MedleySolver: Online SMT
Algorithm Selection

Nikhil Pimpalkhare!, Federico Mora!,

Elizabeth Polgreen' 2, and Sanjit A. Seshia'

' University of California, Berkeley

2 University of Edinburgh

Sunday, June 27,2021 24th International Conference on Theory and Applications of Satisfiability Testing Berkeley &%%?%XEESHITY

llllllllllllllllllll

Where Are SMT Solvers Used?

Example Applications Example Tools

* Verification engines, ,
e check many verification conditions. (ULLIDSY

/
)

* Symbolic execution engines, I/ <: <:
* check many path conditions.

* Program synthesis engines,
* check many candidate programs.

The Rosette Language

What is SMT Algorithm Selection?

* For a given query, can we predict the solver that will perform best!?

(la" . X — X . Mb"?

~
~

l ~
~

~
e
\/

X Step Taken
—

Step Not Taken
_— L} *

[17). R.Rice: The algorithm selection problem.Advances in Computers (1976).

-~

”

l{a" . X — X . llb"?

-
-
- |

UNSAT

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded Existing Methods MedleySolver
Decision Rule (Offline Learning) (Online Learning)

No Manual Input z

Feature Support
Minimal Upfront Costs v/| Strong
No Data Medium
Requirements
No Solver E Yeak

Requirements

No Need to Repeat
Upfront Costs

Fine Grained
Decisions

Existing Approaches

Expert Encoded

Machine Learned

E.g., Z3’s quantifier-free bit-vector solver tactic

(preamble_st,

cond(mk_is_qfbv_eq_probe(),
and_then(mk_bv1_blaster_tactic(m),
using_params(smt, solver_p)),
cond(mk_is_qfbv_probe(),
and_then(mk_bit_blaster_tactic(m),
when(mk_1t(mk_memory_probe(), mk_const_probe(MEMLIMIT)),

and_then(using_params(and_then(mk_simplify_tactic(m),

mk_solve_eqs_tactic(m)),
local_ctx_p),
if_no_proofs(cond(mk_produce_unsat_cores_probe(),
mk_aig_tactic(),
using_params(mk_aig_tactic(),
big_aig_p))))),
sat),
smt))));

E.g., SatZilla [2], MachSMT [3], FastSMT [4], ...

<>
Wy Dataset of
= Formulas

Learning

Policy

[2] Xu, L., Hutter, F, Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (2008)
[3] Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh,V.: MachSMT: A machine learning-based algorithm selector for SMT solvers. TACAS (2021)

[4] Balunovic, M., Bielik, P,Vechey, M.T.: Learning to solve SMT formulas. NeurlIPS (2018)

Existing Approaches

Expert Encoded

SMT Enabled Tools

Machine Learned

E.g., Z3’s quantifier-free bit-vector solver tactic

(preamble_st,

cond(mk_is_qfbv_eq_probe(),
and_then(mk_bv1_blaster_tactic(m),
using_params(smt, solver_p)),
cond(mk_is_qfbv_probe(),
and_then(mk_bit_blaster_tactic(m),

when(mk_1t(mk_memory_probe(), mk_const_probe(MEMLIMIT)),

and_then(using_params(and_then(mk_simplify_tactic(m),

mk_solve_eqs_tactic(m)),
local_ctx_p),
if_no_proofs(cond(mk_produce_unsat_cores_probe(),
mk_aig_tactic(),
using_params(mk_aig_tactic(),
big_aig_p))))),

E.g., SatZilla [2], MachSMT [3], FastSMT [4], ...

<>
Wy Dataset of
= Formulas

Learning

Policy

[2] Xu, L., Hutter, F, Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (2008)
[3] Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh,V.: MachSMT: A machine learning-based algorithm selector for SMT solvers. TACAS (2021)

[4] Balunovic, M., Bielik, P,Vechey, M.T.: Learning to solve SMT formulas. NeurlIPS (2018)

SMT Enabled Tools

Existing Approaches

Expert Encoded Machine Learned

E.g., Z3’s quantifier-free bit-vector solver tactic E.g., SatZilla [2], MachSMT [3], FastSMT [4], ...

(preamble_st, <>
\ /~ Dataset of \

-_—
~— Formulas

cond(mk_is_qfbv_eq_probe(),
and_then(mk_bv1_blaster_tactic(m),
using_params(smt, solver_p)),

cond(mk_is_qfbv_probe(),
and_then(mk_bit_blaster_tactic(my
when (mk_1t(mk_memory_pg , mk_const_probe(MEMLIMIT)),
and_then(using_ nd_then(mk_simplify_tactic(m),

Learning

=l solve_eqs_tactic(m)),

|. Tailored to specific solvers § [

luce_unsat_cores_probe(),

2. Not fine grained tactic(), | |. Big upfront costs
(takes t|me to engineer) »arams (mk_aig_tactic(),

big_aig_p)))), 2. Regquires a lot of data
3. Must re-train for change in
solvers/hardware/domain

Policy

[2] Xu, L., Hutter, F, Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (2008)
[3] Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh,V.: MachSMT: A machine learning-based algorithm selector for SMT solvers. TACAS (2021)
[4] Balunovic, M., Bielik, P,Vechey, M.T.: Learning to solve SMT formulas. NeurlIPS (2018)

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded
Decision Rule

No Manual Input

Minimal Upfront Costs

No Data
Requirements

No Solver

]

v

v]

Requirements

No Need to Repeat
Upfront Costs

Fine Grained
Decisions

N

Existing Methods
(Offline Learning)

MedleySolver
(Online Learning)

Feature Support

v

X

Strong
Medium

Weak

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded Existing Methods MedleySolver
Decision Rule (Offline Learning) (Online Learning)

No Manual Input V]

Minimal Upfront Costs]] Fejuresf:::gort
ReqNuc;rS:eants il Medium
peiraments X =z ek

" Sront Corte %
Fine Grained]

Decisions

Our Proposal: Use Online Learning

* Learn as we go with what we have locally!

gy

- ~
N\

’
SMT Enabled Tools. E.g., s LEARN!

\ % /
/
, / TN)
UCLIDS/ W * MedleySolver -
’ 1

The Rosette Language

\
!

SAT JUNSAT

SAT JUNSAT

Input/Output Internal

MedleySolver Overview

MedleySolver Overview

Featurize

~
_)

Input/Output
_— - =

MedleySolver Overview

VVVVVV

eeeeeeee

tttttttttttttttttttt

MedleySolver Overview

Featurize

=

Feature
Values

i —

i —

Feature
Values

[MAB Solver Selector \

@.

Ranking

D=3

MedleySolver Overview

Featurize

Feature
Values

ip—

=

ie—

Feature

TTTTTT

Time Predictor

Values

g/

_ J

()=
ts

MedleySolver Overview

Featurize

=

Feature
Values

i —

i —

Feature

[MAB Solver Selector \

@.

Ranking

D=3

DRI

Time Predictor

Values

Timeouts

MedleySolver Overview

Featurize

=

Feature
Values

i —

i —

Feature

M)

AB Solver Selector

\)@.

Ranking

D)=

PN

Time Predictor

Values

-

Deploy Solvers

~

Timeouts

_

[[& @
@0‘@\0@‘0@02

J

MedleySolver Overview

Featurize

=

Feature
Values

i —

i —

Feature

M)

AB Solver Selector

Results

®

Time Predictor

Values

\)@.

Ranking

Timeouts

0N

D)=

—

(b

eploy Solvers

- () () ()
ams0 ‘mo @‘D asn0

e

®

N

Results

SAT JUNSAT

Computing Features

Featurize

=

Feature Selection

 Used a set of context-free features

* E.g.,"number of integer variables”

* |dentified relevant features using Pearson R coefficient

* Compute correlation of each feature against solving time, for each solver
* Use 10 features with the highest average coefficient

CORRELATION=0.1 N =100 CORRELATION=0.7 N =100
140 o = 140 o ©
&) i 18 GOOD ol @
120 ® O 0 (QD@OO (o) o O
g B .a%ed o 120 o %0
00 o Deodm o 2 e e P
100 0" a9)o@ o) P o)
e % X 0 OQ) fo) o % gb %
St o Wo \}3@ © 100 OC\> o
0o o 9 o o
: S83;
3N 5AD [0o o
40 o © @

100 120 140 40 60 80 100

Hypothetical feature correlation graphs (actual graphs are messier..)

number of array free variables) _
number of unique bit-vector literals largest integer literal

number of bit-vector free variables
largest bit-vector literal

sum of integer literals

term graph size

number of unique integer literals
number of quantifiers
emarephsize numMber of free variables
term graph size max uf arity

number of bound variables [T1@X uf anty
emaraph sz nymber of quantifiers
number of assertions hiumber of selects

sum of bit-vector literals number of integer free variables

max uf arity number of assertions

Selecting Solver Order

MAB Solver Selector

Selecting Solver Order

Multi-Armed Bandit Intuition Our Multi-Armed Bandit Use

e Arms are slot machines e Arms are solvers

* Reward is payout * Reward is negative time taken

* Pick what slot machine to use * Pick order of solvers to run
MAB Solver Selector / Implemented Algorithms

* Thompson Sampling

* k-Nearest-Neighbour Bandit
* Exp3

* Neural network bandit

LinUCB

Thompson Sampling

Non-Contextual Algorithm |

* Model rewards using probability distributions
* (beta distribution)

* One distribution per solver

* Sample from each beta distribution
* execute solvers in order of sample value
* Update using Bayes’ rule

* Arms which are not thoroughly explored will have
higher variance, making them more likely to be
explored in the future

0 queries solved
0 queries failed

0.2 0.4 0.6 0.8 1

8 queries solved
1 query failed

0.2 0.4 0.6 0.8 1

0

8 queries solved
29 queries failed

0.2 0.4 0.6 0.8

1

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

]

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

]

[a)
/

?

a

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

]

~

[a)
/

?

a

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

i

B [e]

m.

[a)
/

?

a

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

Ial._

e
[e] fe]

]
/

?

Run A, then B

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

Ial._

e
[e] fe]

]
/

?

Suppose
A fails, B succeeds

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

a

a

B [e]

N

—_———
=
Suppose
A fails, B succeeds

k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

a

Repeat for new
query

[e] [s]

[a]
=
[l

(6]

Allocating Timeouts

Time Predictor

Allocating Timeouts

* Task: Split overall timeout T
e allocate time to each solver in order.

* Cut off solver once we are confident it is unlikely to terminate

Modeling Execution Time as an Exponential

* Solver runtimes look like samples from an exponential distribution

* Estimate parameter A using maximum likelihood estimation

n

A =
2 4

* For a hyper-param §, find t such that solver is 6% likely to terminate

lIl 6 | e _AT m— CVC4 m— 73str4
== 73seq virtualBestSolver
t —_— m— Z3str3

A* 6000 -

5000 -

* After t seconds try the next solver! 4000 -

3000 -

2000 -

1000 -

1 I 1 1 1
0 1000 2000 3000 4000

Contextual Time Allocation

* k-Nearest Neighbor Exponential:
* Use the k-nearest queries to estimate A

* Linear Regression:

* Train a linear model which
* takes in a query’s feature vector as input,
* outputs the expected runtime

3-Nearest Neighbors

e
m

Deploying Solvers and Recap

MedleySolver Overview

Featurize

=

Feature
Values

i —

i —

Feature

M)

AB Solver Selector

Results

®

Time Predictor

Values

\)@.

Ranking

Timeouts

0N

D)=

—

(b

eploy Solvers

- () () ()
ams0 ‘mo @‘D asn0

e

®

N

Results

SAT JUNSAT

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded
Decision Rule

No Manual Input

Minimal Upfront Costs

No Data
Requirements

No Solver
Requirements

No Need to Repeat
Upfront Costs

Fine Grained
Decisions

]

v

v]

N

Existing Methods
(Offline Learning)

MedleySolver
(Online Learning)

.

Feature Support

v

X

Strong
Medium

Weak

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded
Decision Rule

No Manual Input

Minimal Upfront Costs

No Data
Requirements

No Solver
Requirements

No Need to Repeat
Upfront Costs

Fine Grained
Decisions

]

v

v]

N

Existing Methods
(Offline Learning)

MedleySolver
(Online Learning)

.

No pre-training

No pre-training

Feature Support

v

X

Strong
Medium

Weak

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded
Decision Rule

No Manual Input

Minimal Upfront Costs

No Data
Requirements

No Solver
Requirements

No Need to Repeat
Upfront Costs

Fine Grained
Decisions

]

v

v]

N

Existing Methods
(Offline Learning)

MedleySolver
(Online Learning)

.

No pre-training

No pre-training

No assumptions

Feature Support

v

X

Strong
Medium

Weak

Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded Existing Methods MedleySolver
Decision Rule (Offline Learning) (Online Learning)

No Manual Input z i
_ _ Feature Support
Minimal Upfront Costs v i No pre-training V| strong
N? Data V| No pre-training Medium
Requirements
No Solver E Weak
X No assumptions

Requirements

No Need to Repeat
Upfront Costs

Fine Grained z

Decisions

Adapt to changes
as they come.

Kl K [K]

N
[X [

Desired Features for Algorithm Selection

(End-User Perspective)

Expert Encoded Existing Methods MedleySolver
Decision Rule (Offline Learning) (Online Learning)

No Manual Input z i
_ _ Feature Support
Minimal Upfront Costs v i No pre-training V| strong
N? Data V| No pre-training Medium
Requirements
No Solver E Weak
X No assumptions

Requirements

No Need to Repeat
Upfront Costs

Fine Grained z

Decisions

Adapt to changes
as they come.

Kl K [K]

Complex, flexible
decision rules

N
[X [

1<

Evaluation and Future VWork

Experimental Setup

e 6 individual SMT solvers
e CVC4, MathSAT, Z3, Boolector, Bitwuzla, and Yices

* 4 individual benchmark sets
* BV, QF ABYV, Sage2, and Uclid5 (first 3 sets are from SMTCOMP)
* 500 queries each (randomly sampled without replacement)

* 6 MedleySolver configurations in paper, | for presentation

* 10-Nearest Neighbor for order selector
* |0-Nearest Neighbor exponential distribution estimation for time predictor

* Dell PowerEdge C6220 server, 60 second timeout per query.

Exp. |:

Comparison to Individual Solvers

1600001

140000+

120000+

100000

80000 1

60000

Par-2 Score

40000

20000

—— k-NN + nearest expo
— 73
— Cvc4
Boolector
— Yices
—— Mathsat Best Individual Solver

----- Virtual Best

~ 5 hours
better!

MedleySolver

750 1000 1250 1500 1750 2000

Queries Processed

Exp. 2: Comparison to Pre-Trained Tools

* Compare against MachSMT * 40% of queries for training
* State-of-the-art * Only used by MachSMT
* Report par-2 score for test * 60% of queries for testing

* Used by both

* Report time in seconds for training

MedleySolver Test: 1638.7 Test: 310.5 Test: 9245.3 Test: 4248.0 Test: 18565.5
MachSMT Test: 1458.3 Test: 919.2 Test: 8516.1 Test: 2430.9 Test: 12539.1
Train: 33895.5 Train: 4498.9 Train: 551155 Train: 276419.8 Train: 300072.8

Virtual Best Test: 801.7 Test: 184.3 Test: 5204.2 Test: 1464.7 Test: 6746.0

Future Work

* Whitebox monitoring techniques
* instead of black box timeout estimation

* What if one of the solvers is a distributed solver in the cloud?
* Front end to decide when to solve locally and when to query server

MedleySolver: Online SMT Algorithm Selection

. .

SAT JUNSAT

SAT JUNSAT

Code & Data

