alg(wt)) instead
of Λ(Alg(w)) leads to a cleaner and simpler programming and to a
much faster execution.

In the solver, the above definitions are directly translated into z3
code, and with that results the SMT-solver will produce the solution
of the given problem.

5.3. Usage

By now, the utilization of NiBLoS is limited to terminal (command
line). As a future work, the development of a graphical interface is
desired, to make the application more accessible and user-friendly.

5.3.1. Pre execution

The program is implemented in python and z3, and it is meant to be
used from the terminal. To run it, it is necessary to have python and
the z3 solver ([z3w]) installed in the computer.

Before its use, a configuration file should be changed according to
each user. Since the SMT solver (z3) is internally used, in file
configuration.py the line

Z3_LOCATION = "/.../z3"

must be modified to meet the user’s Z3 folder. It shall have the relative (to
the reasoner main folder) or the absolute path in the user’s computer to the
z3-solver general folder, obtained after downloading and decompressing the
z3-solver ([z3w]).

5.3.2. Inputs

From the main file NiBLoS, the application is called as

>python niblos.py

39

40 5. NiBLoS: The New Solver

It needs a certain amount of parameters to work. On the one hand, for
easiness of use, a help option has been included, providing a brief description
of the attributes to be used. When used, the output will be the following:

Listing 5.1. help

>python niblos.py -h
usage: python fuzzy.py [-h] [-l L] [-t T] [-f F] [-p P]

[-eq EQ] [-out OUT]

BL and extension logics reasoner.

optional arguments:
-h, --help show this help message and exit
-l L ’bl’ or a list ’[a+b+...]’ of components

-logics- in {l, g, ln, gn, p}, n a
natural number.

-t T Task over the logic:
th --> prove theoremhood of the formula

in param. -f,
c --> prove consequence of the formula

in -f from the premises in param. -p,
s --> assignment of a model that

satisfies the set of equations in
param. -eq.

-f F Formula in prefix notation.
Constants as <a.b;c>, where a.b is the

value
(real) in the component and c is the
component id starting from 0.
T = true, F = false.

-p P List of formulas in prefix notation
-possibly with constants-.

-eq EQ List of equations in the format
(= formula formula’) or
(greater formula formula’)
-possibly with constants-.

-out OUT Name for the output file.

We proceed to give the details of each one of these input arguments. If
the reasoner is executed as

>python niblos.py [-l logic] [-t task] [-f formula] [-p
premises] [-eq equations] [-out outputfile]

the details and meaning of each of these parameters is the following:

40

5.3. Usage 41

• Logic: The logic L the solver will work with can be specified in
two ways.

If the user desires to use BL logic, the input on this parameter
should be fixed as bl. Internally, it will be interpreted as (n +
1)l -i.e., the sum of (n + 1) Lukasiewicz components-, where n is
the number of variables involved on the formulas/equations (see
Theorem 2.4.2).

Second, for determining a continuous t-norm based fuzzy logic,
the input will consist on a word over the language L := L \ {p1}
(see Definition 2.4.7), i.e. on a sequence of characters of the form
"[c0+c1+...+cn]" where each component ci ∈ {l,g,l2,l3,...,
g2,g3,...,p} and [,] and + are literal symbols. The logic L
will be determined by the logic of Alg(w).

If the logic parameter is not specified, the default value is
"[l2]", i.e. the bi-valued classical logic.
• Task: The task the solver must perform over the input data can

be chosen among three available:
– th: theoremhood proving of the formula (in parameter -f)

in the logic L (-l),
– c: logical consequence of the formula (in parameter -f) from

the premises (-p) in the logic L (-l),
– s: satisfiability checking and model generation of the equa-

tions (in parameter -eq) in L (-l).
If the task is not specified, the default value is th
• Formula: A formula should be specified whenever the task has

been fixed to either th or c.
The format of the formula shall be in polish notation with

brackets, where the variables are of the form x1,x2... and the
primitives are the following:

– tnorm: (tnorm x1 x1) ≡ (x1 ∗ x1)
– impl: (impl x1 x1) ≡ (x1→ x1)
– con: (con x1 x1) ≡ (x1 ∧ x1)
– dis: (dis x1 x1) ≡ (x1 ∨ x1)
– neg: (neg x1) ≡ (¬x1)
– T: T ≡ >
– F: F ≡⊥
Instead of a variable, a constant may be used, but the user

will be responsible for its coherence. Constants will be specified on
the form < a.b;c >, where a.b is a value in the BL-chain specified
by the component with index c in the ordinal sum that fixes the
logic, and where <, > and ; are literal symbols. Notice that the
values a, b are natural numbers (with b possibly equal to 0), and c
is a natural number. If the user desires to specify a constant with
negative value, it shall be given in the form < (∼ v); c >, where
(,) and ∼ are literal symbols.

41

42 5. NiBLoS: The New Solver

The top element of the logic is represented by the character T,
and the bottom element by F.

If the formula is not specified, the default value is T.
• Premises: A list of formulas shall be given whenever task c

(logical consequence) has been selected. The structure will be
"[f1,f2,...,fn]", where each fi is a formula in the format de-
tailed in the previous point and [,] and , are literal symbols.

If the list of premises is not specified, the default value will be
the empty list ("[]").
• equations: A list of equations shall be given whenever task s (sat-

isfiability and model generation) has been selected. The structure
of these elements will be "[eq1,eq2,...,eqn]", where each eqi is
an equation and and [,] and , are literal symbols. Each equation
can be of two forms:

– (= ϕ ψ), where ϕ,ψ are formulas and (,) and = literal sym-
bols;

– (greater ϕ ψ), where ϕ,ψ are formulas and (greater,)are
literal symbols; With this we are expressing the intuitive equa-
tion ϕ > ψ in the algebra of the logic L.

If the list of equations is not specified, the default value will be the
empty list ("[]").
• outputfile: The name for generating an output file, inside the
z3Codes folder, with the SMT codes (in z3 input format) may be
given.

If the name of an output file is not specified, a file called
output will be generated in the z3Codes folder for internal uses.

5.3.3. Internal details

Running the program with the desired options, an output file will be gener-
ated in the z3codes folder, either named output or with the string given
in parameter -out.

The generated file will be different depending on all the attributes given,
each of them affecting a certain section of code.

The first part of the file will be the same for all tasks and logics. In the
case of working with the option to generate a model (-t s), an extra line

(set-option :produce-models true)

will be added in the head of the file to specify we want this option.
This first common section of code includes the theory selection, type

and constants T and F definitions, and also the definitions of min and max
operations (and con and dis too, since they are considered as basic op-
erations to fasten the reasoner). We also define a function greater that

42

5.3. Usage 43

represents the > relation between pairs in the order of the BL-chain. It is
the following:1

Listing 5.2. Common Code

(set-logic AUFLIRA)
;Pair type definitions
(define-sort Pair () (Array Int Real))
(define-fun p1 ((x Pair)) Real
(select x 1))

(define-fun p2 ((x Pair)) Real
(select x 2))

;truth constants
;T := <0,-1>
(declare-const T Pair)
(assert (= T (store (store T 1 0.0) 2 (˜ 1.0))))

;F = <0,0>
(declare-const F Pair)
(assert (= F (store (store F 1 0.0) 2 0.0)))

;min(x,y)
(define-fun min ((x Pair) (y Pair)) Pair
(ite (= x T) y
(ite (= y T) x
(ite (< (p2 x) (p2 y)) x
(ite (< (p2 y) (p2 x)) y
(ite (<= (p1 x) (p1 y)) x y))))))

;max(x,y)
(define-fun max ((x Pair) (y Pair)) Pair
(ite (= (min x y) x) y x))

;conjunction min (x, y)
(define-fun con ((x Pair) (y Pair)) Pair
(min x y))

;disjunction max (x, y)
(define-fun dis ((x Pair) (y Pair)) Pair
(max x y))

;greater(x,y) T if x > y, F else
(define-fun greater ((x Pair) (y Pair)) Pair

1For easier understanding of the following pieces of code, consider than (ite
c x y) means if c then x else y, and ”;” holds for commented lines on the
code.

43

44 5. NiBLoS: The New Solver

(ite (and (= x T) (> (p2 y) (˜ 1.0))) T
(ite (> (p2 x) (p2 y)) T
(ite (and (= (p2 x) (p2 y)) (> (p1 x) (p1 y))) T
F))))

The next section of the output file, defining the tnorm and implication
operations and the variable limitations depending on each component, de-
pends directly on the specified logic. In the case this one is BL, also slightly
on the formulas involved. In this last case, the logic will be the ordinal sum
of (n+ 1) Lukasiewicz components, where n is the total number of different
variables involved.

The t-norm operation is implemented as detailed in Definition 2.2.9.
The variables are assigned as specified in the same definition, as pairs of the
type 〈value, componentID〉 using an auxiliary integer variable for limiting
the real values to the integer ones in the product components.

The following example illustrates the definition of the operations and
variable limitations for the logic defined by the ordinal sum Π⊕G⊕ L5 (i.e,
-l "[p,g,l5]"), working with formulas with x1 as the only variable.

Listing 5.3. Operations and variables code for p+g+l5

;tnorm(x, y)
(define-fun tnorm ((x Pair) (y Pair)) Pair
(ite (= (p2 x) (p2 y))
;x and y are in the same component
(ite (= (p2 x) 0.0)
(store x 1 (ite (<= (p1 x) (p1 y))

(p1 x)
(p1 y)))

(ite (= (p2 x) 1.0)
(store x 1 (+ (p1 x) (p1 y)))
(ite (= (p2 x) 2.0)

(store x 1 (ite (<= (p1 x) (p1 y))
(p1 x)
(p1 y)))

(ite (= (p2 x) 3.0)
(store x 1 (ite (>= (- (+ (p1 x) (p1 y)) 4.0) 0.0)

(- (+ (p1 x) (p1 y)) 4.0) 0.0))
x))))

;x and y are in different components
(min x y)))

;impl(x y) -residuum-
(define-fun impl ((x Pair) (y Pair)) Pair
(ite (or (= (min x y) x) (= x y))
;x<=y

44

5.3. Usage 45

T
;y>x
(ite (or (> (p2 x) (p2 y)) (= x T))
;x and y are in different components or x==T
y
;x and y are in the same component
(ite (= (p2 x) 0.0)
y
(ite (= (p2 x) 1.0)
(store x 1 (- (p1 y) (p1 x)))
(ite (= (p2 x) 2.0)
y
(ite (= (p2 x) 3.0)
(store x 1 (+ 4.0 (- (p1 y) (p1 x))))
x)))))))

;negation (neg x = x -> 0)
(define-fun neg ((x Pair)) Pair
(impl x F))

;;;variables definition

(declare-fun x1 () Pair)
;generator for product-t values
(declare-fun x1i () Int)

(assert (< x1i 0))
(assert (or (= x1 T)

(= (p2 x1) 0.0)
(= (p2 x1) 1.0)
(= (p2 x1) 2.0)
(= (p2 x1) 3.0)))

(assert (ite (= (p2 x1) 0.0)
(= (p1 x1) 0.0)
(ite (= (p2 x1) 1.0)
(= (p1 x1) (to_real x1i))
(ite (= (p2 x1) 2.0)
(and (< (p1 x1) 1.0) (>= (p1 x1) 0.0))
(ite (= (p2 x1) 3.0)
(or (= (p1 x1) 0.0) (= (p1 x1) 1.0) (= (p1 x1

) 2.0) (= (p1 x1) 3.0))
(= x1i x1i))))))

45

46 5. NiBLoS: The New Solver

If any constant has been used in the specification of the inputs (either
in the formula, the premises or the equations), integrated on the previous
code, an extra fragment will be generated. It will consist on the translation
of the input the user has given to a code understandable by the z3-solver,
assigning an unique name ci (for i a natural number) to the pair of values.
Also, the apparition of each constant in the formula or equation will be
substituted by the new constant name. This code is of the same kind that
the one used for the definition of the T and F constants.

The following example illustrates the code generated by two constants
in the formulas involved, <0.4;0> and <0.26;0>.

Listing 5.4. Constants <0.4;0> and <0.26;0>

(declare-const c0 Pair)
(declare-const c1 Pair)

...
(assert (= c0 (store (store c0 1 0.4) 2 0.0)))
(assert (= c1 (store (store c1 1 0.26) 2 0.0)))

After the definitions of the operations, variables and constants, the skele-
ton of the generated file is different depending directly on the option speci-
fied.

If the option leads to work with theoremhood or with logical consequence
(-t th or -t c), they have a common affirmation, namely

Listing 5.5. Theoremhood

(assert (= (greater T <form>) T))

where 〈form〉 is the formula specified in attribute -f.
With this, we are asserting that the value of the formula is not always

equal to T (literally we are affirming that T > 〈form〉). If this condition is
unsatisfiable, it means that all evaluations of the formula are equal to T.

If we are in the case of proving this formula is the logical consequence
of a set of premises, the generated code will also include the sentences

Listing 5.6. Logical consequence

(assert (= <prem1> T))
(assert (= <prem2> T))
...

that limit the models where the formula will be verified to the ones that
make all the premises true.

In both cases, after this, the order

(chek-sat)

46

5.3. Usage 47

is given to the z3-solver so it starts working with all the given information
to reach a solution.

On the other hand, if the operation to do is checking the satisfiability
and generating a model of a set of equations, the code will consist in the
assertion of the given equations as specified by the user and the order to
start reasoning with them, and afterwards, a final section of code to get the
values of the model.

Listing 5.7. Model generation

(assert eq1)
(assert eq2)
...
(check-sat)

(get-value ((p2 x1)))
(get-value ((p1 x1)))
...

5.3.4. Output

Depending on the task we are performing, the output of the program will
be different.

• If the task was specified for proving theoremhood (-t th), the
output message will be either the confirmation or the negation
that the specified formula is a theorem in the given logic. Namely,

Formula <formula> IS a theorem in logic <logic>
Formula <formula> IS NOT a theorem in logic <

logic>

• Similarly, if the task to be done was proving logical consequence
(-t c), the output message will be either the confirmation or the
negation that the specified formula is a logical consequence of the
premises in the given logic. Namely,

Formula <formula> IS a logical consequence of
<premises> in logic <logic>

Formula <formula> IS NOT a logical consequence of
<premises> in logic <logic>

• If the task was specified for checking satisfiability and generating a
model of a set of equations (-t s), the output message will either
confirm or deny that the equations set is satisfiable, and in case it
is, it will show the values of the variables in some generated model
that satisfies them. These values will have the same format of the

47

48 5. NiBLoS: The New Solver

constants that could be specified in the input, i.e. < v;c > where
v is the value in the algebra corresponding to the component of the
ordinal sum (parameter -l) of index c -starting in 0-. Notice that,
in the case of BL (-l bl), this answer depends on the codification
of BL as (n+ 1)l, and in the case any component of Product logic
is involved in the word for specifying the logic, all the components
will suffer its index translation depending on the codification of the
product components as two items (since p components are codified
as l2+Z-).

The output will be shown as:

The set of equations <equations> DOES have a
model in logic <logic> and it is:

x1 --> <v1;c1>
x2 --> <v2;c2>
...
The set of equations <equations> DOES NOT have a

model in logic <logic>

In the case the evaluation of a variable is either > or ⊥, the output
will directly show this with T or F respectively, i.e.

x1 --> T
x2 --> F

5.3.5. Examples

For an easier comprehension on the usage of NiBLoS, several examples are
provided with its logical meaning and its corresponding output.

• |=BL (x1 ∗ x2)→ (x2 ∗ x1)

>python niblos.py -l bl -t th -f "(impl (tnorm x1
x2) (tnorm x2 x1))"

will provide the output

Formula (impl (tnorm x1 x2) (tnorm x2 x1)) IS a
theorem in logic bl

• |=BL ¬¬x1 → x1

>python niblos.py -l bl -t th -f "(impl (neg (neg
x1)) x1)"

will provide the output

Formula (impl (neg (neg x1)) x1) IS NOT a theorem
in logic bl

48

5.3. Usage 49

• |=[0,1] L
¬¬x1 → x1

>python niblos.py -l [l] -t th -f "(impl (neg (
neg x1)) x1)"

will provide the output

Formula (impl (neg (neg x1)) x1) IS a theorem in
logic [l]

• |=[0,1] L⊕[0,1]Π⊕G5⊕[0,1]Π (x1 → x2)→ ((x2 → x3)→ (x1 → x3))

>python niblos.py -l [l+p+g5+p] -t th -f "(impl (
impl x1 x2) (impl (impl x2 x3) (impl x1 x3)))"

will provide the output

Formula (impl (impl x1 x2) (impl (impl x2 x3) (
impl x1 x3))) IS a theorem in logic [l+p+g5+p]

• x1, x2 → x3 |=[0,1] L⊕[0,1]Π (x1 → x2)→ x3

>python niblos.py -l [l+p] -t c -p "[x1,(impl x2
x3)]" -f "(impl (impl x1 x2) x3)"

will provide the output

Formula (impl (impl x1 x2) x3) IS a logical
consequence of [x1,(impl x2 x3)] in logic [l+p
]

• 〈0.4, 0〉 → x1, x1 → x2 |=[0,1] L
〈0.26, 0〉 → x2

>python niblos.py -l [l] -t c -p "[(impl
<0.4;0> x1), (impl x1 x2)]" -f "(impl
<0.26;0> x2)"

will provide the output

Formula (impl <0.26;0> x2) IS a logical
consequence of [(impl <0.4;0> x1), (impl x1 x2
)] in logic [l]

• model[0,1] L

(
(x1 ∧ x2)→ (x1 ∗ x2), (x1 > F), (T > x1)

)
>python niblos.py -l "[l]" -t s -eq "[(=(impl (

con x1 x2) (tnorm x1 x2)) T),(greater x1 F), (
greater T x1)]"

will provide the output

49

50 5. NiBLoS: The New Solver

The set of equations [(=(impl (con x1 x2) (tnorm
x1 x2)) T),(greater x1 F),

(greater T x1)] DOES have a model in logic [l]
A possible assignation in the BL-chain assignated

to
[l] of the involved variables is the following:
x2 --> T
x1 --> <0.5;0.0>

5.4. Experimental Results

One of the strongest points of NiBLoS is the versatility it has, allowing,
as commented, theoremhood proofs, logical deduction proofs and model
generation tests. Several tests on all the options were run for checking its
proper codification, but the intensive testing performed for efficiency studies
performed is done using only its theoremhood prover option, to compare its
results to [ABMV12].

Since all possible theorems on BL so are on any of its extensions, exper-
iments over two different families of BL-theorems were conducted, see (2)
and (3) below. First, for comparison reasons with [ABMV12], the follow-
ing generalizations (based on powers of the & connective) of the first seven
Hájek’s axioms of BL [Háj98] were considered:

(2)

(A1) (pn → qn)→ ((qn → rn)→ (pn → rn))
(A2) (pn&qn)→ pn

(A3) (pn&qn)→ (qn&pn)
(A4) (pn&(pn → qn))→ (qn&(qn → pn))
(A5a) (pn → (qn → rn))→ ((pn&qn)→ rn)
(A5b) ((pn&qn)→ rn)→ (pn → (qn → rn))
(A6) ((pn → qn)→ rn)→ (((qn → pn)→ rn)→ rn)

where p, q and r are propositional variables, and n ∈ N \ {0}. It is worth
noticing that the length of these formulas grows linearly with the parameter
n.

In [ABMV12] the authors refer to [Rot07] to justify why these formulas
can be considered a good test bench for (at least) Lukasiewicz logic. In our
opinion, these formulas have the problem to be a good evaluator set of
using only three variables. We consider this is a serious drawback because
the known results on BL complexity (see Chapter 3) state that Lukasi-
ewicz-SAT is an NP-complete problem when the number of variables in
the input is not fixed. However, in Lukasiewiczproving that tautologicity
for formulas with three variables can be solved in polynomial time could
be done . This polynomial time result is outside the scope of the present
paper, but it can be obtained from the rational triangulation associated with
the McNaughton function of the formula with three variables. It is worth

50

5.4. Experimental Results 51

noticing that the known proofs of NP-completeness for Lukasiewicz logic
[Mun87, Háj98, AGH05] need an arbitrary number of variables.

With this in mind, to overcome the drawback of the bounded number
of variables, a new family of BL-theorems to be used as a bench test too is
presented.

For every n ∈ N \ {0},

(3)

n∧
i=1

(&n
j=1 pij) →

n∨
j=1

(&n
i=1 pij)

is a BL-theorem which uses n2 variables; the length of these formulas grows
quadratically with n. As an example, we note that for n = 2 we get the
BL-theorem(

(p11&p12) ∧ (p21&p22)
)
→
(
(p11&p21) ∨ (p12&p22)

)
.

These formulas can be considered significantly harder than the ones previ-
ously proposed in [Rot07]; and indeed, the experimental results support this
claim. It is important to notice that the natural way to compare this new
formula with parameter n with the previous set is to consider the formulas
in [Rot07] with the integer part of

√
n as parameter.

5.4.1. Data

Experiments were run on a machine with a i5-650 3.20GHz processor and
8GB of RAM. Evaluating the validity in Lukasiewiczand Gödel logics of the
generalizations of the BL axioms (2), ranging n from 0 to 500 with incre-
ments of 10, throws better results than the ones obtained in [ABMV12],
but since the new solver is, on these logics, an extension of their work, this
can be assumed to be due to the use of different machines.
For Product Logic, really good timings were obtained. Actually, they are
worse than the ones for Lukasiewicz and Gödel logics in most of the cases,
since the Presburger arithmetic has high complexity too, but the differ-
ence with the previous approach is clear: complex formulas are solved in
a comparatively short time, whereas in [ABMV12] they could not even
be processed. In Figure 1 one can see and compare solving times (given
in seconds) for some of the axioms of the test bench for the cases of BL,
 Lukasiewicz, Gödel and Product logics. It is also interesting to observe
how irregularly the computation time for Product Logic varies depending
on the axiom and the parameter. This probably happens due to the way
the z3-solver internally works with the integer arithmetic theory.

The experiments done with the other family of BL-theorems (3) (see
Figure 2 for the results) suggests that here the evaluation time is growing
non-polynomially on the parameter n. In the graphs we give here, only those
answers (for parameters n ≤ 70) obtained in at most 3 hours of execution
are shown (e.g. for the BL case answers could be reached within this time

51

52 5. NiBLoS: The New Solver

only for the problems with n ≤ 4). The high differences in time when
evaluating the theorems were expectable: Lukasiewicz and Gödel are simpler
than BL when proving the theoremhood because of the method used for BL
(considering n2 + 1 copies of Lukasiewicz, where n is the parameter of the
formula). On the other hand, the computation times for Product logic
modelled over Z− are also smaller than for BL.

5.5. The discrete solver

We want to notice here a failed attempt on enhancing this results. Seeing
the good results obtained when working with a discrete theory instead of a
continuous one (in the case of the product logic), we decided to generalize
this approach to the other continuous components.

We implemented and tested a ”discretized” version of this solver follow-
ing the results presented on Theorems 2.4.3,2.4.4 and 2.4.5. In this version
not only the Product components but also the Lukasiewicz and the Gödel
ones ([0,1] L and [0,1]G, valued over the real interval [0, 1]) were computed
over a discrete set of values, using the theory of the natural numbers in the
SMT-solver.

However,the results were far from being as good as the ones obtained
with the continuous implementation. The problem with this approach was
that the bound for using the finite logics in concrete problems is too high
(it grows exponentially on the number of variables), and so, the results were
sadly much worse than the ones obtained with the mixed countable/un-
countable (Land G, Π Ln Gn) approach, which is the one that was finally
selected as the best one. In [SJVC09] the worst-case upper bound of Aguz-
zoli et al. for the formulation of Theorem 2.4.3 is improved, but in our case,
this approach continues being unuseful. In most of the cases, the test cases
presented in Section 5.4 were impossible to be processed by the z3 solver,
and for this reason we keep this alternative implementation as an interesting
but not successful trial for solving the problem.

We comment here this failed application to avoid future approaches on
this matter, given that at least for this kind of problems, this work is not
useful from an efficiency point of view.

52

5.5. The discrete solver 53

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o
n

d
s
)

Parameter n

GENERALIZATION OF AXIOM A1

BL
L
G
P

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o
n

d
s
)

Parameter n

GENERALIZATION OF AXIOM A2

BL
L
G
P

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o

n
d

s
)

Parameter n

GENERALIZATION OF AXIOM A3

BL
L
G
P

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o

n
d

s
)

Parameter n

GENERALIZATION OF AXIOM A4

BL
L
G
P

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o

n
d

s
)

Parameter n

GENERALIZATION OF AXIOM A5a

BL
L
G
P

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o

n
d

s
)

Parameter n

GENERALIZATION OF AXIOM A5b

BL
L
G
P

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500

T
im

e
 (

s
e
c
o
n
d
s
)

Parameter n

GENERALIZATION OF AXIOM A6

BL
L
G
P

Figure 1. Generalizations of BL-axioms given in (2).

53

54 5. NiBLoS: The New Solver

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60 70

T
im

e
 (

s
e
c
o
n
d
s
)

Parameter n

HARD INSTANCES

BL
L
G
P

Figure 2. Our proposed BL-theorems given in (3).

54

CHAPTER 6

Related Works and Conclusions

We provide here an overview of existing works that cope with similar
problems that the one presented in Chapter 5, to be able to comparatively
study the possible impact of this research.

Also we will explain here the conclusions reached after this research, and
provide several points for future work that would complete this work.

6.1. Related Works

To the best of our knowledge, little effort has been paid to develop a
working system for reasoning about formal fuzzy logics.

Theoretical results have been presented to reason about fuzzy logics,
providing interesting calculus methods and approaches [Rot07, SJVC09,
BS09, SJV12] but there are no available implementations and working
applications over these results.

We present here a brief survey of the related existing work, specifying
their approach and uses and then observing the interesting points our re-
search provides.

In works from Bobillo, Straccia et al. [BS11, BDGR12] implementa-
tions for reasoning with fuzzy ontologies have been presented, specifically,
with fuzzy rough Description Logics (DL).

Description logics [BCM+07] are a family of logics for representing
structured knowledge. Each logic is denoted by using a string of capital
letters which identify the constructors of the logic and therefore its expres-
siveness. DLs have proved to be very useful as ontology languages.

In computer science and information science, an ontology formally repre-
sents knowledge as a set of concepts within a domain, and the relationships
between those concepts. It can be used to reason about the entities within
that domain and may be used to describe the domain. Ontologies are the
structural frameworks for organizing information and are used in Artificial
Intelligence, the Semantic Web, system and software engineering and other
fields referring to information treatment as a form of ad-hoc knowledge rep-
resentation about the world or some part of it.

A presented reasoner, DeLorean ([DeL]) is a DL reasoner that supports
fuzzy rough extensions of the existing fuzzy DLs. In a strict sense, DeLorean
is not a reasoner but a translator from a fuzzy rough ontology language into a
classical ontology language (OWL or OWL 2). Then, a classical DL reasoner
is employed to reason with the resulting ontology.

55

56 6. Related Works and Conclusions

This approach to fuzzy logic reasoners provides an intuitive approach to
the modelling of vague problems, but on the other hand it is not clear how
to work with t-norm based fuzzy logics formally defined (as for example BL
or over BL logics).

Also, as it is shown in the specifications of DeLorean, it does not work
with infinitely-valued logics, since in its language, a finite chain of truth
degrees is assumed. This is a serious problem, making impossible to work
within, for example, Product Logic. Besides, as we will comment in Sec-
tion 5.2, although the reasoning for concrete instances in Lukasiewicz and
Gödel infinitely valued logics is possible in finite algebras, it is in general
not efficient as it has been seen in the experiments shown in Section 5.4.

For these reasons, this research is oriented to neighbouring but very
different problems, and so the solver presented in Chapter 5 should be con-
sidered an alternative reasoner system.

6.2. Conclusions

From a general point of view, concerning the impact of this research, we
found remarkable the fact that there is no other existing system which scope
of problems coincide with the ones treated by the solver presented as main
point of this work. This leads this result to be opening an interesting field
for both the AI (or more generally, the computer science) and the logical
communities, namely the concrete treatment of problems from a wide family
of logics in a purely automatized way. To remark the previous statement,
it is natural to think that the range of users of the new solver is more
theoretical-oriented than the one from reasoners like DeLorean, just because
of the logical background that is necessary to know and to be interested in
studying the family of logics this new application works with.

On the other hand, we reached several intermediate conclusions during
the research, that can be briefly1 exposed here.

(1) Logics of the BL-chains obtained by the ordinal sum of basic t-
norms can be equally expressed as hoops ordinal sums, allowing
richer decomposition of the components.

(2) From the z3 SMT-solver point of view (and possible in general),
to work with a concrete constraint satisfaction problem in an un-
countable set with product and division operations is much slower
than treating an equivalent problem (proved of the same compu-
tational complexity) in a discrete universe with the addition and
subtraction.

(3) Reductions to equivalent problems to work within discrete or finite
universes is not always the best option, since the hardnesses of
the original problem can be translated to even more problematic
points.

1For deeper details, see its correspondent section

56

6.3. Future Work 57

6.3. Future Work

Some interesting features can be very easily added to NiBLoS as it is
implemented by now. The theoretical work that should be done to prove
they would be correct (in case that is necessary) does not seem like it could
be a problem (cf. [Mon01], [EGGN07])

The ones we consider more relevant are the following:

(1) Implementation a graphical interface for NiBLoS to make the ap-
plication more accessible and user-friendly.

(2) Extension of NiBLoS for allowing the specification of the separation
points for the basic t-norms in the input, and the use of constants
in [0, 1] ∩Q for words that do not involve the product component.

(3) Extension of NiBLoS to natively include the Baaz Projector ∆.
(4) Extension of NiBLoS for allowing the specification of infinite num-

ber of components in the word definition. The theoretical work
behind this point is already done, and just the parsing for the
computer application inputs should be implemented.

(5) Extension to cope a wider family of logics: SBL (stric Basic Logic,
where x ∧ ¬x = 0 is a theorem) and some MTL logics (the log-
ics of left-continuous t-norms) that could be reachable from this
approach (for instance, those with a nilpotent minimum).

Another idea we consider interesting to study is the extension or adapta-
tion of this research to the development of a fuzzy modal logic solver. This
kind of logics have been studied for the modelization of concepts such as
beliefs for agents ([Cas08], [GHE03]) and could be very interesting for the
implementation and experimentation of this theoretical works.

57

Bibliography

[ABMV12] C. Ansótegui, M. Bofill, F. Manyà, and M. Villaret. Building auto-
mated theorem provers for infinitely valued logics with satisfiability
modulo theory solvers. In Proceedings of the IEEE 42nd International
Symposium on Multiple-Valued Logic (ISMVL 2012). IEEE Computer
Society, 2012. 1, 27, 36, 37, 50, 51

[AC00] S. Aguzzoli and A. Ciabattoni. Finiteness in infinite-valued Lukasiewicz
logic. Journal of Logic, Language and Information, 9(1):5–29, 2000.
Logics of uncertainty. 15

[ACGM05] A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-
based decision procedure for the boolean combination of difference con-
straints. In Proceedings of the 7th international conference on The-
ory and Applications of Satisfiability Testing, SAT’04, pages 16–29.
Springer-Verlag, 2005. 31

[AFM07] P. Aglianò, I. M. A. Ferreirim, and F. Montagna. Basic hoops: an
algebraic study of continuous t-norms. Studia Logica, 87(1):73–98, 2007.
11, 18

[AG02] S. Aguzzoli and B. Gerla. On countermodels in Basic Logic. Neural
Network World, 12(5):407–421, 2002. 15

[AGH05] S. Aguzzoli, B. Gerla, and Z. Haniková. Complexity issues in basic logic.
Soft Computing, 9(12):919–934, 2005. 24, 26, 51

[Agu04] S. Aguzzoli. Uniform description of calculi for all t-norm logics. In IS-
MVL ’04, pages 38–43, 2004. 15

[AM03] P. Agliano and F. Montagna. Varieties of BL-algebras. I. General prop-
erties. Journal of Pure and Applied Algebra, 181(2-3):105–129, 2003.
15, 18

[AS09] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
SAT solvers. In Proceedings of the 21st international jont conference
on Artifical intelligence, IJCAI’09, pages 399–404. Morgan Kaufmann
Publishers Inc., 2009. 29

[BCLZ04] T. Ball, B. Cook, S. Lahiri, and L. Zhang. Zapato: Automatic theo-
rem proving for predicate abstraction refinement. In 16th International
Conference on Computer Aided Verification (CAV 2004), volume 3114
of Lecture Notes in Computer Science, pages 457–461. Springer, 2004.
31

[BCM+07] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The description logic handbook: theory, implemen-
tation, and applications. Cambridge University Press, second edition,
2007. 55

59

60 6. Bibliography

[BDGR12] F. Bobillo, M. Delgado, and J. Gómez-Romero. Delorean: A reasoner
for fuzzy owl 2. Expert Systems with Applications, 39(1):258 – 272, 2012.
55

[BEGR11] F. Bou, F. Esteva, L. Godo, and R. Rodŕıguez. On the minimum many-
valued modal logic over a finite residuated lattice. Journal of Logic and
Computation, 21(5):739–790, 2011. 18

[BHMV02] M. Baaz, P. Hájek, F. Montagna, and H. Veith. Complexity of t-
tautologies. Annals of Pure and Applied Logic, 113(1-3):3–11, 2002.
First St. Petersburg Conference on Days of Logic and Computability
(1999). 26

[BM79] R. S. Boyer and J. Strother Moore. A computational logic. Academic
Press [Harcourt Brace Jovanovich Publishers], New York, 1979. ACM
Monograph Series. 28

[BS00] S. Burris and H. P. Sankappanavar. A course in Universal Algebra. The
millennium edition, 2000. 17

[BS09] F. Bobillo and U. Straccia. Fuzzy description logics with general t-
norms and datatypes. Fuzzy Sets and Systems, 160(23):3382–3402,
2009. 1, 55

[BS11] F. Bobillo and U. Straccia. Fuzzy ontology representation using owl
2. International Journal of Approximate Reasoning, 52(7):1073 – 1094,
2011. 55

[BST10] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version
2.0. Technical report, Department of Computer Science, The University
of Iowa, 2010. Available at www.SMT-LIB.org. 32

[Cas08] A. Casali. On Intentional and Social Agents with Graded Attitudes.
Ph. D. Dissertation, University of Girona (Spain), 2008. 57

[CEGT00] R. Cignoli, F. Esteva, L. Godo, and A. Torrens. Basic fuzzy logic is the
logic of continuous t-norms and their residua. Soft Computing, 4(2):106–
112, 2000. 3, 6

[CH09] P. Cintula and P. Hájek. Complexity issues in axiomatic extensions of
 Lukasiewicz logic. Journal of Logic and Computation, 19(2):245–260,
2009. 24

[CT00] R. Cignoli and A. Torrens. An algebraic analysis of product logic.
Multiple-valued logic, 5:45–65, 2000. 18

[CT05] R. Cignoli and A. Torrens. Standard completeness of Hájek basic logic
and decompositions of BL-chains. Soft Computing, 9(12):862–868, 2005.
10

[DdM06] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for
DPLL(T). In CAV, pages 81–94. Springer, 2006. 32

[DeL] DeLorean. http://webdiis.unizar.es/ fbobillo/delorean. 55
[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for

theorem-proving. Commun. ACM, 5:394–397, 1962. 29
[dMB08] L. Mendonça de Moura and N. Bjørner. Z3: An efficient SMT solver.

In C. R. Ramakrishnan and J. Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, pages 337–340, 2008. 32, 33

60

61

[dMDS07] L. de Moura, B. Dutertre, and N. Shankar. A tutorial on satisfiability
modulo theories. In W. Damm and H. Hermanns, editors, CAV, vol-
ume 4590 of Lecture Notes in Computer Science, pages 20–36. Springer,
2007. 31

[dMR02] L. de Moura and H. Ruess. Lemmas on demand for satisfiability solvers.
In Proceedings of the 5th international conference on Theory and Ap-
plications of Satisfiability Testing, SAT’02. Springer-Verlag, 2002. 31

[dMR04] L. de Moura and H. Ruess. An experimental evaluation of ground de-
cision procedures. In R. Alur and D. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided Verification,
CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes in
Computer Science, pages 162–174. Springer, 2004. 30

[DP60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the Association for Computing Machinery, 7:201–
215, 1960. 29

[EGGN07] F. Esteva, J. Gispert, L. Godo, and C. Noguera. Adding truth-constants
to logics of continuous t-norms: Axiomatization and completeness re-
sults. Fuzzy Sets and Systems, 158(6):597–618, March 2007. 21, 22, 57

[ES03] N. Eén and N. Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of Lec-
ture Notes in Computer Science, pages 502–518. Springer, 2003. 29

[Fer92] I. Ferreirim. On varieties and quasivarieties of hoops and their reducts.
Ph. D. Thesis, University of Illinois at Chicago, 1992. 11

[GHE03] L. Godo, P. Hájek, and F. Esteva. A fuzzy modal logic for belief func-
tions. Fundamenta Informaticae, 57(2-4):127–146, 2003. 1st Interna-
tional Workshop on Knowledge Representation and Approximate Rea-
soning (KR&AR) (Olsztyn, 2003). 57

[GN07] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver.
Discrete Appl. Math., 155(12):1549–1561, 2007. 29

[Háj98] P. Hájek. Metamathematics of fuzzy logic, volume 4 of Trends in Logic—
Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 1998.
3, 5, 16, 24, 25, 50, 51

[McC62] J. McCarthy. Towards a mathematical science of computation. In In
IFIP Congress, pages 21–28. North Holland, 1962. 32

[Mon01] F. Montagna. Free BL∆ algebras. In A. Di Nola and G. Gerla, editors,
Lectures on soft computing and fuzzy logic, Adv. Soft Comput., pages
159–171. Physica, Heidelberg, 2001. 22, 57

[Mon05] F. Montagna. Generating the variety of BL-algebras. Soft Computing,
9(12):869–874, 2005. 15

[MS57] P. S. Mostert and A. L. Shields. On the structure of semigroups on
a compact manifold with boundary. Annals of Mathematics. Second
Series, 65:117–143, 1957. 16

[Mun87] D. Mundici. Satisfiability in many-valued sentential logic is NP-
complete. Theoretical Computer Science, 52(1-2):145–153, 1987. 25, 51

[NEGM05] A. Di Nola, F. Esteva, L. Godo, and F. Montagna. Varieties of BL-
algebras. Soft Computing, 9(12):875–888, 2005. 18

[NO80] G. Nelson and D. Oppen. Fast decision procedures based on congruence
closure. J. ACM, 27(2):356–364, 1980. 28

61

62 6. Bibliography

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT mod-
ulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). Journal of the Association for Computing Ma-
chinery, 53:937–977, 2006. 30, 31

[Pav79a] J. Pavelka. On fuzzy logic. I. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 25(1):45–52, 1979. Many-valued rules of
inference. 21

[Pav79b] J. Pavelka. On fuzzy logic. II. Enriched residuated lattices and seman-
tics of propositional calculi. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 25(2):119–134, 1979. 21

[Pav79c] J. Pavelka. On fuzzy logic. III. Semantical completeness of some many-
valued propositional calculi. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 25(5):447–464, 1979. 21

[Rot07] R. Rothenberg. A class of theorems in Lukasiewicz logic for benchmark-
ing automated theorem provers. In N. Olivetti and C. Schwind, editors,
TABLEAUX ’07, Automated Reasoning with Analytic Tableaux and Re-
lated Methods, Position Papers, number LSIS.RR.2007.002, pages 101–
111, 2007. 1, 50, 51, 55

[SC] SMT-COMP. http://smtcomp.sourceforge.net/. 33
[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. J.

ACM, 28(4):769–779, October 1981. 28
[SJV12] S. Schockaert, J. Janssen, and D. Vermeir. Satisfiability checking in

 Lukasiewicz logic as finite constraint satisfaction. Journal of Automated
Reasoning, 2012. To appear. 1, 55

[SJVC09] S. Schockaert, J. Janssen, D. Vermeir, and M. De Cock. Finite satisfia-
bility in infinite-valued Lukasiewicz logic. In L. Godo and A. Pugliese,
editors, SUM, volume 5785 of Lecture Notes in Computer Science, pages
240–254. Springer, 2009. 1, 52, 55

[SSB02] O. Strichman, S. Seshia, and R. Bryant. Deciding separation formu-
las with SAT. In Proceedings of the 14th International Conference on
Computer Aided Verification, CAV ’02, pages 209–222, London, UK,
UK, 2002. Springer-Verlag. 30

[VBG12] A. Vidal, F. Bou, and L. Godo. An SMT-based solver for continuous
t-norm based logics. Proc. of SUM 2012, E. Huellermeier et al. (Eds.),
LNAI 7520, Springer-Verlag, pp. 633–640, 2012. 2, 35

[VBG12] A. Vidal, F. Bou, and L. Godo. An SMT-based solver for continuous
t-norm based logics (extended version). Technical report, IIIA - CSIC,
2012. Available at
http://www.iiia.csic.es/files/pdfs/ctnormSolver.pdf.
2

[z3w] Z3. http://research.microsoft.com/en-us/um/redmond/projects/z3/index.html.
39

62

	Chapter 1. Introduction
	Chapter 2. Basic Logic and its extensions
	2.1. BL-algebras
	2.2. BL-chains
	2.2.1. Concrete Examples of BL-chains
	2.2.2. BL-chains constructions

	2.3. Logics
	2.4. Further relevant results on BL-logics
	2.4.1. The treatment of the logic BL
	2.4.2. Finiteness on Infinite Valued Fuzzy Logics
	2.4.3. An alternative ordinal sum representation

	2.5. Extensions of BL
	2.5.1. Constants
	2.5.2. Baaz's projection

	Chapter 3. Complexity Issues
	3.1. Computational Complexity
	3.2. Complexity in a many valued frame
	3.2.1. Łukasiewicz logic
	3.2.2. Gödel and Product logic
	3.2.3. Finitely-valued logics
	3.2.4. Basic Logic
	3.2.5. BL-chains

	Chapter 4. Satisfiability Modulo Theories
	4.1. The Satisfiability Problem
	4.2. Formal Definitions
	4.2.1. SAT encodings
	4.2.2. SMT-solvers approach

	4.3. Standardisation: Language and Solvers

	Chapter 5. NiBLoS: The New Solver
	5.1. What does it do?
	5.2. Theoretical basis
	5.3. Usage
	5.3.1. Pre execution
	5.3.2. Inputs
	5.3.3. Internal details
	5.3.4. Output
	5.3.5. Examples

	5.4. Experimental Results
	5.4.1. Data

	5.5. The discrete solver

	Chapter 6. Related Works and Conclusions
	6.1. Related Works
	6.2. Conclusions
	6.3. Future Work

	Bibliography

