Computation of skeptical outputs in P-DeLP satisfying indirect consistency: a level-based approach

Teresa Alsinet
Dept. of Computer Science
University of Lleida
Lleida, SPAIN
tracy@diei.udl.cat

Carlos I. Chesñevar
Dept. of Computer Science
Universidad Nacional del Sur
Bahía Blanca, ARGENTINA
cic@es.uns.edu.ar

Lluís Godo
Artificial Intelligence
Research Institute, CSIC
Bellaterra, SPAIN
godo@iiia.csic.es

Abstract

Recent research has identified the notion of indirect consistency as a rationality postulate that every rule-based argumentation frameworks should satisfy. Possibilistic Defeasible Logic Programming (P-DeLP) is an argumentation framework based on logic programming which incorporates a treatment of possibilistic uncertainty at object-language level, in which indirect consistency does not hold. In this paper we consider a novel approach to computing warranted arguments in P-DeLP which ensures the above rationality postulate and we describe a procedure to effectively compute them.

Keywords: argumentation, uncertainty handling, possibilistic logic

1 Introduction and motivation

Over the last few years, argumentation has been gaining increasing importance in several AI-related areas, mainly as a vehicle for facilitating rationally justifiable decision making when handling incomplete and potentially inconsistent information. Recently Caminada & Amgoud have defined several rationality postulates [6] which every rule-based argumentation system should satisfy. One of such postulates (called Indirect Consistency) involves ensuring that the closure of warranted conclusions be guaranteed to be consistent. Failing to satisfy this postulate implies some anomalies and unintuitive results (e.g. the modus ponens rule cannot be applied based on justified conclusions). A number of rule-based argumentation systems are identified in which such postulate does not hold (including DeLP [10] and Prakken & Sartor’s [12], among others). As an alternative to solve this problem, the use of transposed rules is proposed to extend the representation of strict rules. For grounded semantics, the use of a transposition operator ensures that all rationality postulates are satisfied.

Possibilistic Defeasible Logic Programming (P-DeLP) [2] is an argumentation framework based on logic programming which incorporates the treatment of possibilistic uncertainty at the object-language level. Indeed, P-DeLP is an extension of Defeasible Logic Programming (DeLP) [10], a logic programming approach to argumentation which has been successfully used to solve real-world problems in several contexts such as knowledge distribution [4] and recommendations systems [9], among others. As in the case of DeLP, the P-DeLP semantics is skeptical, based on a query-driven proof procedure which computes warranted (justified) arguments. Following the terminology used in [6], P-DeLP can be seen as a member of the family of rule-based argumentation systems, as it is based on a logical language defined over a set of (weighted) literals and the notions of strict and defeasible rules, which are used to characterize a P-DeLP program.
In [1] the authors have presented a novel level-based approach to computing warranted arguments in P-DeLP which ensures the above rationality postulate without requiring the use of transposed rules. In this paper, after summarizing in Sections 2, 3 and 4 the main elements of P-DeLP, the role of Caminada and Angouéd’s rationality postulate of indirect consistency and the new approach introduced in [1] respectively, we further build on this new approach in Section 5 by identifying situations in which a given program may yield multiple outputs, and considering for such a case a skeptical output which is the intersection of the possible outputs. We also provide an effective procedure to compute the skeptical set of warranted arguments for a given P-DeLP program.

2 Argumentation in P-DeLP: an overview

In order to make this paper self-contained, we will present next the main definitions that characterize the P-DeLP framework. For details the reader is referred to [2]. The language of P-DeLP is inherited from the language of logic programming, including the usual notions of atom, literal, rule and fact, but over an extended set of atoms where a new atom “p ~p” is added for each original atom p. Therefore, a literal in P-DeLP is either an atom p or a (negated) atom of the form ~p, and a goal is any literal.

A weighted clause is a pair of the form (p, α), where p is a rule Q ← P_1 ∧ ... ∧ P_k or a fact Q (i.e., a rule with empty antecedent), where Q, P_1, ..., P_k are literals, and α ∈ [0, 1] expresses a lower bound for the necessity degree of p. We distinguish between certain and uncertain clauses. A clause (p, α) is referred as certain if α = 1 and uncertain, otherwise. A set of P-DeLP clauses Γ will be deemed as contradictory, denoted Γ ⊩ ⊥, if, for some atom q, Γ ⊩ (q, α) and Γ ⊩ (∼q, β), with α > 0 and β > 0, where ⊩ stands for deduction by means of the following particular instance of the generalized modus ponens rule:

\[
\begin{align*}
& (Q ← P_1 ∧ \ldots ∧ P_k, α) \\
& (P_1, β_1), \ldots, (P_k, β_k) \\
& (Q, \min(α, β_1, \ldots, β_k))
\end{align*}
\]

\[GM P\]

A P-DeLP program \(\mathcal{P} \) (or just program \(\mathcal{P} \)) is a pair \((\Pi, Δ)\), where \(\Pi \) is a non-contradictory finite set of certain clauses, and \(Δ \) is a finite set of uncertain clauses. Formally, given a program \(\mathcal{P} = (\Pi, Δ) \), we say that a set \(\mathcal{A} ⊆ Δ \) of uncertain clauses is an argument for a goal Q with necessity degree \(α > 0 \), denoted \(\langle \mathcal{A}, Q, α \rangle \), iff:

1. \(\Pi ∪ \mathcal{A} \) is non contradictory;
2. \(α = \max\{ β ∈ [0, 1] | \Pi ∪ \mathcal{A} ⊢ (Q, β) \} \), i.e. \(α \) is the greatest degree of deduction of Q from \(\Pi ∪ \mathcal{A} \);
3. \(\mathcal{A} \) is minimal wrt set inclusion, i.e. there is no \(\mathcal{A}_1 ⊆ \mathcal{A} \) such that \(\Pi ∪ \mathcal{A}_1 ⊢ (Q, α) \).

Moreover, if \(\langle \mathcal{A}, Q, α \rangle \) and \(\langle \mathcal{S}, R, β \rangle \) are two arguments wrt a program \(\mathcal{P} = (\Pi, Δ) \), we say that \(\langle \mathcal{S}, R, β \rangle \) is a subargument of \(\langle \mathcal{A}, Q, α \rangle \), denoted \(\langle \mathcal{S}, R, β \rangle ⊆ \langle \mathcal{A}, Q, α \rangle \), whenever \(\mathcal{S} ⊆ \mathcal{A} \). From the definition of argument, it follows that if \(\langle \mathcal{S}, R, β \rangle ⊆ \langle \mathcal{A}, Q, α \rangle \) then (i) \(β ≥ α \), and (ii) if \(β = α \), then \(\mathcal{S} = \mathcal{A} \) iff \(R = Q \).

Let \(\mathcal{P} \) be a P-DeLP program, and let \(\langle \mathcal{A}_1, Q_1, α_1 \rangle \) and \(\langle \mathcal{A}_2, Q_2, α_2 \rangle \) be two arguments wrt \(\mathcal{P} \). We say that \(\langle \mathcal{A}_1, Q_1, α_1 \rangle \) counterargues \(\langle \mathcal{A}_2, Q_2, α_2 \rangle \) iff there exists a subargument (called disagreement subargument) \(\langle \mathcal{S}, Q, β \rangle \) of \(\langle \mathcal{A}_2, Q_2, α_2 \rangle \) such that \(Q_1 = ~Q \). In such a case, we say that \(\langle \mathcal{A}_1, Q_1, α_1 \rangle \) is a proper (resp. blocking) defeater for \(\langle \mathcal{A}_2, Q_2, α_2 \rangle \) when \(α_1 > β \) (resp. \(α_1 = β \)).

In P-DeLP, as in other argumentation systems [8, 13], argument-based inference involves a dialectical process in which arguments are compared in order to determine which beliefs or goals are ultimately accepted (or justified or warranted) on the basis of a given program. This is formalized in terms of an exhaustive dialectical analysis of all possible argumentation lines rooted in a given argument. An argumentation line
starting in an argument $\langle A_0, Q_0, \alpha_0 \rangle$ is a sequence of arguments $\lambda = \{(A_0, Q_0, \alpha_0), (A_1, Q_1, \alpha_1), \ldots, (A_n, Q_n, \alpha_n), \ldots\}$ such that each (A_i, Q_i, α_i) is a defeater for the previous argument $(A_{i-1}, Q_{i-1}, \alpha_{i-1})$ in the sequence, $i > 0$. In order to avoid fallacious reasoning additional constraints are imposed, namely:

1. **Non-contradiction**: given an argumentation line λ, the set of arguments of the proponent (respectively opponent) should be non-contradictory wrt P. \(^2\)

2. **Progressive argumentation**: (i) every blocking defeater $\langle A_i, Q_i, \alpha_i \rangle$ in λ with $i > 0$ is defeated by a proper defeater\(^3\) $\langle A_{i+1}, Q_{i+1}, \alpha_{i+1} \rangle$ in λ; and (ii) each argument $\langle A_i, Q_i, \alpha_i \rangle$ in λ, with $i \geq 2$, is such that $Q_i \neq \sim Q_{i-1}$.

An argumentation line satisfying these constraints is called **acceptable**, and can be proven to be finite. The set of all possible acceptable argumentation lines forms a structure called **dialectical tree**. Given a program $P = (\Pi, \Delta)$, we say that a goal Q is warranted wrt P with a maximum necessity degree α, written $P \vdash^w \langle A, Q, \alpha \rangle$, whenever there exists an argument $\langle A, Q, \alpha \rangle$ such that: (i) every acceptable argumentation line starting with $\langle A, Q, \alpha \rangle$ has an odd number of arguments; and (ii) there is no other argument of the form $\langle A_i, Q, \beta \rangle$, with $\beta > \alpha$, satisfying (i).

3 **Indirect consistency and transposition of strict rules**

In a recent paper Caminada and Amgoud [6] have characterized three **rationality postulates** that, according to the authors, any rule-based argumentation system should satisfy in order to avoid anomalies and unintuitive results. Their formalization is intentionally generic, based on a **defeasible theory** $T = (S, D)$, where S is a set of strict rules and D is a set of defeasible rules. The notion of negation is modelled in the standard way by means of a function “−”. An **argumentation system** is a pair (Args, Def), where Args is a set of arguments (based on a defeasible theory) and $\text{Def} \subseteq \text{Args} \times \text{Args}$ is a defeat relation. The **closure** of a set of literals \mathcal{L} under the set S, denoted $CL_S(\mathcal{L})$, is the smallest set such that $\mathcal{L} \subseteq CL_S(\mathcal{L})$, and if $\phi_1, \ldots, \phi_n \rightarrow \psi \in S$, and $\phi_1, \ldots, \phi_n \in CL_S(\mathcal{L})$, then $\psi \in CL_S(\mathcal{L})$. A set of literals \mathcal{L} is **consistent** iff there exist $\psi, \phi \in \mathcal{L}$ such that $\psi = \neg \phi$; otherwise it is said to be **inconsistent**. An argumentation system (Args, Def) can have different extensions $E_1, E_2, \ldots, E_n (n \geq 1)$ according to the adopted semantics. The conclusions associated with those arguments belonging to a given extension E_i are defined as $\text{Concs}(E_i)$, and the **output** of the argumentation system is defined skeptically as $\text{Output} = \bigcap_{i=1}^{n} \text{Concs}(E_i)$.

On the basis of the above concepts, Caminada and Amgoud [6] present three important postulates: **direct consistency, indirect consistency** and **closure**. Let T be a defeasible theory, (Args, Def) an argumentation system built from T, **Output** the set of justified (warranted) conclusions, and E_1, \ldots, E_n its extensions under a given semantics. Then these three postulates are defined as follows:

- (Args, Def) satisfies **closure** iff (1) for each i, $\text{Concs}(E_i) = CL_S(\text{Concs}(E_i))$, and (2) $\text{Output} = CL_S(\text{Output})$.
- (Args, Def) satisfies **direct consistency** iff (1) for each i, $\text{Concs}(E_i)$ is consistent, and (2) Output is consistent.
- (Args, Def) satisfies **indirect consistency** iff (1) for each i, $CL_S(\text{Concs}(E_i))$ is consistent, and (2) $CL_S(\text{Output})$ is consistent.

They show that many rule-based argumentation systems fail to satisfy indirect consistency, in particular DeLP. The same applies for P-DeLP, as illustrated next. Consider the program $P = (\Pi, \Delta)$, where $\Pi = \{(y, 1), (\neg y \leftarrow a \land b, 1)\}$ and $\Delta = \{(a, 0.9), (b, 0.9)\}$. It is easy to see that arguments $\{(a, 0.9)\}, a, 0.9$ and $\{(b, 0.9)\}, b, 0.9$ have no defeaters wrt P. Thus $\{y, a\} = \text{Output}$ turns out to be warranted, but $y, \sim y \in$
Consider the program arguments with no defeaters. For instance, exists an inconsistency emerging from the set described in the section indirect conflicts between arguments refer to the case where direct computation and analogously for other advantages. See [Q] for a discussion in which follows, allows for a more refined criterion and has some other advantages (see [1] for a discussion), in particular it will allow us to define in next section an efficient top-down procedure for their computation.

The idea is the following. While direct conflicts between arguments refer to the case of both proper and blocking defeaters, as described in Section 2, indirect conflicts between arguments refer to the case when there exists an inconsistency emerging from the set of certain (strict) clauses of a program and arguments with no defeaters. For instance, consider the program \(\mathcal{P} = (\Pi, \Delta) \) with \(\Pi = \{\{\sim y \leftarrow a \land b, 1\}, \{y, 1\}, \{\sim x \leftarrow c \land d, 1\}, \{x, 1\}\} \) and \(\Delta = \{(a, 0.7), (b, 0.7), (c, 0.7), (d, 0.6)\}. \)

In the original P-DeLP, \(\{(a, 0.7), a, 0.7\} \) and \(\{(b, 0.7), b, 0.7\} \) are arguments with no defeaters and therefore their conclusions would be warranted. However, since \(\Pi \cup \{(a, 0.7), (b, 0.7)\} \vdash \bot \), arguments \(\{(a, 0.7), a, 0.7\} \) and \(\{(b, 0.7), b, 0.7\} \) express (indirect) contradictory information. Moreover, as both goals are supported by arguments with the same necessity degree 0.7, none of them should be neither warranted nor rejected: we will refer to them as (indirect) blocked goals. On the other hand, a similar situation appears with \(\{(c, 0.7), c, 0.7\} \) and \(\{(d, 0.6), d, 0.6\} \). As before, \(\Pi \cup \{(c, 0.7), (d, 0.6)\} \vdash \bot \), but in this case the necessity degree of goal \(c \) is greater than the necessity degree of goal \(d \). In such a case, \(c \) can be indeed considered as a warranted goal (to the degree 0.7).

According to [1], an output for a P-DeLP program \(\mathcal{P} \) is a pair \((\text{Warr}, \text{Block}) \), where \(\text{Warr} \) and \(\text{Block} \), denote respectively a set of warranted and blocked goals (together with their degrees) fulfilling a set of conditions, formalized in the next definition, that ensure a proper handling of the problem of global inconsistency. The intended construction of the sets \(\text{Warr}, \text{Block} \) is done level-wise, starting from the highest level and iteratively going down from one level to next level below. If \(1 \geq \alpha_1 > \ldots > \alpha_p > 0 \) are the weights appearing in the set of arguments \(\text{ARG}(\mathcal{P}) = \{\langle A, Q, \alpha \rangle \mid A \text{ is an argument for } Q \text{ with necessity } \alpha \text{ wrt } \mathcal{P}\} \), one can write \(\text{Warr} = \text{Warr}(\alpha_1) \cup \ldots \cup \text{Warr}(\alpha_p) \) and \(\text{Block} = \text{Block}(\alpha_1) \cup \ldots \cup \text{Block}(\alpha_p) \), where \(\text{Warr}(\alpha_i) \) and \(\text{Block}(\alpha_i) \) respectively are the sets of the warranted and blocked goals to the (maximum) degree \(\alpha_i \). We will also write \(\text{Warr}(> \alpha_i) \) to denote \(\cup_{\beta > \alpha_i} \text{Warr}(\beta) \), and analogously for \(\text{Block}(> \alpha_i) \), assuming \(\text{Warr}(> \alpha_1) = \text{Block}(> \alpha_1) = \emptyset \). In what follows, given a program \(\mathcal{P} = (\Pi, \Delta) \) we will denote by rules(\(\Pi \)) and facts(\(\Pi \)) the set of strict rules and strict facts of \(\mathcal{P} \) respectively.

Definition 1 (Output for P-DeLP program)

An output for a program \(\mathcal{P} = (\Pi, \Delta) \) is a...
pair $(\text{Warr}, \text{Block})$ where the sets $\text{Warr}(\alpha_i)$ and $\text{Block}(\alpha_i)$, for $i = 1 \ldots p$ are required to satisfy the following recursive constraints:

1. An argument $(A, Q, \alpha_i) \in \text{ARG}(P)$ is called acceptable if it satisfies the following three conditions:

 (i) for any $\beta > \alpha_i$, neither $(\sim Q, \beta)$ nor (Q, β) are in $\text{Warr}(\beta) \cup \text{Block}(\beta)$

 (ii) if $(B, R, \beta) \subseteq (A, Q, \alpha_i)$ with $R \neq Q$, then $(R, \beta) \in \text{Warr}(\beta)$

 (iii) $\text{rules}(\Pi) \cup \text{Warr}(\beta) \cup \{(R, \alpha_i) \mid (B, R, \alpha_i) \subseteq (A, Q, \alpha_i) \} \not\models \bot$

2. For each acceptable $(A, Q, \alpha_i) \in \text{ARG}(P)$, $(Q, \alpha_i) \in \text{Block}(\alpha_i)$ whenever

 (i) either there exists an acceptable argument $(B, \sim Q, \alpha_i) \in \text{ARG}(P)$; or

 (ii) there exists $G \subseteq \{(P, \alpha_i) \mid (C, P, \alpha_i) \in \text{ARG}(P) \}$ acceptable with $\sim P \notin \text{Block}(\alpha_i)$ such that $G \cup \text{Warr}(\alpha_i) \cup \text{rules}(\Pi) \not\models \bot$ but $G \cup \text{Warr}(\beta) \cup \text{rules}(\Pi) \cup \{(Q, \alpha_i) \} \not\models \bot$

otherwise, $(Q, \alpha_i) \in \text{Warr}(\alpha_i)$.

The intuition underlying this definition is as follows: an argument (A, Q, α) is either warranted or blocked whenever each subargument $(B, R, \beta) \subseteq (A, Q, \alpha)$, with $Q \neq R$, is warranted; then it is finally warranted if it induces neither direct nor indirect conflicts, otherwise it is blocked.

It is shown in [1] that if $(\text{Warr}, \text{Block})$ is an output of a P-DeLP program, the set Warr of warranted goals is indeed non-contradictory and satisfies indirect consistency with respect to the set of strict rules.

Proposition 2 (Indirect consistency)

Let $\mathcal{P} = (\Pi, \Delta)$ be a P-DeLP program and let $(\text{Warr}, \text{Block})$ be an output for \mathcal{P}. Then:

(i) facts(\Pi) \subseteq \text{Warr}

(ii) Warr \not\models \bot$, and

(iii) if rules(\Pi) \cup Warr \vdash (Q, \alpha)$ then $(Q, \beta) \in \text{Warr}$ for some $\beta \geq \alpha$

5 Skeptical level-based approach

In this section we will come to the open question formulated in [1] of whether a program \mathcal{P} always has a unique output $(\text{Warr}, \text{Block})$ according to Def. 1. In general, the answer is yes, although there are some recursive situations that might lead to different outputs. These recursive situations can be produced by both direct and indirect conflicts between arguments. For instance, consider the program $\mathcal{P}_1 = (\Pi_1, \Delta_1)$, with

$$\Pi_1 = \{(y, 1)\} \text{ and } \Delta_1 = \{(p, 0.9), (q, 0.9), (\sim p \leftarrow q, 0.9), (\sim q \leftarrow p, 0.9)\}.$$

Then, according to Def. 1, p is a warranted goal iff q and $\sim q$ are a pair of blocked goals and vice versa, q is a warranted goal iff p and $\sim p$ are a pair of blocked goals. Hence, in that case we have two possible outputs: $(\text{Warr}_1, \text{Block}_1)$ and $(\text{Warr}_2, \text{Block}_2)$ where

$\text{Warr}_1 = \{(y, 1), (p, 0.9)\}$,

$\text{Block}_1 = \{(q, 0.9), (\sim q, 0.9)\}$,

$\text{Warr}_2 = \{(y, 1), (q, 0.9)\}$ and

$\text{Block}_2 = \{(p, 0.9), (\sim p, 0.9)\}$.

In such a case, either p or q can be warranted goals (but just one of them) and the indeterminacy is due to a direct conflict between arguments in \mathcal{P} since there exists an argument for $\sim p$ which depends on q and an argument for $\sim q$ which depends on p. A different recursive situation is due to indirect conflicts between arguments. For instance, consider the program $\mathcal{P}_2 = (\Pi_2, \Delta_2)$, with

$$\Pi_2 = \{(y, 1), (\sim y \leftarrow p \wedge r, 1), (\sim y \leftarrow q \wedge s, 1)\} \text{ and } \Delta_2 = \{(p, 0.9), (q, 0.9), (r \leftarrow q, 0.9), (s \leftarrow p, 0.9)\}.$$

According to Def. 1, p is a warranted goal iff q and s are a pair of blocked goals and vice versa, q is a warranted goal iff p and r are a pair of blocked goals. Then, in this case we also have two possible outputs: $(\text{Warr}_1, \text{Block}_1)$ and $(\text{Warr}_2, \text{Block}_2)$ where

$\text{Warr}_1 = \{(y, 1), (p, 0.9)\}$,

$\text{Block}_1 = \{(q, 0.9), (s, 0.9)\}$,

$\text{Warr}_2 = \{(y, 1), (q, 0.9)\}$ and

$\text{Block}_2 = \{(p, 0.9), (r, 0.9)\}$.

Again, either p or q can be warranted (but just one of them) but now the indeterminacy is due to an indirect conflict between arguments in \mathcal{P}_2: the warranty of p depends on r which...
in turn depends on \(q \), and the warranty of \(q \) depends on \(s \) which in turn depends on \(p \).

The above examples show that, although our approach is skeptical, we can get alternative extensions for warranted beliefs whenever some recursive situation, due to direct or indirect conflicts, occurs between the literals of a P-DeLP program. A natural solution for this problem would be adopting the intersection of all possible outputs in order to define the set of those literals which are ultimately warranted.

Definition 3 (Skeptical output) Let \(\mathcal{P} \) be a P-DeLP program, and let \(\text{output}_{i}(\mathcal{P}) = (\text{Warr}_i, \text{Block}_i) \) for \(i = 1, \ldots, n \) denote all possible outputs for \(\mathcal{P} \). Then, the skeptical output for \(\mathcal{P} \) is defined as \(\text{output}_{\text{skep}}(\mathcal{P}) = (\text{Warr}, \text{Block}) \) where \(\text{Warr} = \bigcap_{i=1}^{n} \text{Warr}_i \) and \(\text{Block} = \bigcap_{i=1}^{n} \text{Block}_i \).

Given a program \(\mathcal{P} \), it is always possible to consider another program \(\mathcal{P}' \) whose output is unique and corresponds with the skeptical output of \(\mathcal{P} \). Indeed, let \(\mathcal{W}' = \bigcup_{i=1}^{n} \text{Warr}_i \), \(B' = \bigcup_{i=1}^{n} \text{Block}_i \), let \(\Delta' \) be defined as

\[
\Delta' = \Delta \setminus \{(\varphi, \alpha) \in \Delta \mid \exists Q \in (\mathcal{W}' \setminus \text{Warr}) \cup (B' \setminus \text{Block}) \text{ either } Q \text{ or } \neg Q \text{ occurs in } \varphi\},
\]

and let \(\mathcal{P}' = (\Pi, \Delta') \) be called the deterministic P-DeLP program for \(\mathcal{P} \). Then we have:

Proposition 4 Let \(\mathcal{P} \) be a P-DeLP program, let \(\text{Warr}, \text{Block} \) be the skeptical output for \(\mathcal{P} \), and let \(\mathcal{P}' \) be the deterministic P-DeLP program for \(\mathcal{P} \). Then, \(\text{Warr}, \text{Block} \) is the unique output for \(\mathcal{P}' \) and hence satisfies indirect inconsistency.

Proof: By construction each acceptable argument in \(\mathcal{P}' \) is an acceptable argument in \(\mathcal{P} \). But since acceptable arguments in \(\mathcal{P}' \) only involve literals in \(\text{Warr} \cup \text{Block} \), \(\text{Warr}, \text{Block} \) is an output for \(\mathcal{P}' \) as well. Now, by Definition 1, each acceptable argument is either blocked or warranted, hence, by construction of \(\text{Warr} \) and \(\text{Block} \), \(\text{Warr}, \text{Block} \) is the only output for \(\mathcal{P}' \). \(\square \)

For instance, the skeptical outputs for the above P-DeLP programs \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) are \(\text{output}_{\text{skep}}(\mathcal{P}_1) = \text{output}_{\text{skep}}(\mathcal{P}_2) = \{(y, 1)\}, \emptyset \), and the corresponding deterministic P-DeLP programs are \(\mathcal{P}'_1 = (\Pi_1, \Delta'_1) \) and \(\mathcal{P}'_2 = (\Pi_2, \Delta'_2) \) with \(\Delta'_1 = \Delta'_2 = \emptyset \).

Given a P-DeLP program \(\mathcal{P} \) the following algorithm determines whether the output of \(\mathcal{P} \) is unique and computes the skeptical output for \(\mathcal{P} \) together with the deterministic P-DeLP program whenever some recursive situation leads to different outputs.

Algorithm 5 Skeptical output

Input \(\mathcal{P} = (\Pi, \Delta) \): A P-DeLP program

Output

\[\text{uniquity: Boolean}, \quad \mathcal{P}' = (\Pi, \Delta'), \quad \text{Deterministic P-DeLP program} \]

\[(\mathcal{W}_1, \mathcal{B}_1), \quad (\mathcal{W}_2, \mathcal{B}_2), \quad \text{Skeptical output for } \mathcal{P} \]

Auxiliary variables

\[\alpha: \text{Necessity degree } \in [0, 1] \]

\[\Pi: \text{Set of arguments} \]

\[\Delta: \text{Set of goals} \]

\[\Pi_a: \text{Set of goals} \]

\[(\mathcal{W}_1, \mathcal{B}_1), (\Pi_a, \mathcal{B}_2), \emptyset \]

Method

\[\text{uniquity} := \text{true}, \quad \Delta' := \Delta \]

\[\mathcal{W}_1 := \{(Q, 1) \mid \Pi_a \vdash (Q, 1)\} \]

\[\mathcal{B}_1 := \emptyset \]

\[\alpha := \text{maximum level degree}(\Delta') \]

while \((\alpha \neq 0)\) do

\[C := \{(A, Q, \alpha) \mid A \subseteq \Delta' \text{ is an argument for } Q \text{ with necessity } \alpha \text{ and it is acceptable until the } \alpha\text{-level}\} \]

\[A := \{Q \mid \{A, Q, \alpha\} \notin C \text{ is acceptable}\} \]

\[(\mathcal{W}_1, \mathcal{B}_1, \mathcal{W}_2, \mathcal{B}_2) := \text{level warrant}(\alpha, \mathcal{W}_1, \mathcal{B}_1, \emptyset, \mathcal{W}_2, \mathcal{B}_2) \]

\[\Delta' := \Delta' \setminus \{(\varphi, \beta) \in \Delta' \mid \exists \Pi \in (\mathcal{W}_1 \setminus \mathcal{W}_2) \cup (\mathcal{B}_1 \setminus \mathcal{B}_2) \text{ either } \Pi \text{ or } \neg \Pi \text{ occurs in } \varphi\} \]

\[\alpha := \text{next level degree}(\Delta', \alpha) \]

end while

return\((\text{uniquity}, \mathcal{W}_1, \mathcal{B}_1, \Delta') \)

First the algorithm computes the set of warranted form the set of certain clauses \(\Pi \). Then, for each level \(\alpha < 1 \) of uncertain clauses in \(\Delta \), it determines the set \(C \) of “almost” acceptable arguments to the \(\alpha \text{-level} \) and the set \(A \) of goals with ultimately accepted arguments in \(\Delta \). Finally, the algorithm computes, by means of the recursive function \text{level warrant}, the skeptical output \((\mathcal{W}_1, \mathcal{B}_1) \) for each level \(\alpha \). In case of indeterminacy the function \text{level warrant} updates the \text{uniquity} variable and computes the extended set of warranted and blocked arguments \((\mathcal{W}_1, \mathcal{B}_1) \), i.e. the union of all outputs of level \(\alpha \). Then, from \((\mathcal{W}_1, \mathcal{B}_1) \) and \((\mathcal{W}_1, \mathcal{B}_1) \), the algorithm

\footnote{An argument \((A, Q, \alpha) \) is called “almost” acceptable to the \(\alpha \text{-level} \) if it satisfies the three conditions of acceptability described in Def. 1 relative to the sets \(\mathcal{W}_1 \) and \(\mathcal{B}_1 \), that is, whenever: (i) \((Q, \beta) \notin \mathcal{W}_1 \cup \mathcal{B}_1 \) and \((\sim Q, \beta) \notin \mathcal{W}_1 \cup \mathcal{B}_1 \) for all \(\beta > \alpha \), (ii) if \((B, R, \beta) \subseteq (A, Q, \alpha) \) with \(\beta > \alpha \) then \((R, \beta) \in \mathcal{W}_1 \), and (iii) rules(\Pi) \subseteq \mathcal{W}_1 \cup \{(Q, \alpha)\} \cup \perp.\}
updates the deterministic set of uncertain clauses Δ'. Note that for each level α the skeptical output is computed form the updated set of uncertain clauses Δ', and thus, the indeterminacy at level α is propagated to the rest of levels lower than α.

function level_warrant

Input

- α: Necessity degree $\in [0, 1]$
- C: Set of goals
- A: Set of acceptable goals
- W: Set of warranted goals
- B: Set of blocked goals
- G: Set of goals

Output

- (W_a, B_a): Skeptical output
- (W_w, B_w): Union of outputs

Auxiliary variables

- I, D, S: Set of goals
- C_{Q_1}, \ldots, C_{Q_n}: Set of arguments
- A_{Q_1}, \ldots, A_{Q_n}: Set of goals
- W_{Q_1}, \ldots, W_{Q_n}: Set of skeptical warranted goals
- B_{Q_1}, \ldots, B_{Q_n}: Set of skeptical blocked goals
- W_{Q_1}, \ldots, W_{Q_n}: Union of warranted goals
- B_{Q_1}, \ldots, B_{Q_n}: Union of blocked goals

Method

while ($A \neq \emptyset$ or $G \neq \emptyset$) do

for each $Q \in A$ such that $\sim Q \in A$ do

$B := B \cup \{(Q, o), (Q, \sim o)\}$

$A := A \backslash\{(Q, o), (Q, \sim o)\}$

$C := C \backslash\{(A, P, o) \in C | (B, R, o), \sim o) \in (A, P, o) with R = Q or R = \sim Q\}$

end for

repeat

for each $Q \in A$ such that $(A, \sim Q, o) \notin C$ do

$G := G \cup \{(Q, o)\}$

$C := C \cup\{(A, P, o) \in C | (B, R, o), \sim o) \in (A, P, o) with R = I or \sim R = I\}$

until C does not vary

end for

for each $Q \in G$ do

$D := \text{compute_dependencies}(o, Q, C, A)$

if ($\sim \text{indirect_block}(n, Q, G, W, U)$) then

$W := W \cup \{(Q, o)\}$

$G := G \cup\{(Q, \sim o)\}$

$C := C \cup\{(A, P, o) \in C | (B, R, o), \sim o) \in (A, P, o) with R = Q or R = \sim Q\}$

until C does not vary

end for

$A := A \cup\{(Q, o) | (A, Q, o) \in C \text{ is acceptable}\}$

end while

$(W_a, B_a) := (W, B)$

$(W_w, B_w) := (W, B)$

return (W_a, B_a, W_w, B_w)

The function **level_warrant** first checks direct conflicts between acceptable goals of A and computes the set G of acceptable goals which do not produce direct conflicts. Then the function **indirect_block** checks possible indirect conflicts between the goals of G and the set of warranted goals W and, for each goal $Q \in G$, Q is warranted iff Q does not produce indirect conflicts between the goals of G, the set of warranted goals W, and the set of goals D which do not depend on Q. For each $Q \in G$, the function **compute_dependencies** computes, from the arguments in C and the set of acceptable goals A, the set of goals D which do not depend on Q. Finally functions **direct_indeterminacy** and **indirect_indeterminacy** check possible recursive situations between the goals of A and G, respectively, and compute the set of goals $S = \{Q_1, \ldots, Q_n\}$ which lead to the indeterminacy. When the indeterminacy occurs between the goals of A, i.e. when $S \subseteq A$, the function **level_warrant** recursively computes the output obtained for each goal $Q_i \in S$ by setting Q_i as a blocked goal. Similarly, when the indeterminacy occurs between the goals of G, the function **level_warrant** computes the output obtained for each goal $Q_i \in S$ by setting Q_i as a warranted goal. Finally the skeptical output (W_a, B_a) and the extended output (W_w, B_w) are computed by taking the intersection and union, respectively, of the set of all possible outputs for each goal $Q_i \in S$. When the output is unique the function **level_warrant** processes all goals in A and G and the extended output corresponds with the skeptical output.

function indirect_block

Input

- α: Necessity degree $\in [0, 1]$
- Q: Goal
- G: Set of goals
- W: Set of warranted goals
- D: Set of goals which do not depend on Q

Output

- conflict: Boolean

Method

$\text{conflict} := \exists S \subseteq (G \cup\{(Q, o)\}) \cup D$ such that $\sim \text{rules}(D) \cup W \cup \{(P, o) | P \in S\} \models \bot$ and $\text{rules}(D) \cup W \cup \{(P, o) | P \in S\} \cup (G \cup\{(Q, o)\}) \not\models \bot$

return conflict

function compute_dependencies

Input

- α: Necessity degree $\in [0, 1]$

Proceedings of IPMU'08
The function \texttt{indirect_block} determines whether there exists an indirect conflict between the goal \(Q \) and the set of goals \(S \subseteq (G \setminus \{Q\}) \cup D \) which do not depend on \(Q \) and which could be warranted. And the function \texttt{compute_dependencies} computes, from \(A \) and \(C \), the set of goals \(D \) which do not depend on \(Q \) and which could be warranted.

\begin{verbatim}
function direct_indeterminacy
Input
\alpha: Necessity degree \in [0,1]
A: Set of arguments
Method
\exists S \subseteq A such that, for all Q \in S, (A, \sim Q, \alpha) \in C and R is a subgoal of \(A \), for all R \in S with R \neq Q then return(S)
else return(0)
\end{verbatim}

The function \texttt{direct_indeterminacy} checks whether, for some set of goals \(S \subseteq A \), warranting each goal \(Q \in S \) depends on warranting \(\sim Q \) which in turn depends on warranting the rest of goals in \(S \).

\begin{verbatim}
function indirect_indeterminacy
Input
\alpha: Necessity degree \in [0,1]
A: Set of goals
C: Set of arguments
W: Set of warranted goals
G: Set of goals
Method
\exists D_Q \subseteq compute_dependencies(\alpha, Q, C, A) such that indirect_block(\alpha, Q, C, W, D_Q) with D_Q minimal w.r.t. set inclusion and for all P \in D_Q, the warranty of \(P \) depends on the warranty of R \in S and, for all R \in S with R \neq Q, the warranty of P \in D_Q depends on the warranty of R) then return(S)
else return(0)
\end{verbatim}

The function \texttt{indirect_indeterminacy} checks whether for some set of goals \(S \subseteq G \) warranting each goal \(Q \in S \) depends on warranting the set of goals \(D_Q \subseteq compute_dependencies(\alpha, Q, C, A) \) which in turn depends on warranting the rest of goals in \(S \).

\noindent \textbf{Acknowledgements.} This research was partially supported by the Spanish CICYT Projects MULOG2 (TIN2007-68005-C04-01/02) and IEA (TIN2006-15662-C02-01/02), by CONICET (Argentina), and by the Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur (Project PGI 24/ZN10).

\begin{thebibliography}{10}
\small
\end{thebibliography}