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Where Are SMT Solvers Used?

Example Applications Example Tools

* Verification engines, ,
e check many verification conditions. (ULLIDSY

/
)

* Symbolic execution engines, I/ <: <:
* check many path conditions.

* Program synthesis engines,
* check many candidate programs.
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What is SMT Algorithm Selection?

* For a given query, can we predict the solver that will perform best!?
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[17 ). R.Rice: The algorithm selection problem.Advances in Computers (1976).
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Desired Features for Algorithm Selection
(End-User Perspective)

Expert Encoded Existing Methods MedleySolver
Decision Rule (Offline Learning) (Online Learning)

No Manual Input z

Feature Support
Minimal Upfront Costs v/| Strong
No Data Medium
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No Solver E Yeak

Requirements

No Need to Repeat
Upfront Costs

Fine Grained
Decisions



Existing Approaches

Expert Encoded

Machine Learned

E.g., Z3’s quantifier-free bit-vector solver tactic

(preamble_st,

cond(mk_is_qfbv_eq_probe(),
and_then(mk_bv1_blaster_tactic(m),
using_params(smt, solver_p)),
cond(mk_is_qfbv_probe(),
and_then(mk_bit_blaster_tactic(m),
when(mk_1t(mk_memory_probe(), mk_const_probe(MEMLIMIT)),

and_then(using_params(and_then(mk_simplify_tactic(m),

mk_solve_eqs_tactic(m)),
local_ctx_p),
if_no_proofs(cond(mk_produce_unsat_cores_probe(),
mk_aig_tactic(),
using_params(mk_aig_tactic(),
big_aig_p))))),
sat),
smt))));

E.g., SatZilla [2], MachSMT [3], FastSMT [4], ...

<>
Wy Dataset of
= Formulas

Learning

Policy

[2] Xu, L., Hutter, F, Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (2008)
[3] Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh,V.: MachSMT: A machine learning-based algorithm selector for SMT solvers. TACAS (2021)

[4] Balunovic, M., Bielik, P,Vechey, M.T.: Learning to solve SMT formulas. NeurlIPS (2018)
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SMT Enabled Tools

Existing Approaches

Expert Encoded Machine Learned

E.g., Z3’s quantifier-free bit-vector solver tactic E.g., SatZilla [2], MachSMT [3], FastSMT [4], ...

(preamble_st, <>
\ /~ Dataset of \

-_—
~— Formulas

cond(mk_is_qfbv_eq_probe(),
and_then(mk_bv1_blaster_tactic(m),
using_params(smt, solver_p)),

cond(mk_is_qfbv_probe(),
and_then(mk_bit_blaster_tactic(my
when (mk_1t(mk_memory_pg , mk_const_probe(MEMLIMIT)),
and_then(using_ nd_then(mk_simplify_tactic(m),

Learning

=l solve_eqs_tactic(m)),

|. Tailored to specific solvers § [

luce_unsat_cores_probe(),

2. Not fine grained tactic(), | |. Big upfront costs
(takes t|me to engineer) »arams (mk_aig_tactic(),

big_aig_p)))), 2. Regquires a lot of data
3. Must re-train for change in
solvers/hardware/domain

Policy

[2] Xu, L., Hutter, F, Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (2008)
[3] Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh,V.: MachSMT: A machine learning-based algorithm selector for SMT solvers. TACAS (2021)
[4] Balunovic, M., Bielik, P,Vechey, M.T.: Learning to solve SMT formulas. NeurlIPS (2018)
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Our Proposal: Use Online Learning

* Learn as we go with what we have locally!
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MedleySolver Overview



MedleySolver Overview

Featurize

~
\_ )

Input/Output
_— - =




MedleySolver Overview
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Computing Features

Featurize
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Feature Selection

 Used a set of context-free features

* E.g.,"number of integer variables”

* |dentified relevant features using Pearson R coefficient

* Compute correlation of each feature against solving time, for each solver
* Use 10 features with the highest average coefficient
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Hypothetical feature correlation graphs (actual graphs are messier..)

number of array free variables ) _
number of unique bit-vector literals largest integer literal

number of bit-vector free variables
largest bit-vector literal

sum of integer literals

term graph size

number of unique integer literals
number of quantifiers
emarephsize numMber of free variables
term graph size max uf arity

number of bound variables [T1@X uf anty
emaraph sz nymber of quantifiers
number of assertions  hiumber of selects

sum of bit-vector literals  number of integer free variables

max uf arity number of assertions



Selecting Solver Order

MAB Solver Selector




Selecting Solver Order

Multi-Armed Bandit Intuition Our Multi-Armed Bandit Use

e Arms are slot machines e Arms are solvers

* Reward is payout * Reward is negative time taken

* Pick what slot machine to use * Pick order of solvers to run
MAB Solver Selector / Implemented Algorithms

*  Thompson Sampling

* k-Nearest-Neighbour Bandit
* Exp3

* Neural network bandit

LinUCB




Thompson Sampling

Non-Contextual Algorithm |

* Model rewards using probability distributions
* (beta distribution)

* One distribution per solver

* Sample from each beta distribution
* execute solvers in order of sample value
* Update using Bayes’ rule

* Arms which are not thoroughly explored will have
higher variance, making them more likely to be
explored in the future

0 queries solved
0 queries failed

0.2 0.4 0.6 0.8 1

8 queries solved
1 query failed

0.2 0.4 0.6 0.8 1

0

8 queries solved
29 queries failed

0.2 0.4 0.6 0.8

1



k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors

]




k-Nearest Neighbor
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k-Nearest Neighbor
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k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
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in these k, breaking ties randomly
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k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label
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k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label
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k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label
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k-Nearest Neighbor

Contextual Algorithm |

* Given a query, k-NN looks at the k
closest past solved queries and orders
solvers by their number of appearances
in these k, breaking ties randomly

* Update: if query k was solved, we put it
into our list of past solved queries with
the corresponding solver label

3-Nearest Neighbors
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Repeat for new
query
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Allocating Timeouts

Time Predictor




Allocating Timeouts

* Task: Split overall timeout T
e allocate time to each solver in order.

* Cut off solver once we are confident it is unlikely to terminate




Modeling Execution Time as an Exponential

* Solver runtimes look like samples from an exponential distribution

* Estimate parameter A using maximum likelihood estimation

n

A =
2 4

* For a hyper-param §, find t such that solver is 6% likely to terminate

lIl 6 | e _AT m— CVC4 m— 73str4
== 73seq virtualBestSolver
t —_— m— Z3str3

A* 6000 -

5000 -

* After t seconds try the next solver! 4000 -

3000 -

2000 -

1000 -

1 I 1 1 1
0 1000 2000 3000 4000



Contextual Time Allocation

* k-Nearest Neighbor Exponential:
* Use the k-nearest queries to estimate A

* Linear Regression:

* Train a linear model which
* takes in a query’s feature vector as input,
* outputs the expected runtime

3-Nearest Neighbors

e
m




Deploying Solvers and Recap



MedleySolver Overview
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Evaluation and Future VWork



Experimental Setup

e 6 individual SMT solvers
e CVC4, MathSAT, Z3, Boolector, Bitwuzla, and Yices

* 4 individual benchmark sets
* BV, QF ABYV, Sage2, and Uclid5 (first 3 sets are from SMTCOMP)
* 500 queries each (randomly sampled without replacement)

* 6 MedleySolver configurations in paper, | for presentation

* 10-Nearest Neighbor for order selector
* |0-Nearest Neighbor exponential distribution estimation for time predictor

* Dell PowerEdge C6220 server, 60 second timeout per query.



Exp. |:

Comparison to Individual Solvers
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Exp. 2: Comparison to Pre-Trained Tools

* Compare against MachSMT * 40% of queries for training
* State-of-the-art * Only used by MachSMT
* Report par-2 score for test * 60% of queries for testing

* Used by both

* Report time in seconds for training

MedleySolver Test: 1638.7 Test: 310.5 Test: 9245.3 Test: 4248.0 Test: 18565.5
MachSMT Test: 1458.3 Test: 919.2 Test: 8516.1 Test: 2430.9 Test: 12539.1
Train: 33895.5 Train: 4498.9 Train: 551155 Train: 276419.8 Train: 300072.8

Virtual Best Test: 801.7 Test: 184.3 Test: 5204.2 Test: 1464.7 Test: 6746.0



Future Work

* Whitebox monitoring techniques
* instead of black box timeout estimation

* What if one of the solvers is a distributed solver in the cloud?
* Front end to decide when to solve locally and when to query server
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