On the Hierarchical Community Structure of Practical Boolean Formulas **Chunxiao Li**, Jonathan Chung, Soham Mukherjee, Marc Vinyals, Noah Fleming, Antonina Kolokolova, Alice Mu, and Vijay Ganesh ## Why are CDCL SAT Solvers Efficient? ## **Problem Statement:** - SAT solvers can solve large verification instances with millions of variables/clauses in them, despite the fact that the SAT problem is NP-complete - Bridging this gap between theory and practice is one of the central research directions in SAT solver research - Via structure of industrial instances and contrasting with random/crypto/crafted - This problem has proven to be very challenging. Proposed theoretical parameters don't seem to work in practice (e.g., tree-width) and vice-versa (e.g., community structure) - Goal: Find parameters that both - Explain empirical success of SAT solvers over industrial instances - Enable us to prove complexity-theoretic upper bounds on proof size and proof search ## Hierarchical community structure (HCS) | | Meaning of Result | Result | |-------------|---|--| | Empirical | HCS cleanly differentiates
between verification and random
instances | 99% accuracy over 10869 instances from
SAT competition and other benchmarks. Verification instances have "good" HCS
parameters and random instances don't | | | - HCS predicts solver runtime | - Empirical hardness model: R ² of 0.83 | | | When we scale HCS, we see an
expected scaling in solver runtime | Hardness of instances scales with HCS
parameter values | | Theoretical | - The better the HCS parameters,
the larger the class of expanders
that are ruled out | As the values of the HCS parameters
become worse, the size of the largest
embeddable expanders increases | | | - The parameters are "necessary" | If even one HCS parameter is "bad", can
construct a hard formula | | Future Work | Proving parameterized upper
bounds with "good" HCS
parameters and other constraints | |