
Logical Cryptanalysis with WDSat

Monika Trimoska Gilles Dequen Sorina Ionica

MIS, University of Picardie Jules Verne

SAT 2021

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 1



Cryptanalysis

Goal

Determine minimum cryptographic key length requirements.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 2



Algebraic cryptanalysis

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 3



Logical cryptanalysis

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 4



The multivariate polynomial problem

Example. A multivariate polynomial system of three equations in
three variables

x1 + x2 · x3 = 0

x1 · x2 + x2 + x3 = 0

x1 + x1 · x2 · x3 + x2 · x3 = 0.

At the core of algebraic cryptanalysis: finding a solution to
the multivariate polynomial system results in recovering the
secret key or the plaintext.

The degree-two case is the underlying problem in one of the
five families of post-quantum cryptographic schemes.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 5



From the algebraic model to the CNF-XOR model

Variables in F2:
x1, x2, x3, x4, x5, x6.

x1 + x2 · x4 + x5 · x6 + 1 = 0

x1 + x2 + x4 + x5 + 1 = 0

x3 + x4 + x2 · x4 = 0

x2 + x5 + x2 · x4 + x5 · x6 + 1 = 0

x3 + x4 + x6 + 1 = 0

Propositional variables:
x1, x2, x3, x4, x5, x6 with
truth values in {true,
false}

(x1 ⊕ (x2 ∧ x4)⊕ (x5 ∧ x6)) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x3 ⊕ x4 ⊕ (x2 ∧ x4)⊕>) ∧
(x2 ⊕ x5 ⊕ (x2 ∧ x4)⊕ (x5 ∧ x6)) ∧
(x3 ⊕ x4 ⊕ x6)

Multiplication in F2 (·) becomes the logical and operation
(∧) and addition in F2 (+) becomes the logical xor (⊕).

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 6



From the algebraic model to the CNF-XOR model

Add new variable x2,4 to substitute the conjunction x2 ∧ x4.

Transform the constraint

x2,4 ⇔ (x2 ∧ x4)

into cnf.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 7



From the algebraic model to the CNF-XOR model

Propositional variables:
x1, x2, x3, x4, x5, x6, x2,4, x5,6 with truth values in {true, false}

(x1 ⊕ (x2 ∧ x4)⊕ (x5 ∧ x6)) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x3 ⊕ x4 ⊕ (x2 ∧ x4)⊕>) ∧
(x2 ⊕ x5 ⊕ (x2 ∧ x4)⊕ (x5 ∧ x6)) ∧
(x3 ⊕ x4 ⊕ x6)

(¬x2,4 ∨ x2) ∧
(¬x2,4 ∨ x4) ∧
(¬x2 ∨ ¬x4 ∨ x2,4) ∧
(¬x5,6 ∨ x5) ∧
(¬x5,6 ∨ x6) ∧
(¬x5 ∨ ¬x6 ∨ x5,6) ∧
(x1 ⊕ x2,4 ⊕ x5,6) ∧
(x1 ⊕ x2 ⊕ x4 ⊕ x5) ∧
(x3 ⊕ x4 ⊕ x2,4 ⊕>) ∧
(x2 ⊕ x5 ⊕ x2,4 ⊕ x5,6) ∧
(x3 ⊕ x4 ⊕ x6)

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 8



The WDSat solver



WDSat algorithm

Based on the Davis-Putnam-Logemann-Loveland (dpll) al-
gorithm.

Three reasoning modules

CNF module : Performs unit propagation on
cnf-clauses.

XORSET module : Performs unit propagation on the
parity constraints. When all except one literal in a xor
clause is assigned, we infer the truth value of the last
literal according to parity reasoning.

XORGAUSS module : Performs Gaussian elimination
on the xor system.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 10



Compressed CNF Reasoning

or-clauses are stored as bit-vectors comprised of three parts.

x1 ∨ x3

0 0 1 0 0 0 1 0 0

value weight sat

Value

The arithmetic sum
of the literals in
the clause in their
dimacs representa-
tion.

Weight

The number of
unassigned literals
left in the clause.

Sat slot

Set to 1 when the
clause is already
satisfied by one of
its assigned literals,
and to 0 otherwise.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 11



Compressed CNF Reasoning

Example.

0 0 1 0 0 0 1 0 0x1 ∨ x3
((1 + 3� 3) + 2)� 1

0 0 0 0 1 0 1 1 0
¬x1 ∨ ¬x2 ∨ x4

((−1− 2 + 4� 3) + 3)� 1

Set x1 to false.

0 0 0 1 1 0 0 1 0x3
−(((1� 3) + 1)� 1)

0 0 0 0 1 0 1 1 1
¬x1 ∨ ¬x2 ∨ x4

|1

Propagation x3 is set to true.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 12



Compressed CNF Reasoning

Example.

0 0 1 0 0 0 1 0 0x1 ∨ x3
((1 + 3� 3) + 2)� 1

0 0 0 0 1 0 1 1 0
¬x1 ∨ ¬x2 ∨ x4

((−1− 2 + 4� 3) + 3)� 1

Set x1 to false.

0 0 0 1 1 0 0 1 0x3
−(((1� 3) + 1)� 1)

0 0 0 0 1 0 1 1 1
¬x1 ∨ ¬x2 ∨ x4

|1

Propagation x3 is set to true.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 12



Compressed CNF Reasoning

Example.

0 0 1 0 0 0 1 0 0x1 ∨ x3
((1 + 3� 3) + 2)� 1

0 0 0 0 1 0 1 1 0
¬x1 ∨ ¬x2 ∨ x4

((−1− 2 + 4� 3) + 3)� 1

Set x1 to false.

0 0 0 1 1 0 0 1 0x3
−(((1� 3) + 1)� 1)

0 0 0 0 1 0 1 1 1
¬x1 ∨ ¬x2 ∨ x4

|1

Propagation x3 is set to true.

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 12



WDSat - xorgauss module

All variables in an xor-clause belong to the same equivalence
class.

We choose one literal from the equivalence class to be the
representative.

Property: a representative of an equivalence class will never
be present in another equivalence class.

xor-clauses Equivalence classes

x1 ⊕ x4 ⊕ x5 ⊕ x6 x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕>
x1 ⊕ x2 ⊕ x4 ⊕> x2 ⇔ x5 ⊕ x6 ⊕>
x2 ⊕ x3 ⊕ x6 ⊕> x3 ⇔ x5 ⊕>

Implementation: A compact EC structure.

>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 13



WDSat - xorgauss module

All variables in an xor-clause belong to the same equivalence
class.

We choose one literal from the equivalence class to be the
representative.

Property: a representative of an equivalence class will never
be present in another equivalence class.

xor-clauses Equivalence classes

x1 ⊕ x4 ⊕ x5 ⊕ x6 x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕>
(((((((((
x1 ⊕ x2 ⊕ x4 ⊕> x2 ⇔ x5 ⊕ x6 ⊕>
x2 ⊕ x3 ⊕ x6 ⊕> x3 ⇔ x5 ⊕>

Implementation: A compact EC structure.

>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 14

x2 ⊕ x5 ⊕ x6



WDSat - xorgauss module

All variables in an xor-clause belong to the same equivalence
class.

We choose one literal from the equivalence class to be the
representative.

Property: a representative of an equivalence class will never
be present in another equivalence class.

xor-clauses Equivalence classes

x1 ⊕ x4 ⊕ x5 ⊕ x6 x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕>
(((((((((
x1 ⊕ x2 ⊕ x4 ⊕> x2 ⇔ x5 ⊕ x6 ⊕>
(((((((((
x2 ⊕ x3 ⊕ x6 ⊕> x3 ⇔ x5 ⊕>

Implementation: A compact EC structure.

>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 15

x2 ⊕ x5 ⊕ x6

x3 ⊕ x5



xorgauss infer algorithm

Setting x6 to true

Algorithm 1 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

Before execution:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3

After line 3:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 16



xorgauss infer algorithm

Setting x6 to true

Algorithm 2 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

Before execution:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3

After line 3:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 16



xorgauss infer algorithm

Setting x6 to true

Algorithm 3 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 3:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 5:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 17



xorgauss infer algorithm

Setting x6 to true

Algorithm 4 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 3:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 5:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 17



xorgauss infer algorithm

Setting x6 to true

Algorithm 5 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 5:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 18



xorgauss infer algorithm

Setting x6 to true

Algorithm 6 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 5:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 18



xorgauss infer algorithm

Setting x6 to true

Algorithm 7 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 19



xorgauss infer algorithm

Setting x6 to true

Algorithm 8 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 19



xorgauss infer algorithm

Setting x6 to true

Algorithm 9 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 18.
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 20



xorgauss infer algorithm

Setting x6 to true

Algorithm 10 Function infer non representative(ul , tv , F )

Input: Propositional variable ul , truth value tv , the propositional
formula F
Output: The EC structure is modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC [ul ]).
4: end if
5: set ul to 1 in EC [ul ].
6: for each r in R do
7: if ul is set to 1 in EC [r ] then
8: EC [r ]← EC [r ]⊕ EC [ul ].
9: if all variable bits in EC [r ] are set to 0 then

10: if the constant bit in EC [r ] is set to 1 then
11: add r to XG propagation stack .
12: else
13: add ¬r to XG propagation stack .
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC [ul ].

After line 8:
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

After line 18.
>/⊥ x1 x2 x3 x4 x5 x6
x1
x2
x3
x6

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 20



Experimental results

Comparing different sat approaches for solving Boolean
polynomial systems with 50 quadratic equations over 25 variables.

Results show an average of 100 runs.

Running times are in seconds.

Input form #Vars #Clauses Solver Runtime #Conflicts

cnf 8301 33006

MiniSat 11525.24 40718489
Glucose 2384.99 10982657
Kissat 2118.52 6622284

Relaxed 3014.22 10353009

cnf-xor 325 920

CryptoMiniSat 2870.81 9197978
CryptoMiniSat + ge 594.48 2407635

WDSat 57.85 14177200
WDSat + ge 23.77 1046328

anf 25 50 WDSat + xg-ext 0.82 21140

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 21



Conclusion

WDSat outperforms state-of-the-art sat solvers for
instances derived from dense Boolean polynomial systems.

The compressed cnf reasoning module allows WDSat to
handle polynomial systems of higher degree without
compromising its performance.

WDSat on github

https://github.com/mtrimoska/WDSat

Monika Trimoska Gilles Dequen Sorina Ionica Logical Cryptanalysis with WDSat 22

https://github.com/mtrimoska/WDSat

