
A Fast Algorithm for SAT in Terms of Formula Length

Junqiang Peng1, Mingyu Xiao1

1University of Electronic Science and Technology of China

jqpeng0@foxmail.com, myxiao@gamil.com

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 1 / 31

Our contribution

An improved parameterized algorithm for SAT running in
O∗(1.0646L), where L is length of the input CNF-formula.

Branch and Search: New branching rules.

Measure and Conquer: Some assumptions on weights.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 2 / 31

Our contribution

An improved parameterized algorithm for SAT running in
O∗(1.0646L), where L is length of the input CNF-formula.

Branch and Search: New branching rules.

Measure and Conquer: Some assumptions on weights.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 2 / 31

Our contribution

An improved parameterized algorithm for SAT running in
O∗(1.0646L), where L is length of the input CNF-formula.

Branch and Search: New branching rules.

Measure and Conquer: Some assumptions on weights.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 2 / 31

Outline

1 Problem Definition and Background

2 Our Algorithm

3 Analysis of Running Time Bound

4 The Final Result

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 3 / 31

Problem Definition

The Satisifiability Problem

Given a CNF formula F = C1 ∧ · · · ∧Cm on n boolean variables x1, · · · , xn,
decide if there is an assignment to x1, · · · , xn that makes F = 1.

Example

F1 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4).
Solution: x1 = 1, x2 = 0, x3 = 1, x4 = 1⇒ F1 is satisifiable.

F2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2).
Solution: Not exist ⇒ F2 is not satisifiable.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 4 / 31

Problem Definition

The Satisifiability Problem

Given a CNF formula F = C1 ∧ · · · ∧Cm on n boolean variables x1, · · · , xn,
decide if there is an assignment to x1, · · · , xn that makes F = 1.

Example

F1 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4).
Solution: x1 = 1, x2 = 0, x3 = 1, x4 = 1⇒ F1 is satisifiable.

F2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2).
Solution: Not exist ⇒ F2 is not satisifiable.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 4 / 31

Problem Definition

The Satisifiability Problem

Given a CNF formula F = C1 ∧ · · · ∧Cm on n boolean variables x1, · · · , xn,
decide if there is an assignment to x1, · · · , xn that makes F = 1.

Example

F1 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4).
Solution: x1 = 1, x2 = 0, x3 = 1, x4 = 1⇒ F1 is satisifiable.

F2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2).
Solution: Not exist ⇒ F2 is not satisifiable.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 4 / 31

Background

The SAT problem has been extensively and intensively studied in many
fields:

heuristic algorithms

randomized algorithms

approximation algorithms

exact and parameterized algorithms

...

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 5 / 31

Background

The SAT problem has been extensively and intensively studied in many
fields:

heuristic algorithms

randomized algorithms

approximation algorithms

exact and parameterized algorithms

...

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 5 / 31

Background

There are three popular parameters to measure the running time of
algorithms for SAT:

Parameter/Measure Best Running Time Bound
n: the number of variables O∗(2n) 1

m: the number of clauses O∗(1.2226m) 2

L: the number of literals (length) O∗(1.0646L) 3

Strong Exponential Time Hypothesis: The SAT Problem can not be solved
in time O∗(2n).

Our contribution is improving the running time bound in terms of the
number of literals (formula length).

1Strong Exponential Time Hypothesis (SETH)
2AAAI’2021 Chu, Xiao and Zhang
3This paper

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 6 / 31

Background

Table: Previous and our upper bound for SAT

Running time bounds References

O∗(1.0927L) Van Gelder 1988
O∗(1.0801L) Kullmann and Luckhardt 1997
O∗(1.0758L) Hirsch 1998
O∗(1.074L) Hirsch 2000
O∗(1.0663L) Wahlström 2005
O∗(1.0652L) Chen and Liu 2009
O∗(1.0646L) This paper 2021

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 7 / 31

Our Algorithm - Overview

Our algorithm is a standard branch-and-search algorithm
(Davis–Putnam–Logemann–Loveland (DPLL) algorithm):

We first apply some reduction rules to reduce the instance.

Reduce the size (measure) of the formula and bring us some properties
Take polynomial time

When no reduction rules can be applied, we will search for a solution
by branching.

Assign value(s) to variable(s) or literal(s)
Exponentially increase the running time

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 8 / 31

Preliminaries

(i , j)-literal: a literal z is called an (i , j)-literal in a formula F if z
appears i times and z appears j times in the formula F .
(i+, j)-literal, (i , j+)-literal, (i+, j+)-literal, ...

Degree: For a variable x in a formula F , the degree of it, denoted by
deg(x), is the number of times it appears in the formula. We say a
variable is an i-variable if the degree of it is i .
i+-variable, i−-variable, ...

Length: The length of a clause C , denoted by |C |, is the number of
literals in it. We call a clause k-clause if the length of it is k.
k+-clause, ...

F = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

x3 is a (2, 1)-literal, deg(x3) = 3.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 9 / 31

Preliminaries

If we assign value 1 to literal x(x = 1, x = 0), then

All clauses containing literal x will be removed from the formula.

All literals x will be removed from the clauses.

We use Fx=1 to indicate the formula after assigning x = 1.

F = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Fx3=1 = (x1 ∨ x2) ∧ (x2 ∨ x4)

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 10 / 31

Reduction Rules

R-Rule 1 (Elimination of duplicated literals). If a clause C contains
duplicated literals z, remove all but one z in C. F ′ ∧ (zzD)→ F ′ ∧ (zD).

R-Rule 2 (Elimination of subsumptions). If there are two clauses C
and D such that C ⊆ D, remove clause D. F ′ ∧ C ∧ D → F ′ ∧ C .

R-Rule 3 (Elimination of tautology). If a clause C contains two
opposite literals z and z, remove clause C. F ′ ∧ (zzC) ∧ D → F ′ ∧ D.

R-Rule 4 (Elimination of 1-clauses and pure literals). If there is a
1-clause {x} or a (1+, 0)-literal x, assign x = 1. F ′ ∧ (x)→ F ′x=1.

And some other reduction rules... (R-Rule 6 ∼ R-Rule 10)

A CNF-formula is called reduced, if none of reduction rules can be applied
on it.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 11 / 31

Reduction Rules

Lemma

In a reduced CNF-formula F , all variables are 3+-variables.

Lemma

In a reduced CNF-formula F , if there is a 2-clause xy, then no other
clause in F contains xy, xy , or xy .

And some other properties...

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 12 / 31

Our Algorithm

For a literal x , we have two kinds of branching:

simple branching: x = 1 and x = 0

strong branching: x = 1 & C = 0 and x = 0, where x is a
(1, i)-literal and xC is the only clause containing literal x .

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 13 / 31

Our Algorithm

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 14 / 31

Our Algorithm

Algorithm SAT(F)
Input: a CNF-formula F
Output: 1 or 0 to indicate the satisfiability of F

Step 1. If F = ∅, return 1. If F contains an empty clause, return 0.
Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction
rules to reduce it.
Step 3. If there is a d-variable x with d ≥ 6, return
SAT(Fx=1)∨SAT(Fx=0).
Property: Now all variables have a degree ≤ 5.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 15 / 31

Our Algorithm

Algorithm SAT(F)
Input: a CNF-formula F
Output: 1 or 0 to indicate the satisfiability of F
Step 1. If F = ∅, return 1. If F contains an empty clause, return 0.
Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction
rules to reduce it.
Step 3. If there is a d-variable x with d ≥ 6, return
SAT(Fx=1)∨SAT(Fx=0).

Property: Now all variables have a degree ≤ 5.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 15 / 31

Our Algorithm

Algorithm SAT(F)
Input: a CNF-formula F
Output: 1 or 0 to indicate the satisfiability of F
Step 1. If F = ∅, return 1. If F contains an empty clause, return 0.
Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction
rules to reduce it.
Step 3. If there is a d-variable x with d ≥ 6, return
SAT(Fx=1)∨SAT(Fx=0).
Property: Now all variables have a degree ≤ 5.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 15 / 31

Our Algorithm

Algorithm SAT(F)
Property: Now all variables have a degree ≤ 5.
Step 4. If there is a (1, 4)-literal x (assume xC is the only clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 5. If there is a 5-variable x contained in a 2-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 6. If there is a 5-variable x contained in a 4+-clause, return
SAT(Fx=1)∨SAT(Fx=0).

Property: Now all clauses containing 5-variables have a length of exactly 3.
Step 7. If there is a clause containing both a 5-variable x and a
4−-variable, return SAT(Fx=1)∨SAT(Fx=0).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 16 / 31

Our Algorithm

Algorithm SAT(F)
Property: Now all variables have a degree ≤ 5.
Step 4. If there is a (1, 4)-literal x (assume xC is the only clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 5. If there is a 5-variable x contained in a 2-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 6. If there is a 5-variable x contained in a 4+-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Property: Now all clauses containing 5-variables have a length of exactly 3.

Step 7. If there is a clause containing both a 5-variable x and a
4−-variable, return SAT(Fx=1)∨SAT(Fx=0).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 16 / 31

Our Algorithm

Algorithm SAT(F)
Property: Now all variables have a degree ≤ 5.
Step 4. If there is a (1, 4)-literal x (assume xC is the only clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 5. If there is a 5-variable x contained in a 2-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 6. If there is a 5-variable x contained in a 4+-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Property: Now all clauses containing 5-variables have a length of exactly 3.
Step 7. If there is a clause containing both a 5-variable x and a
4−-variable, return SAT(Fx=1)∨SAT(Fx=0).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 16 / 31

Our Algorithm

Algorithm SAT(F)
Step 8. If there are still some 5-variables, then F = F∗ ∧ F ′, where F∗ is
a 3-CNF with var(F∗) be the set of 5-variables in F and
var(F∗) ∩ var(F ′) = ∅. We return SAT(F∗) ∧ SAT(F ′) and solve F∗ by
using the 3-SAT algorithm with time O∗(1.3279n) by Liu4.

4Liu, S.: Chain, generalization of covering code, and deterministic algorithm for
k-SAT.(ICALP 2018)

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 17 / 31

Our Algorithm

Algorithm SAT(F)
Property: Now all variables have a degree ≤ 4.
Step 9. If there is a (1, 3)-literal x (assume xC is the only clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 10. If there is a (2, 2)-literal x , return SAT(Fx=1)∨SAT(Fx=0).

Property: Now all variables have a degree exactly 3.
Step 11. Apply the algorithm with time O∗(1.1279(d−2)n) = O∗(1.1279n)
by Wahlström5 to solve the instance.

5Wahlström, M.: Faster exact solving of SAT formulae with a low number of
occur-rences per variable. (SAT2005)

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 18 / 31

Our Algorithm

Algorithm SAT(F)
Property: Now all variables have a degree ≤ 4.
Step 9. If there is a (1, 3)-literal x (assume xC is the only clause
containing x), return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 10. If there is a (2, 2)-literal x , return SAT(Fx=1)∨SAT(Fx=0).
Property: Now all variables have a degree exactly 3.
Step 11. Apply the algorithm with time O∗(1.1279(d−2)n) = O∗(1.1279n)
by Wahlström5 to solve the instance.

5Wahlström, M.: Faster exact solving of SAT formulae with a low number of
occur-rences per variable. (SAT2005)

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 18 / 31

Our Algorithm

Chen and Liu’s algorithm6 in 2009 Our algorithm

6Chen, J., Liu, Y.: An improved SAT algorithm in terms of formula length.
(WADS2009)

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 19 / 31

Running Time Bound Analysis

To determine the worst-case running time of a branching algorithm, we
can analyze the size of the search tree generated in the algorithm.

First a measure µ is defined.

We use T (µ) to indicate the maximum size or
the number of leaves of the search tree for the
input with the measure being at most µ.

If the algorithm branches into l sub-branches
with the measure decreasing at least ai in the
i-th sub-branch, we get a recurrence relation:
T (µ) ≤ T (µ−a1)+T (µ−a2)+ · · ·+T (µ−al).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 20 / 31

Running Time Bound Analysis

If the algorithm branches into l sub-branches
with the measure decreasing at least ai in the
i-th sub-branch, we get a recurrence relation:
T (µ) ≤ T (µ−a1)+T (µ−a2)+ · · ·+T (µ−al).

[a1, a2, ..., al] is called a branching vector.

The largest root of the function
f (x) = 1−

∑l
i=1 x

−ai is called the branching
factor of the recurrence.

T (µ) = O(γµ), where γ is the maximum
branching factor of all branching factors.

Running time bound: O∗(γµ).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 21 / 31

Running Time Bound Analysis

If the algorithm branches into l sub-branches
with the measure decreasing at least ai in the
i-th sub-branch, we get a recurrence relation:
T (µ) ≤ T (µ−a1)+T (µ−a2)+ · · ·+T (µ−al).

[a1, a2, ..., al] is called a branching vector.

The largest root of the function
f (x) = 1−

∑l
i=1 x

−ai is called the branching
factor of the recurrence.

T (µ) = O(γµ), where γ is the maximum
branching factor of all branching factors.

Running time bound: O∗(γµ).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 21 / 31

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.

We introduce a weight to each variable in the formula according to the
degree of the variable:

w : Z+ → R+

wi denote the weight of a variable with degree i .

In our algorithm, the measure µ of a formula F is defined as:

µ(F) =
∑
x∈F

wdeg(x)

Let ni denote the number of i-variables in F . We also have

µ(F) =
∑
i

ni · wi

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 22 / 31

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.

We introduce a weight to each variable in the formula according to the
degree of the variable:

w : Z+ → R+

wi denote the weight of a variable with degree i .

In our algorithm, the measure µ of a formula F is defined as:

µ(F) =
∑
x∈F

wdeg(x)

Let ni denote the number of i-variables in F . We also have

µ(F) =
∑
i

ni · wi

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 22 / 31

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.

We introduce a weight to each variable in the formula according to the
degree of the variable:

w : Z+ → R+

wi denote the weight of a variable with degree i .

In our algorithm, the measure µ of a formula F is defined as:

µ(F) =
∑
x∈F

wdeg(x)

Let ni denote the number of i-variables in F . We also have

µ(F) =
∑
i

ni · wi

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 22 / 31

Measure and Conquer

The main idea is to adopt a new measure instead of measure L.

We introduce a weight to each variable in the formula according to the
degree of the variable:

w : Z+ → R+

wi denote the weight of a variable with degree i .

In our algorithm, the measure µ of a formula F is defined as:

µ(F) =
∑
x∈F

wdeg(x)

Let ni denote the number of i-variables in F . We also have

µ(F) =
∑
i

ni · wi

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 22 / 31

Measure and Conquer

If we ensure that wi ≤ i , then we have

µ(F) =
∑
i

ni · wi ≤
∑
i

ni · i ≤ L(F)

This tells us if we get a running time bound of O∗(cµ(F)) for a real
number c , we also get a running time bound of O∗(cL(F)).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 23 / 31

Measure and Conquer

We also define δi = wi − wi−1, this is roughly the weight of a literal with
its corresponding variable have a degree of i .

For each branching rule, we will analyze how much the new measure µ(F)
decreases in each sub-branch to get the running time bound.

An example:
F = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Fx3=1 = (x1 ∨ x2) ∧ (x2 ∨ x4)
Fx3=0 = (x2 ∨ x4) ∧ (x4) ∧ (x1 ∨ x4)

The branching vector is:

[(w3) + (δ2) + (δ3 + δ2), (w3) + (δ2) + (δ2)]

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 24 / 31

Measure and Conquer

How does the new measure work? Consider two cases when the maximum
degree is 4.

Adopt L as the measure

w4 = 4,w3 = 3⇒ δ4 = 1:

Branching vector Branching factor
[w4 + 2w3,w4 + 6δ4] 1.0718
[w4 + 2δ4,w4 + 6δ4] 1.0926

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 25 / 31

Measure and Conquer

How does the new measure work? Consider two cases when the maximum
degree is 4.

Adopt L as the measure

w4 = 4,w3 = 3⇒ δ4 = 1:

Branching vector Branching factor
[w4 + 2w3,w4 + 6δ4] 1.0718
[w4 + 2δ4,w4 + 6δ4] 1.0926

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 25 / 31

Measure and Conquer

Adopt µ as the measure

If we set w5 = 5,w4 = 3.84682,w3 = 1.92341⇒ δ4 = 1.92341:

Branching vector Branching factor
[w4 + 2w3,w4 + 6δ4] 1.0646
[w4 + 2δ4,w4 + 6δ4] 1.0646

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 26 / 31

Running Time Bound Analysis

Assumptions:

w1 = w2 = 0

wi ≤ i(3 ≤ i ≤ 4),w4 = 2w3

wi = i(i ≥ 5)

δi > 0(i ≥ 3)

...

In Step 8, the literals of all 5-variables form a 3-SAT instance F∗. We
apply the O∗(1.3279n)-time algorithm for 3-SAT to solve our problem,
where n is the number of variables in the instance. Since w5 = 5, we have
that n = µ(F∗)/w5 = µ(F∗)/5. So the running time for this part will be

O∗(1.3279µ(F
∗)/w5) = O∗(1.0584µ(F

∗)).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 27 / 31

Running Time Bound Analysis

In Step 11, all variables are 3-variables. We apply the O∗(1.1279n)-time
algorithm by Wahlström to solve this special case, where n is the number
of variables. For this case, we have that n = µ(F)/w3. So the running
time of this part is

O∗((1.12791/w3)µ(F)).

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 28 / 31

The Final Result

The best choice of wi can be found
by solving a quasi-convex program
problem.

⇓
cµ ≤ cµ−(w6+δ6) + cµ−(w6+11δ6)

cµ ≤ cµ−(w5+2w3) + cµ−(w5+8δ5)

· · ·
cµ ≤ cµ−(w4+2δ4) + cµ−(w4+6δ4)

w1 = w2 = 0,w4 = 2w3, ...
Some other assumptions as constraints

Minimize c
Bottleneck: Step 7, 9, 10, 11.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 29 / 31

The Final Result

The best choice of wi can be found
by solving a quasi-convex program
problem.

⇓
cµ ≤ cµ−(w6+δ6) + cµ−(w6+11δ6)

cµ ≤ cµ−(w5+2w3) + cµ−(w5+8δ5)

· · ·
cµ ≤ cµ−(w4+2δ4) + cµ−(w4+6δ4)

w1 = w2 = 0,w4 = 2w3, ...
Some other assumptions as constraints

Minimize c
Bottleneck: Step 7, 9, 10, 11.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 29 / 31

The Final Result

The best choice of wi can be found
by solving a quasi-convex program
problem.

⇓
cµ ≤ cµ−(w6+δ6) + cµ−(w6+11δ6)

cµ ≤ cµ−(w5+2w3) + cµ−(w5+8δ5)

· · ·
cµ ≤ cµ−(w4+2δ4) + cµ−(w4+6δ4)

w1 = w2 = 0,w4 = 2w3, ...
Some other assumptions as constraints

Minimize c
Bottleneck: Step 7, 9, 10, 11.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 29 / 31

The Final Result

The best choice of wi can be found
by solving a quasi-convex program
problem.

⇓
cµ ≤ cµ−(w6+δ6) + cµ−(w6+11δ6)

cµ ≤ cµ−(w5+2w3) + cµ−(w5+8δ5)

· · ·
cµ ≤ cµ−(w4+2δ4) + cµ−(w4+6δ4)

w1 = w2 = 0,w4 = 2w3, ...
Some other assumptions as constraints

Minimize c

Bottleneck: Step 7, 9, 10, 11.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 29 / 31

The Final Result

The best choice of wi can be found
by solving a quasi-convex program
problem.

⇓
cµ ≤ cµ−(w6+δ6) + cµ−(w6+11δ6)

cµ ≤ cµ−(w5+2w3) + cµ−(w5+8δ5)

· · ·
cµ ≤ cµ−(w4+2δ4) + cµ−(w4+6δ4)

w1 = w2 = 0,w4 = 2w3, ...
Some other assumptions as constraints

Minimize c
Bottleneck: Step 7, 9, 10, 11.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 29 / 31

The Final Result

Theorem

Our algorithm SAT(F) solves the SAT problem in O∗(1.0646L) time.

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 30 / 31

The End

Thanks for listening!

J. Peng and M.Xiao (UESTC) A Fast Algorithm for SAT in Terms of Formula Length 31 / 31

	Problem Definition and Background
	Our Algorithm
	Analysis of Running Time Bound
	The Final Result

