Logical Cryptanalysis with WDSat

Monika Trimoska

Gilles Dequen

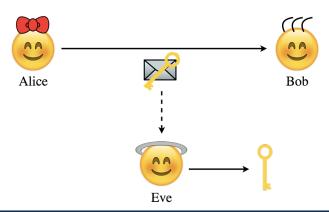
Sorina Ionica

MIS, University of Picardie Jules Verne

SAT 2021

Sorina Ionica

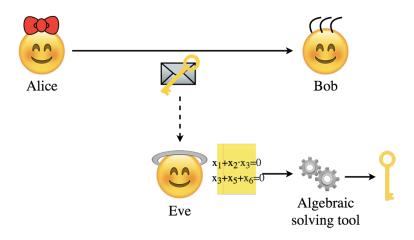
Cryptanalysis



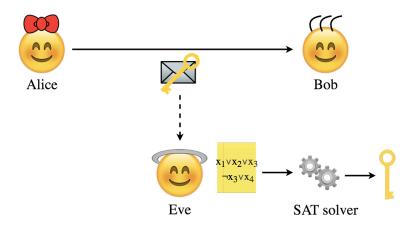
Goal

Determine minimum cryptographic key length requirements.

Algebraic cryptanalysis



Logical cryptanalysis



The multivariate polynomial problem

Example. A multivariate polynomial system of three equations in three variables

$$\mathbf{x}_1 + \mathbf{x}_2 \cdot \mathbf{x}_3 = 0$$

 $\mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{x}_2 + \mathbf{x}_3 = 0$
 $\mathbf{x}_1 + \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3 + \mathbf{x}_2 \cdot \mathbf{x}_3 = 0$.

At the core of algebraic cryptanalysis: finding a solution to the multivariate polynomial system results in recovering the secret key or the plaintext.

The degree-two case is the underlying problem in one of the five families of post-quantum cryptographic schemes.

From the algebraic model to the CNF-XOR model

Variables in \mathbb{F}_2 :

$$\mathbf{x}_1$$
, \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 , \mathbf{x}_5 , \mathbf{x}_6 .

$$\mathbf{x}_1 + \mathbf{x}_2 \cdot \mathbf{x}_4 + \mathbf{x}_5 \cdot \mathbf{x}_6 + 1 = 0$$
 $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_4 + \mathbf{x}_5 + 1 = 0$
 $\mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_2 \cdot \mathbf{x}_4 = 0$
 $\mathbf{x}_2 + \mathbf{x}_5 + \mathbf{x}_2 \cdot \mathbf{x}_4 + \mathbf{x}_5 \cdot \mathbf{x}_6 + 1 = 0$
 $\mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_6 + 1 = 0$

Propositional variables:

 x_1 , x_2 , x_3 , x_4 , x_5 , x_6 with truth values in $\{TRUE, FALSE\}$

$$(x_{1} \oplus (x_{2} \wedge x_{4}) \oplus (x_{5} \wedge x_{6})) \wedge$$

$$(x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}) \wedge$$

$$(x_{3} \oplus x_{4} \oplus (x_{2} \wedge x_{4}) \oplus \top) \wedge$$

$$(x_{2} \oplus x_{5} \oplus (x_{2} \wedge x_{4}) \oplus (x_{5} \wedge x_{6})) \wedge$$

$$(x_{3} \oplus x_{4} \oplus x_{6})$$

Multiplication in \mathbb{F}_2 (·) becomes the logical AND operation (\wedge) and addition in \mathbb{F}_2 (+) becomes the logical XOR (\oplus).

From the algebraic model to the CNF-XOR model

Add new variable $x_{2,4}$ to substitute the conjunction $x_2 \wedge x_4$.

Transform the constraint

$$x_{2,4} \Leftrightarrow (x_2 \wedge x_4)$$

into CNF.

From the algebraic model to the CNF-XOR model

Propositional variables:

 x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , $x_{2,4}$, $x_{5,6}$ with truth values in $\{TRUE, FALSE\}$

$$(x_{1} \oplus (x_{2} \wedge x_{4}) \oplus (x_{5} \wedge x_{6})) \wedge$$

$$(x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}) \wedge$$

$$(x_{3} \oplus x_{4} \oplus (x_{2} \wedge x_{4}) \oplus \top) \wedge$$

$$(x_{2} \oplus x_{5} \oplus (x_{2} \wedge x_{4}) \oplus (x_{5} \wedge x_{6})) \wedge$$

$$(x_{3} \oplus x_{4} \oplus x_{6})$$

$$(\neg x_{2,4} \lor x_{2}) \land (\neg x_{2,4} \lor x_{4}) \land (\neg x_{2,4} \lor x_{4}) \land (\neg x_{5,6} \lor x_{5}) \land (\neg x_{5,6} \lor x_{6}) \land (\neg x_{5,6} \lor x_{6}) \land (x_{1} \oplus x_{2,4} \oplus x_{5,6}) \land (x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}) \land (x_{3} \oplus x_{4} \oplus x_{2,4} \oplus \top) \land (x_{2} \oplus x_{5} \oplus x_{2,4} \oplus x_{5,6}) \land (x_{3} \oplus x_{4} \oplus x_{6})$$

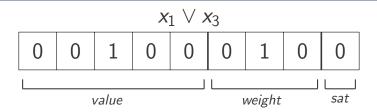
WDSat algorithm

Based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

Three reasoning modules

- **CNF module** : Performs unit propagation on CNF-clauses.
- XORSET module: Performs unit propagation on the parity constraints. When all except one literal in a XOR clause is assigned, we infer the truth value of the last literal according to parity reasoning.
- **XORGAUSS module**: Performs Gaussian elimination on the XOR system.

OR-clauses are stored as bit-vectors comprised of three parts.



Value

The arithmetic sum of the literals in the clause in their dimacs representation.

Weight

The number of unassigned literals left in the clause.

Sat slot

Set to 1 when the clause is already satisfied by one of its assigned literals, and to 0 otherwise.

Example.

Example.

Set x_1 to FALSE.

Example.

Set x_1 to FALSE.

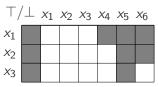
Propagation x_3 is set to TRUE.

WDSat - XORGAUSS module

- All variables in an XOR-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

XOR-clauses	Equivalence classes	
	$x_1 \Leftrightarrow x_4 \oplus x_5 \oplus x_6 \oplus \top$	
	$x_2 \Leftrightarrow x_5 \oplus x_6 \oplus \top$	
$x_2 \oplus x_3 \oplus x_6 \oplus \top$	$x_3 \Leftrightarrow x_5 \oplus \top$	

• Implementation: A compact *EC* structure.

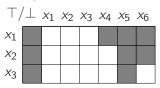


WDSat - XORGAUSS module

- All variables in an XOR-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

-	XOR-clauses	Equivalence classes	
		$x_1 \Leftrightarrow x_4 \oplus x_5 \oplus x_6 \oplus \top$	
$x_2 \oplus x_5 \oplus x_6$	$x_1 \oplus x_2 \oplus x_4 \oplus \top$	$x_2 \Leftrightarrow x_5 \oplus x_6 \oplus \top$	
	$x_2 \oplus x_3 \oplus x_6 \oplus \top$	$x_3 \Leftrightarrow x_5 \oplus \top$	

• Implementation: A compact *EC* structure.

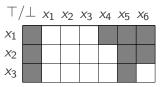


WDSat - XORGAUSS module

- All variables in an XOR-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

	XOR-clauses	Equivalence classes	
		$x_1 \Leftrightarrow x_4 \oplus x_5 \oplus x_6 \oplus \top$	
$x_2 \oplus x_5 \oplus x_6$	$x_1 \oplus x_2 \oplus x_4 \oplus \top$		
$x_3 \oplus x_5$	$x_2 \oplus x_3 \oplus x_6 \oplus \top$	$x_3 \Leftrightarrow x_5 \oplus \top$	

• Implementation: A compact *EC* structure.



Setting x_6 to TRUE

Algorithm 1 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

Input: Propositional variable ul , truth value tv , the propositional formula F

Output: The EC structure is modified.

```
1. add ul to R
 2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
 g.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG_propagation_stack.
13.
               end if
14:
15:
           end if
       end if
16.
17: end for
```

Before execution:

18: set *ul* to 0 in *EC[ul]*.

Setting x_6 to TRUE

Algorithm 2 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

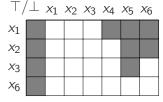
Input: Propositional variable ul, truth value tv, the propositional formula F

Output: The EC structure is modified.

```
1. add ul to R
 2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
 g.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG_propagation_stack.
13.
               end if
14:
15:
           end if
       end if
16.
```

Before execution:

After line 3:



18: set *ul* to 0 in *EC[ul]*.

17: end for

Setting x_6 to TRUE

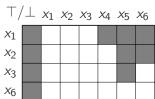
Algorithm 3 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

 ${f Input}$: Propositional variable ${\it ul}$, truth value ${\it tv}$, the propositional formula ${\it F}$

Output: The EC structure is modified.

```
1. add ul to R
 2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
 g.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG\_propagation\_stack.
13.
               end if
14:
15:
           end if
       end if
16.
17: end for
```

After line 3:



18: set *ul* to 0 in *EC[ul]*.

Setting x_6 to TRUE

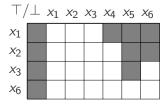
Algorithm 4 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

Input: Propositional variable ul, truth value tv, the propositional formula F

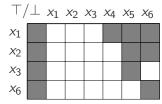
Output: The EC structure is modified.

```
2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
8.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG\_propagation\_stack.
13.
               end if
14:
15:
           end if
```

After line 3:



After line 5:



17: end for

end if

18: set *ul* to 0 in *EC[ul]*.

16.

1. add ul to R

Setting x_6 to TRUE

Algorithm 5 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

 ${f Input}$: Propositional variable ${\it ul}$, truth value ${\it tv}$, the propositional formula ${\it F}$

Output: The EC structure is modified.

```
1. add ul to R
 2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
 g.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG_propagation_stack.
13.
               end if
14:
15:
           end if
       end if
16.
17: end for
```

After line 5:

18: set *ul* to 0 in *EC[ul]*.

Setting x_6 to TRUE

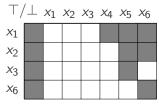
Algorithm 6 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

Input: Propositional variable ul , truth value tv , the propositional formula F

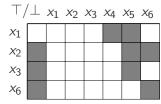
Output: The EC structure is modified.

```
2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
8.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG\_propagation\_stack.
13.
               end if
14:
15:
           end if
```

After line 5:



After line 8:



17: end for

end if

18: set *ul* to 0 in *EC[ul]*.

16.

1. add ul to R

Setting x_6 to TRUE

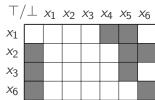
Algorithm 7 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

 ${f Input}$: Propositional variable ${\it ul}$, truth value ${\it tv}$, the propositional formula ${\it F}$

Output: The EC structure is modified.

```
1. add ul to R
 2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
 g.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG_propagation_stack.
13.
               end if
14:
15:
           end if
       end if
16.
17: end for
```

After line 8:



18: set *ul* to 0 in *EC[ul]*.

Setting x_6 to TRUE

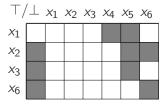
Algorithm 8 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

 ${f Input}$: Propositional variable ${\it ul}$, truth value ${\it tv}$, the propositional formula ${\it F}$

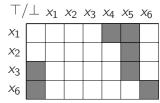
Output: The EC structure is modified.

```
2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
8.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG\_propagation\_stack.
13.
               end if
14:
15:
           end if
```

After line 8:



After line 8:



17: end for

end if

18: set *ul* to 0 in *EC[ul]*.

16.

1. add ul to R

Setting x_6 to TRUE

Algorithm 9 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

 ${f Input}$: Propositional variable ${\it ul}$, truth value ${\it tv}$, the propositional formula ${\it F}$

Output: The EC structure is modified.

```
1. add ul to R
 2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
 g.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG_propagation_stack.
13.
               end if
14:
15:
           end if
       end if
16.
17: end for
```

After line 8:



18: set *ul* to 0 in *EC[ul]*.

Setting x_6 to TRUE

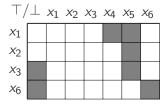
Algorithm 10 Function INFER_NON_REPRESENTATIVE(ul, tv, F)

Input: Propositional variable ul , truth value tv , the propositional formula F

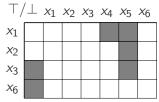
Output: The EC structure is modified.

```
2: if tv = TRUE then
       FLIP_CONSTANT(EC[ul]).
 4: end if
 5: set ul to 1 in EC[ul].
 6: for each r in R do
       if ul is set to 1 in EC[r] then
           EC[r] \leftarrow EC[r] \oplus EC[ul].
8.
           if all variable bits in EC[r] are set to 0 then
               if the constant bit in EC[r] is set to 1 then
10:
                   add r to XG_propagation_stack.
11:
12.
               else
                   add \neg r to XG\_propagation\_stack.
13.
               end if
14:
15:
           end if
       end if
16.
```

After line 8:



After line 18.



18: set *ul* to 0 in *EC[ul]*.

17: end for

1. add ul to R

Experimental results

Comparing different SAT approaches for solving Boolean polynomial systems with 50 quadratic equations over 25 variables.

- Results show an average of 100 runs.
- Running times are in seconds.

Input form	#Vars	#Clauses	Solver	Runtime	#Conflicts
CNF 8301		33006	MiniSat	11525.24	40718489
	9301		Glucose	2384.99	10982657
	33000	Kissat	2118.52	6622284	
			Relaxed	3014.22	10353009
CNF-XOR 325		920	CryptoMiniSat	2870.81	9197978
	325		CryptoMiniSat + ge	594.48	2407635
	920	WDSAT	57.85	14177200	
		WDSAT + GE	23.77	1046328	
ANF	25	50	WDSAT + XG-EXT	0.82	21140

Conclusion

- WDSAT outperforms state-of-the-art SAT solvers for instances derived from dense Boolean polynomial systems.
- The compressed CNF reasoning module allows WDSAT to handle polynomial systems of higher degree without compromising its performance.

WDSAT on github

https://github.com/mtrimoska/WDSat