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P Random k-SAT and satisfiable, hard-combinatorial problems.

= While CDCL is the dominating SAT solving paradigm, there are
problems on which Stochastic Local Search performs significantly
better.

— The largest satisfiable instance of the Boolean Pythagorean
Triples problem can be solved using DDFW [Divide and
Distribute Fixed Weights] local search in ~one CPU minute.
Other algorithms time out.

— SLS solvers perform well in the search for new matrix
multiplication schemes expressed as a SAT problem via the
Boolean Brent equations.

= Can we further improve the performance of LS on a class of
problems where it already performs best? We look at problems
involving XOR constraints, of which matrix multiplication is one
instance.
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= While CDCL is the dominating SAT solving paradigm, there are
problems on which Stochastic Local Search performs significantly
better.

— The largest satisfiable instance of the Boolean Pythagorean
Triples problem can be solved using DDFW [Divide and
Distribute Fixed Weights] local search in ~one CPU minute.
Other algorithms time out.

— SLS solvers perform well in the search for new matrix
multiplication schemes expressed as a SAT problem via the
Boolean Brent equations.
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involving XOR constraints, of which matrix multiplication is one
instance.
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g I—Solving XOR in CNF form
N
= To solve problems involving XOR constraints, we have to pick an
(21 @ ..0xy) — 7 encoding into CNF.

= Most straightforwardly, we can use a direct encoding — XOR_d. But
this produces exponentially many clauses.

= The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.

= But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
algorithm.
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(21 @ ..0xy) — 7 encoding into CNF.
= Most straightforwardly, we can use a direct encoding — XOR_d. But
XOR_d (24, ..., 7)) = A (2, V... V £2;) this produces exponentially many clauses.
even #— = The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.
XOR_T_n(zy,...,z;) = XOR_d(zy,...,z,,_1,—y) AXOR_T_n(y, z,,, ..., T},) = But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
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I—Solving XOR in CNF form

= To solve problems involving XOR constraints, we have to pick an
encoding into CNF.

= Most straightforwardly, we can use a direct encoding — XOR_d. But
this produces exponentially many clauses.

= The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.

= But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
algorithm.
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g I—FIipping Tseitin
N
= At its core, SLS proceeds by flipping variables in falsified clauses
according to a probabilistic heuristic.
XOR_T_2(21, 25,85, T4, 5) = = Consider solving the following XOR with 5 original and 2 auxiliary
variables.
XOR_d(zq, %y, ¥y;) A XOR_A(—yy, 23, Ys) A XOR_A(—yy, T4, 25) = — Suppose we start with the all-true assignment. The high-level
o S o o constraint is already satisified but the solver does not “see”
(@1, T2, 1) A (=21, =22, 91) A (=21, @2, =y1) A (@1, =22, —y1)A this because it operates on a low-level CNF representation.
(Y13, Y9) N (Y1, =23, Y2) A (W1, T35 =) A (=1, —T3, —Yo)A — The solver takes steps flipping variables, even going backwards
T T S T o T 7 7 in a sense by falsifying the high-level constraint in order to
(=2, 24, 5) A (Y25 =45 25) A (Y2, B4, =25) A (—Y2, =24, —25) solve its CNF encoding.

— Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.
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8
= L
(% XNF
= We propose to experiment with native XOR representations more
widely. In the spirit of DIMACS CNF, an XNF format could be used.
= Worth noting that we later found out XNF is already implemented
p xnf 3 2 (1 Vo Vag) A in CryptoMiniSAT.
1230
x 120 (xl D 372)
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xnfSAT: Stochastic Local Search with native XOR
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Figure: Runtime CDF of xnfSAT performance on matrix multiplication
benchmarks with varying encodings and solver versions.
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L xnfSAT: Stochastic Local Search with native
XOR

= To solve XNF, we present xnfSAT, an SLS solver supporting native
XOR.

= |ts performance on matrix multiplication benchmarks significantly
improves upon the best CNF-based solver, YalSAT.

= To go with xnfSAT, we implemented a tool to extract XOR gates
from CNF files.



We build on YalSAT

Algorithm YalSAT, a WalkSAT-based solver

Jary

e
= O

for clause in input file do
parse and store clause to data structure
end for
preprocess formula
« < complete initial assignment of truth values
while there exists a clause falsified by o do
C < pickUnsatClause()
x < pickVarIn(C)
a < a with x flipped
update solver state

- end while
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L—We build on YalSAT

= xnfSAT is based on YalSAT. Instructive to understand its outline.

= Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

= We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).
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P XOR constraints are stored as buffers of variable indices,
forgetting negations.

P Track the parity of each so that D, =; is satisfied iff
Yz, + parity =1 mod 2.
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I—Parsing and clause storage
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P XOR constraints are stored as buffers of variable indices,
forgetting negations.

P Track the parity of each so that D, =; is satisfied iff
Yz, + parity =1 mod 2.

P For example, (z; ® —z5) is (x; ® 4, parity = 1).

8/14



. XOR Local Search for Boolean Brent Equations
Preprocessing

I—Preprocessing

2021-06-26

P During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.
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Preprocessing

P During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.
P Have (2, ® 24 ® 23, parity = 0)
P Then x, = 1 propagates
P Then have (x, ® x4, parity = 1)
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I—Preprocessing




probSAT-like variable selection

XOR Local Search for Boolean Brent Equations
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probSAT-like variable selection

I—probSAT—Iike variable selection
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1
break,,(x;)

P 1z, < PickVarIn(z; V...V x;) with probability ~

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

= While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.
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P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;

P Then break,,(z;) = Yeen(s,w(C)

» While w(xz, V...V, )~ n, we set w(z ...z, ) constant.
( 1 n) ( 19 @ m) = While long OR clauses with many satisfied literals are hard to break,

Why? : ;
XOR constraints can always be broken. Length is not a good

1. Simplicity. . .
2. A literal x is critical in C'if flipping = breaks C. IEESe 7 2 (RErEmes 6 £7 HCIR Eoms el

» In(z,Vz,Va,), x, critical.
» In (z, Vx,Vx,), nothing critical.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.
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P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;
P Then break,,(z;) = Yeen(s,w(C)
> w::lyls w(xl VeV xn) ~ 1, we set w(:cl ©...® xm) constant. = While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good

measure of the importance of an XOR constraint.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

1. Simplicity.

2. A literal x is critical in C'if flipping = breaks C.
» In(z,Vz,Va,), x, critical.
» In (z, Vx,Vx,), nothing critical.
P In a satisfied XOR, all literals are critical.
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P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;
P Then break,,(z;) = Yeen(s,w(C)
> w::lyls w(xl VeV xn) ~ 1, we set w(:cl ©...® xm) constant. = While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good

measure of the importance of an XOR constraint.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

1. Simplicity.
2. A literal x is critical in C'if flipping x breaks C.
» In(z,Vz,Va,), x, critical.
» In (z, Vx,Vx,), nothing critical.
P In a satisfied XOR, all literals are critical.
P For efficiency, break,, tables are cached. Tracking critical
literals allows for fast updates.

10/14



) XOR Local Search for Boolean Brent Equations e —"
How fast can CNF get? Pooled encoding d

L How fast can CNF get? Pooled encoding

2021-06-26

= To make sure solving XNF strongly outperforms CNF, we performed
heavy tuning on the CNF formula. We tried two variants of the

XOR_1_n(xq,...,x;) = XOR_d(zq,...,x,,_1,—Yy) AXOR_1_n(y, z,,, ..., },) Teeitin encoding.

— First, the linear encoding seen earlier, produced with a stack.
— Then, a pooled encoding produced with a queue. To our
knowledge, this encoding is novel.

= We also tried various cutting numbers — sizes of the
directly-encoded chunks.
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) L e e = On these instances, pooled encodings are better across the board.
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Figure: Runtime CDF of YalSAT performance on CNF-encoded matrix
multiplication benchmarks.
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Figure: Runtime CDF of xnfSAT performance on matrix multiplication
benchmarks with varying encodings and solver versions.
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P Implemented SLS with native XOR constraints in xnfSAT.

P Observed strong performance improvements on matrix
multiplication benchmarks where SLS already outperformed
CDCL.

P Propose to experiment with native XOR more widely and to
standardise the XNF format.

P https://github.com/Vtec234/xnfSAT
P https://github.com/arminbiere/cnf2xnf
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