
Makai Mann, Amalee Wilson, Yoni Zohar, Lindsey Stuntz, 
Ahmed Irfan, Kristopher Brown, Caleb Donovick, 

Allison Guman, Cesare Tinelli, Clark Barrett

SMT Workshop 2021
Presentation-Only

Appearing at SAT 2021

Smt-Switch:
A Solver-Agnostic C++ API for 

SMT Solving



Motivation

• Many high-quality SMT solvers with different strengths
• Often implemented in C/C++

• Interactive use common
• Queries depend on previous results (dynamic querying)
• Manipulate, traverse, and rewrite terms



Motivation

• Typical Approaches for C++ Tools
• Pick a specific solver and API
• Communicate via pipes with SMT-LIB

• Goal: Provide generic, high-quality access to various SMT solvers



Smt-Switch Design

• Abstract interfaces
• Implemented via inheritance by different solver backends

• Nomenclature
• Underlying solver: a specific SMT solver (e.g., CVC4)
• Backend: Smt-Switch implementation for an underlying solver



Architecture Overview

• Abstract classes
• AbsSort
• AbsTerm
• AbsSmtSolver

• Structs
• Op
• Result



Architecture Overview

• Abstract classes
• AbsSort
• AbsTerm
• AbsSmtSolver

• Structs
• Op
• Result

• Smart Pointers
ß Sort
ß Term
ß SmtSolver



SmtSolver

AbsSmtSolver

BtorSolver

Boolector
C API

CVC4Solver

CVC4
C++ API

MsatSolver

MathSAT
C API

Yices2Solver

Yices2
C API

Z3Solver

Z3
C++ API

BzlaSolver

Bitwuzla
C API



Example



Notable Additional Utilities

• TermTranslator: transfers terms between solver instances
• GenericSolver: communicates via pipes with arbitrary binary
• PrintingSolver: dumps SMT-LIB for API commands
• Portfolio Solving: runs multiple solver instances in parallel
• SmtLibReader: parser for subset of SMT-LIB
• No support for datatypes, floating point, or strings

• Cython-based Python bindings
• PySMT frontend: transfers terms to and from PySMT



Experiments

• Ran each solver binary alone vs corresponding Smt-Switch backend

• Ran on BV and ABV benchmarks since all solvers support
• All existing combinations of incremental/non-incremental and quantified/QF

• 66,691 total
• Suggests < 10% overhead on practical problems
• Rough approximation because different parser implementations



Conclusion

• C++ API for SMT Solving
• Based on SMT-LIB
• Simple design for easy maintenance and extension

• Currently supports
• Boolector
• Bitwuzla
• CVC4
• MathSAT
• Yices2
• Z3

• On GitHub: https://github.com/makaimann/smt-switch

https://github.com/makaimann/smt-switch

