
Projection heuristics for binary branchings
between sum and product

Oliver Kullmann Oleg Zaikin

Computer Science Department
Swansea University

SAT 2021
July 8, 2021

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 1 / 30

http://cs.swan.ac.uk/~csoliver/
https://scholar.google.ru/citations?user=pE3Rl5EAAAAJ&hl=ru
http://www.swansea.ac.uk/compsci/
http://www.swansea.ac.uk/
https://www.iiia.csic.es/sat2021/
https://www.iiia.csic.es/sat2021/program/

Introducing branching trees

SAT solvers and branching trees I

We consider SAT solvers based on either
Look-Ahead (LA)
Cube-and-Conquer (C&C) ≈ LA + CDCL (“old and new”).

Such solvers build a branching (backtracking) tree, with either
solved instances at the leaves (LA), or with instances for the
conquer-solver (C&C).

One important heuristic target is to minimise tree-size.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 2 / 30

Introducing branching trees

SAT solvers and branching trees II

Default branchings are binary (on boolean variables), but can be
larger by taking more variables into account (each individual
binary branching might be weak, but the whole might be strong).

A whole tree T can be considered
as a single branching (leaving out intermediate nodes).

We call this process “flattening”.

To minimise tree size, the best branching
should be chosen for every step.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 3 / 30

Introducing branching trees

Branching tree for LA

Branching variables are chosen via lookahead.
Non-binary branchings are possible.
Types of leaves: UNSAT, SAT.

vi10
yy

1

%%vi20
yy

1
%%

. . .
1
��

UNSAT UNSAT ?

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 4 / 30

Introducing branching trees

Branching tree for LA

Branching variables are chosen via lookahead.
Non-binary branchings are possible.
Types of leaves: UNSAT, SAT.

vi10
ww

1

''vi20
ww

1
''

. . .
1

((UNSAT UNSAT ?
��

lookahead

ss vv ''
vj1

ww ''

. . . vjk

ww %%
UNSAT UNSAT SAT UNSAT

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 5 / 30

Introducing branching trees

Branching tree for C&C

Cube cubes are produced by LA solver.
Conquer cubes are solved by specialised solver, by default CDCL.

Now a leaf can be a cutoff-point.

vi1
0

uu

1

&&vi2
0

}}

1

%%

. . .
1

""
vi3

0

��
1 !!

CUTOFF vik
0

||
1

��. . . UNSAT CUTOFF . . .

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 6 / 30

Introducing branching trees

Trees and distances

The final branching tree might look like

•
2

ww
1 ��

4

++•
4

��

3

��

•
2

��
2
��

3

��

•

• • • • •

The edges (branches) are now labelled with positive real numbers
(“distances”), showing progress.

For each branching, a LA solver considers a list of possibilities,
based on “looking-ahead and measuring”.
In general distances can be arbitrary positive real numbers
(important for optimisation).

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 7 / 30

Introducing branching trees

Branching tuples I

To every potential branch, a distance is considered, a positive
real number measuring progress.

Branchings are compared by comparing their branching tuples
(the tuple of distances).

The previous tree contains the branching tuples (2,1,4), (4,3),
(2,2,3). Flattening the whole tree yields (6,5,3,3,4,4).

A major basic question is:

HOW TO COMPARE BRANCHING TUPLES?

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 8 / 30

Introducing branching trees

Branching tuples II

Choices for distances are:
number of variables eliminated
number of new clauses (weighted by clause-width).

In this talk we will consider the distances as given:

The theory works for ARBITRARY distances.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 9 / 30

The canonical branching order

Branching tuples

A branching tuple is a tuple
a = (a1, . . . ,ak) of positive real numbers,

with k ≥ 2.

We use |a| := k for the width.

The set of all branching tuples is

BT :=
∞⋃

k=2

(R>0)
k .

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 10 / 30

The canonical branching order

Simple comparisons

The task is compare branching tuples,
finding out which is “better”.

We write a ≺ b for “a ∈ BT is strictly better than b ∈ BT ”.

Let’s start simple:
1 (1,2,3) ≺ (1,2,2) — at least one component better.
2 (3,2,1) ≺ (1,2,2) — order doesn’t matter.
3 (1,2) ≺ (1,2,3) — widening always impairs.
4 (2,1) ≺ (1,2,3) — again, order doesn’t matter.
5 (2,2) ≺ (1000,2,1) — combining both methods.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 11 / 30

The canonical branching order

Trivially better

The order-relation a � b

“a is trivially smaller than b”

holds for a,b ∈ BT if the following three conditions are fulfilled:
1 |a| ≤ |b|
2 there is a permutation a′ of a with ∀ i ∈ {1, . . . , |a|} : a′i ≥ bi

3 either |a| < |b| or there is i ∈ {1, . . . , |a|} with a′i > bi .

So all the previous examples for “a ≺ b” were examples for a � b.

Reminders:
“Smaller” here means “better” (smaller tree sizes).
Smaller branchings have greater distances.
Additional branches are “bad”.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 12 / 30

The canonical branching order

Basic axioms for comparing branching tuples

We are seeking to determine a total quasi-order � on BT :
a � b means “a is better or equal than b”.
“Total quasi-order” means:

a � a
a � b ∧ b � c ⇒ a � c
a � b ∨ b � a.

As usual we define
a ' b if a � b and b � a (' is an equivalence relation on BT),
a ≺ b if a � b and a 6' b.

The following two axioms should be indisputable (for all a,b ∈ BT):
(S) Symmetry For a permutation b of a holds a ' b.
(T) Trivial comparison If a � b then a ≺ b.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 13 / 30

The canonical branching order

A harder case

What about comparing
(2,3) vs (1,4) ?

We could invoke here another principle:

“superlinear” growth.

Remember the numbers are changes (indeed reductions) in size (from
the same (residual) instance):

1 Having “linear” growth means exactly that all tuples with the same
sum of entries would be equivalent.

2 “Superlinear” means that the bad branch here counts more than
the good branch, and thus we should have

(2,3) ≺ (1,4).

But what about (2,2) vs (1,4) ?
O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 14 / 30

The canonical branching order

Making growth appearing I

Growth can be made explicit by expansion and subsequent flattening:
Expand (2,3) to

• •

• •
2

__

3

??

•
2

__

3

??

; (2,5,6).

Expand (1,4) to
• •

•
1

__

4

??

•

•
1

__

4

??

; (2,5,4).

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 15 / 30

The canonical branching order

Making growth appearing II
Expand (2,2) to

• •

• •
2

__

2

??

•
2

__

2

??

; (2,4,4).

So
(2,3) ; (2,5,6)
(1,4) ; (2,5,4)
(2,2) ; (2,4,4)

Since
(2,5,6) � (2,5,4) � (2,4,4)

we should have
(2,3) ≺ (1,4) ≺ (2,2).

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 16 / 30

The canonical branching order

Expansions

An expansion of a branching tuple a is any branching tuple b obtained
by

1 considering the tuple a as a branching constituting the root of a
tree, with |a| many leaves;

2 replacing leaves iteratively by branching a (arbitrarily often);
3 finally flattening the whole tree (with edges labelled by the

numbers of a) into one branching tuple b.
We have already seen three (one-step) expansions. Here is a two-step
expansion (2,6,9,4) of (1,4):

• •

• •1

__

4

??

•1

__

4

??

•

•1

__

4

??

; (2,5,4) ; (2,5 + 1,5 + 4,4) = (2,6,9,4).

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 17 / 30

The canonical branching order

The Expansion Axiom I

For the order � on BT we are seeking to axiomatically determine, we
require now a third axiom (recall the basic two axioms, (S) (Symmetry)
and (T) (Trivial comparison)):

(E) Expansion If b is an expansion of a, then b ' a.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 18 / 30

The canonical branching order

The Expansion Axiom II

Theorem 2.1
For all a,b ∈ BT exactly one of the following four cases holds:

(i) There are expansions a′ of a and b′ of b with a′ � b′.
(ii) Same as (i), but with b′ � a′.
(iii) Same as (i), but with a′ being a permutation of b′.
(iv) For any expansions a′,b′ of a,b neither a′ � b′ nor b′ � a′ holds,

nor is a′ a permutation of b′.

By (S), (T), (E) we get:
Case (i) a ≺ b
Case (ii) b ≺ a
Case (iii) a ' b.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 19 / 30

The canonical branching order

The Density Axiom

The order � is not determined in Case (iv):
We could just say that a ' b holds for Case (iv).
But we can indeed conclude this from another intuitive axiom.
The expansions are somewhat similar to decimal expansions of a
number: they get closer and closer to reveal the true “value” of a
branching tuple.
We can indeed capture this by requiring that between a ≺ b there
is always some c with a ≺ c ≺ b, where c = a− ε for some
ε ∈ R>0 (meaning: subtract ε from every component of a).

(D) Density For a ≺ b there is ε > 0 such that
a− ε ∈ BT and a− ε ≺ b.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 20 / 30

The canonical branching order

The Canonical Branching order

Call a total quasi-order � on BT fulfilling (S), (T), (E), (D) a

canonical branching order.

Theorem 2.2
There is exactly one canonical branching order.

We now turn to concretely determine the canonical branching order.

(This also will show that comparisons a ≺ b, a � b and a ' b are
decidable in polynomial time for a,b made from algebraic numbers.)

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 21 / 30

The canonical branching order

Measuring branching tuples

We define τ : BT → R>1 by
τ(a,b) is the unique x > 1 with x−a + x−b = 1.
τ(a,b, c) is the unique x > 1 with x−a + x−b + x−c = 1.
And so on.

This generalises the so-called “characteristic polynomial” of difference
and differential equations.
The tau-function evaluates branching tuples (the smaller the tau-value
the better the branching tuple), and the derived ordering of branching
tuples is the canonical branching order:

Theorem 2.3
For a,b ∈ BT holds a � b ⇔ τ(a) ≤ τ(b).

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 22 / 30

The tau-function

Variants of the tau-function

For numeric purposes log-tau lτ : BT → R>0 is more appropriate:

lτ(a) := ln(τ(a)).

Obviously τ(a) ≤ τ(b)⇔ lτ(a) ≤ lτ(b).

In a sense log-tau computes a sort of “mean value” of a branching
tuple — we get indeed a proper form of a mean value, called
mean-tau T : BT → R>0 by taking the reciprocal value and scaling:

T(a) :=
ln(|a|)
lτ(a)

.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 23 / 30

The tau-function

Binary tau

Currently for SAT most important is binary log-tau:

lτ(x , y) := lτ((x , y)).

We get a very good handle on lτ(x , y) by reducing it to w-tau
wτ : R>0 → R>0, a function with just one argument:

wτ(x) := lτ(1,
1
x
)

lτ(x , y) =
1
x
wτ(

x
y
).

W-tau is asymptotically equal to the Lambert-W function, which in turn
is asymptotically equal to the logarithm:

|wτ(x)−W (x)| = o(1)
|W (x)− ln(x)| = O(1)

Warning: These approximations are bad for (relevant) “small” x .
O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 24 / 30

Alternatives to binary tau

Alternatives to binary tau?

Given a binary branching tuple (x , y) ∈ BT2 := (R>0)
2, we determine

its “value” by τ(x , y) (or lτ(x , y)):

The proof that this is the only way
hinges on having arbitrarily large trees

containing (only) (x , y).

But this is not applicable to inputs (or residual instances) of finite size
— can (should?) we take this into account?!?
For the remainder our projections (maps from BT2 to R>0) are to be
maximised (the larger the better).

Historically
1 first the “projection” (x , y) 7→ x + y was used (sum rule)
2 which was soon replaced by (x , y) 7→ x · y (product rule).

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 25 / 30

Alternatives to binary tau

An axiomatic framework for binary projections

Starting from the (generalised) mean T : BT → R>0, we consider the
following seven axioms for binary projections m : BT2 → R>0, now
using “the larger the better” (for all x , y , x ′, y ′ ∈ R>0):

(i) m(x , y) = m(y , x) (symmetry)
(ii) m strictly increasing in each component
(iii) min(x , y) ≤ m(x , y) ≤ max(x , y) (consistency)
(iv) λ > 0 =⇒ m(λ · x , λ · y) = λ ·m(x , y) (homogeneity – scale

invariance)
(v) 0 ≤ λ ≤ 1 =⇒ m(λ · x + (1− λ) · x ′, λ · y + (1− λ) · y ′) ≥

λ ·m(x , y) + (1− λ) ·m(x ′, y ′) (concavity)
(vi) limx→∞m(x , y) =∞ (∞-dominated)
(vii) limx→0 m(x , y) = 0 (0-dominated).
T2 fulfils these seven axioms.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 26 / 30

Alternatives to binary tau

Power means

The first four axioms are fulfilled by the power means mp : BT2 → R>0,
defined for −∞ ≤ p ≤ +∞ as follows:

1 m−∞(x , y) = min(x) (the “most pessimistic choice”)
2 m+∞(x , y) = max(x) (the “most optimistic choice”)
3 m0(x , y) =

√
x · y (the geometric mean)

4 otherwise mp(x , y) = (1
2(x

p + yp))1/p.
m1 is the arithmetic mean, m−1 is the harmonic mean.

The choice of m1 corresponds to the “sum-rule”,
the choice of m0 to the “product rule”.

mp is concave iff p ≤ 1.
mp is∞-dominated iff p ≥ 0.
mp is 0-dominated iff p ≤ 0.

So m0 is the only power means fulfilling all seven axioms.
O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 27 / 30

Alternatives to binary tau

Reducing binary means to their kernels

For comparing means m : BT2 → R>0, thanks to symmetry and
homogeneity we can restrict attention to their “kernels”

m : R≥1 → R≥1

defined by
m(x) := m(1, x).

m(x) says how much imbalanced branching tuples are penalised —
the large m(x) the less penalisation.

For 0 ≤ p ≤ 1:
1 m1(x) = 1

2 + x
2 penalises the least.

2 m0(x) =
√

x penalises the most.

T(x) ∼ x
log2(x)

penalises less than m0,
and more than mp for p ≤ 0.307.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 28 / 30

Conclusion

Future research

I Develop a dynamic binary projection, which takes the changing
scales into account: more penalisation towards the root, less
towards the leaves.

II Generalise the results for binary-tau to non-binary tau.
III Make use of the numeric values of the tau-function (not just using

it for comparison) — the tau-value yields a global evaluation of the
current state of the search.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 29 / 30

Conclusion

End

(references on the remaining slides).

For my papers see
http://cs.swan.ac.uk/~csoliver/papers.html.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 30 / 30

http://cs.swan.ac.uk/~csoliver/papers.html

Conclusion

Bibliography I

[1] Oliver Kullmann. Fundaments of branching heuristics. In Armin
Biere, Marijn J.H. Heule, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, chapter 7, pages 205–244.
IOS Press, February 2009. ISBN 978-1-58603-929-5.
doi:10.3233/978-1-58603-929-5-205.

O Kullmann (Swansea) Projection heuristics for binary branchings 8.7.2021 31 / 30

http://dx.doi.org/10.3233/978-1-58603-929-5-205

	Introducing branching trees
	The canonical branching order
	The tau-function
	Alternatives to binary tau
	Conclusion
	References

