XOR Local Search for Boolean Brent Equations

Wojciech Nawrocki Zhenjun Liu Andreas Frohlich
Marijn Heule Armin Biere

Carnegie
Mellon J¥YU
University R

SAT 2021

1/14

2021-06-26

XOR Local Search for Boolean Brent Equations

When SLS outperforms CDCL

XOR Local Search for Boolean Brent Equations
When SLS outperforms CDCL quatl R

L When SLS outperforms CDCL

2021-06-26

P Random k-SAT and satisfiable, hard-combinatorial problems.

= While CDCL is the dominating SAT solving paradigm, there are
problems on which Stochastic Local Search performs significantly
better.

— The largest satisfiable instance of the Boolean Pythagorean
Triples problem can be solved using DDFW [Divide and
Distribute Fixed Weights] local search in ~one CPU minute.
Other algorithms time out.

— SLS solvers perform well in the search for new matrix
multiplication schemes expressed as a SAT problem via the
Boolean Brent equations.

= Can we further improve the performance of LS on a class of
problems where it already performs best? We look at problems
involving XOR constraints, of which matrix multiplication is one
instance.

2/14

When SLS outperforms CDCL

P Random k-SAT and satisfiable, hard-combinatorial problems.

n = K L] R

el
7000 +
=

TELTY

6000
5000
4000 2

3000

2000

1000

0+
0 10 20 30 40 50 60 70 80 90 100

(a) DDFW on Boolean Pythagorean Triples

2/14

2021-06-26

XOR Local Search for Boolean Brent Equations

L-When SLS outperforms CDCL

= While CDCL is the dominating SAT solving paradigm, there are
problems on which Stochastic Local Search performs significantly
better.

— The largest satisfiable instance of the Boolean Pythagorean
Triples problem can be solved using DDFW [Divide and
Distribute Fixed Weights] local search in ~one CPU minute.
Other algorithms time out.

— SLS solvers perform well in the search for new matrix
multiplication schemes expressed as a SAT problem via the
Boolean Brent equations.

= Can we further improve the performance of LS on a class of
problems where it already performs best? We look at problems
involving XOR constraints, of which matrix multiplication is one
instance.

When SLS outperforms CDCL

P Random k-SAT and satisfiable, hard-combinatorial problems.

" - —
] o k k
7000 + I
- -
6000
L 23
5000 . E 0[(") ﬁ(") (¢)
I - 11,12]17327191:]@2
4000 2 =1
3000 ==
2000 : ;i 0; k d; k
12,J1 t1,R1 " J2,R2
1000

: (b) Matrix Multiplication
0 10 20 30 40 50 60 70 80 90 100

(a) DDFW on Boolean Pythagorean Triples

2/14

2021-06-26

XOR Local Search for Boolean Brent Equations

L-When SLS outperforms CDCL

= While CDCL is the dominating SAT solving paradigm, there are
problems on which Stochastic Local Search performs significantly
better.

— The largest satisfiable instance of the Boolean Pythagorean
Triples problem can be solved using DDFW [Divide and
Distribute Fixed Weights] local search in ~one CPU minute.
Other algorithms time out.

— SLS solvers perform well in the search for new matrix
multiplication schemes expressed as a SAT problem via the
Boolean Brent equations.

= Can we further improve the performance of LS on a class of
problems where it already performs best? We look at problems
involving XOR constraints, of which matrix multiplication is one
instance.

Solving XOR in CNF form

. . XOR Local Search for Boolean Brent Equations
Solving XOR in CNF form 9
$ -
g I—Solving XOR in CNF form
N
= To solve problems involving XOR constraints, we have to pick an
(21 @ ..0xy) — 7 encoding into CNF.

= Most straightforwardly, we can use a direct encoding — XOR_d. But
this produces exponentially many clauses.

= The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.

= But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
algorithm.

3/14

Solving XOR in CNF form

. . XOR Local Search for Boolean Brent Equations
Solving XOR in CNF form anet

I—Solving XOR in CNF form

2021-06-26

= To solve problems involving XOR constraints, we have to pick an
(21 @ ..0xy) — 7 encoding into CNF.

= Most straightforwardly, we can use a direct encoding — XOR_d. But

XOR_d(zy, ..., 7,) = A (a1 V...V 435 this produces exponentially many clauses.

even #— = The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.

= But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
algorithm.

3/14

Solving XOR in CNF form

. . XOR Local Search for Boolean Brent Equations
Solving XOR in CNF form 9 d
g? A :
g I—Solving XOR in CNF form
N
= To solve problems involving XOR constraints, we have to pick an
(21 @ ..0xy) — 7 encoding into CNF.
= Most straightforwardly, we can use a direct encoding — XOR_d. But
XOR_d (24, ..., 7)) = A (2, V... V £2;) this produces exponentially many clauses.
even #— = The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.
XOR_T_n(zy,...,z;) = XOR_d(zy,...,z,,_1,—y) AXOR_T_n(y, z,,, ..., T},) = But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
algorithm.

3/14

Solving XOR in CNF form

(2, ®...0xy) > 7

XOR_d(z, ... N (E2y VoV tay)

even #—

,.%'k):

XOR_T_n(xy, ..., 7)) = XOR_A(Zy, ..., Z,,_1, —Y) AXOR_T_n(y, x,, ...

3/14

2021-06-26

Solving XOR in CNF form

XOR Local Search for Boolean Brent Equations

I—Solving XOR in CNF form

= To solve problems involving XOR constraints, we have to pick an
encoding into CNF.

= Most straightforwardly, we can use a direct encoding — XOR_d. But
this produces exponentially many clauses.

= The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.

= But we pay for linearity. Tseitin encoding introduces auxiliary
variables (y, underlined). These interact poorly with the SLS
algorithm.

Flipping Tseitin

XOR Local Search for Boolean Brent Equations

Flipping Tseitin Q
2
g I—FIipping Tseitin
N
= At its core, SLS proceeds by flipping variables in falsified clauses
according to a probabilistic heuristic.
XOR_T_2(21, 25,85, T4, 5) = = Consider solving the following XOR with 5 original and 2 auxiliary
variables.
XOR_d(zq, %y, ¥y;) A XOR_A(—yy, 23, Ys) A XOR_A(—yy, T4, 25) = — Suppose we start with the all-true assignment. The high-level
o S o o constraint is already satisified but the solver does not “see”
(@1, T2, 1) A (=21, =22, 91) A (=21, @2, =y1) A (@1, =22, —y1)A this because it operates on a low-level CNF representation.
(Y13, Y9) N (Y1, =23, Y2) A (W1, T35 =) A (=1, —T3, —Yo)A — The solver takes steps flipping variables, even going backwards
T T S T o T 7 7 in a sense by falsifying the high-level constraint in order to
(=2, 24, 5) A (Y25 =45 25) A (Y2, B4, =25) A (—Y2, =24, —25) solve its CNF encoding.

— Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.

4/14

Flipping Tseitin

XOR Local Search for Boolean Brent Equations

Flipping Tseitin Q
$
§ I—FIipping Tseitin B
N
= At its core, SLS proceeds by flipping variables in falsified clauses
according to a probabilistic heuristic.
XOR_T_2(2y, 23,3, 2y,) = = Consider solving the following XOR with 5 original and 2 auxiliary
variables.
XOR_d(x, 2y, y,) A XOR_A(—Yy, 3, Ys) AXOR_A(—y,, 24, 25) = — Suppose we start with the all-true assignment. The high-level
, - N o constraint is already satisified but the solver does not “see”
(@1, 29, 1) A (=20, =22, 1) A (=20, 29, =y1) A (@1, =2, —y1)A this because it operates on a low-level CNF representation.
(—y1, T3, Ys) A (Y1, =3, Ys) A (Yg, Ty —Ys) A (—Yq, —T3, —Ys)A — The solver takes steps flipping variables, even going backwards
o o o o o o T - in a sense by falsifying the high-level constraint in order to
(0515 25) A (s =30 N (2 15 —25) A (s —04s—5) o 15 CNF encoding

— Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.

4/14

Flipping Tseitin

XOR Local Search for Boolean Brent Equations

Flipping Tseitin Q
8
§ I—FIipping Tseitin B
N
= At its core, SLS proceeds by flipping variables in falsified clauses
v according to a probabilistic heuristic.
XOR_T_2(21, 25,83, T4, 5) = = Consider solving the following XOR with 5 original and 2 auxiliary
variables.
XOR_d(x, 25,y) AXOR_A(—Yy, 5, Ys) AXOR_A(—y,, 24, 25) = — Suppose we start with the all-true assignment. The high-level
, - N o constraint is already satisified but the solver does not “see”
(@1, 29, 1) A (=20, =22, 1) A (=20, 29, =y1) A (@1, =2, —y1)A this because it operates on a low-level CNF representation.
(—y1,Z3,Ys) A (Y1, =23, Ys) A (Yg, Ty —Ys) A (—Yq, —T3, —Ys)A — The solver takes steps flipping variables, even going backwards
o o o o o o T - in a sense by falsifying the high-level constraint in order to
(s 220) N (s —4525) A (s 3, =) A (s~ —5) sove 15 CNF ancodin

— Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.

4/14

Flipping Tseitin

XOR Local Search for Boolean Brent Equations

Flipping Tseitin Q
$
§ I—FIipping Tseitin B
N
= At its core, SLS proceeds by flipping variables in falsified clauses
according to a probabilistic heuristic.
XOR_T_2(2y, 23,%3, 2y,) = = Consider solving the following XOR with 5 original and 2 auxiliary
variables.
XOR_d(x, 25,y) A XOR_A(—Yy, 3, Ys) AXOR_A(—y,, 24, 25) = — Suppose we start with the all-true assignment. The high-level
, - N S constraint is already satisified but the solver does not “see”
(@1, 29, 1) A (=20, =22, 1) A (=20, 29, =y1) A (@1, =2, —y1)A this because it operates on a low-level CNF representation.
(—y1, 3, Ys) A (Y1, =23, Ys) A (Yg, Tgy —Ys) A (—Yq, —Z3, —Ys)A — The solver takes steps flipping variables, even going backwards
o o - o o e o 7 in a sense by falsifying the high-level constraint in order to
(0 230) N (s —4525) A (s 3, —5) A (s~ —) sove 15 CNF ancodin

— Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.

4/14

Flipping Tseitin

XOR Local Search for Boolean Brent Equations

Flipping Tseitin Q
8
§ I—FIipping Tseitin B
N
= At its core, SLS proceeds by flipping variables in falsified clauses
v according to a probabilistic heuristic.
XOR_T_2(2y, 23,3, 2y,) = = Consider solving the following XOR with 5 original and 2 auxiliary
variables.
XOR_d(x, 25,y) AXOR_A(—Yy, 3, Ys) AXOR_A(—y,, 24, 25) = — Suppose we start with the all-true assignment. The high-level
, - N S constraint is already satisified but the solver does not “see”
(@1, 29, 1) A (=20, =22, 1) A (=20, 29, =y1) A (@1, =2, —y1)A this because it operates on a low-level CNF representation.
(—y1,Z3,Ys) A (Y1, =23, Ys) A (Yg, Tgy —Ys) A (—Yq, —T3, —Ys)A — The solver takes steps flipping variables, even going backwards
o o - o o e o 7 in a sense by falsifying the high-level constraint in order to
(0515 85) A (s 30 N (2 15 —25) A (i —24s—5) o 15 CNF encoding

— Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.

4/14

XOR Local Search for Boolean Brent Equations

XNF Q
8
= L
(% XNF
= We propose to experiment with native XOR representations more
widely. In the spirit of DIMACS CNF, an XNF format could be used.
= Worth noting that we later found out XNF is already implemented
p xnf 3 2 (1 Vo Vag) A in CryptoMiniSAT.
1230
x 120 (xl D 372)

5/14

xnfSAT: Stochastic Local Search with native XOR

1,200

1,000 |-

800

600

solved instances

400

—— Extracted XNF
—A— Manual XNF
—— Manual XNF w/ strategies
—<— Pooled, 6-cut CNF
—4— Pooled, 8-cut CNF
—=&— Pooled, 7-cut CNF
—@— Pooled, 5-cut CNF

Linear, 5-cut CNF
—&— Linear, 8-cut CNF
—— Pooled, 4-cut CNF
—4— Linear, 7-cut CNF

Linear, 6-cut CNF
——— Pooled, 4-cut CNF w/ strategies
——&— Linear, 3-cut CNF

Pooled, 3-cut CNF

Linear, 4-cut CNF

| | | | |
200 400 600 800 1,000

runtime

Figure: Runtime CDF of xnfSAT performance on matrix multiplication
benchmarks with varying encodings and solver versions.

6/14

2021-06-26

xnfSAT: Stochastic Local Search with native XOR

XOR Local Search for Boolean Brent Equations

L xnfSAT: Stochastic Local Search with native
XOR

= To solve XNF, we present xnfSAT, an SLS solver supporting native
XOR.

= |ts performance on matrix multiplication benchmarks significantly
improves upon the best CNF-based solver, YalSAT.

= To go with xnfSAT, we implemented a tool to extract XOR gates
from CNF files.

We build on YalSAT

Algorithm YalSAT, a WalkSAT-based solver

Jary

e
= O

for clause in input file do
parse and store clause to data structure
end for
preprocess formula
« < complete initial assignment of truth values
while there exists a clause falsified by o do
C < pickUnsatClause()
x < pickVarIn(C)
a < a with x flipped
update solver state

- end while

7/14

2021-06-26

XOR Local Search for Boolean Brent Equations

L—We build on YalSAT

= xnfSAT is based on YalSAT. Instructive to understand its outline.

= Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

= We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).

We build on YalSAT

Algorithm YalSAT, a WalkSAT-based solver

Jary

e
= O

for clause in input file do
parse and store clause to data structure
end for
preprocess formula
« < complete initial assignment of truth values
while there exists a clause falsified by o do
C < pickUnsatClause()
x < pickVarIn(C)
a < a with x flipped
update solver state

- end while

7/14

2021-06-26

We build on Yal:

XOR Local Search for Boolean Brent Equations

L—We build on YalSAT

= xnfSAT is based on YalSAT. Instructive to understand its outline.

= Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

= We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).

We build on YalSAT

Algorithm YalSAT, a WalkSAT-based solver

Jary

e
= O

for clause in input file do
parse and store clause to data structure
end for
preprocess formula
« < complete initial assignment of truth values
while there exists a clause falsified by o do
C < pickUnsatClause()
x < pickVarIn(C)
a < a with x flipped
update solver state

- end while

7/14

2021-06-26

We build on Yal:

XOR Local Search for Boolean Brent Equations

L—We build on YalSAT

= xnfSAT is based on YalSAT. Instructive to understand its outline.

= Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

= We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).

We build on YalSAT

Algorithm YalSAT, a WalkSAT-based solver

Jary

e
= O

for clause in input file do
parse and store clause to data structure
end for
preprocess formula
« < complete initial assignment of truth values
while there exists a clause falsified by o do
C < pickUnsatClause()
x < pickVarIn(C)
a < a with x flipped
update solver state

- end while

7/14

2021-06-26

We build on Yal:

XOR Local Search for Boolean Brent Equations

L—We build on YalSAT

= xnfSAT is based on YalSAT. Instructive to understand its outline.

= Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

= We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).

. XOR Local Search for Boolean Brent Equations
Parsing and clause storage

I—Parsing and clause storage

2021-06-26

P XOR constraints are stored as buffers of variable indices,
forgetting negations.

P Track the parity of each so that D, =; is satisfied iff
Yz, + parity =1 mod 2.

8/14

. XOR Local Search for Boolean Brent Equations
Parsing and clause storage

I—Parsing and clause storage

2021-06-26

P XOR constraints are stored as buffers of variable indices,
forgetting negations.

P Track the parity of each so that D, =; is satisfied iff
Yz, + parity =1 mod 2.

P For example, (z; ® —z5) is (x; ® 4, parity = 1).

8/14

. XOR Local Search for Boolean Brent Equations
Preprocessing

I—Preprocessing

2021-06-26

P During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.

9/14

. XOR Local Search for Boolean Brent Equations
Preprocessing

I—Preprocessing

2021-06-26

P During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.

P Have (2, ® 24 ® 23, parity = 0)

9/14

. XOR Local Search for Boolean Brent Equations
Preprocessing

I—Preprocessing

2021-06-26

P During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.

P Have (2, ® 24 ® 23, parity = 0)
P Then x, = 1 propagates

9/14

Preprocessing

P During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.
P Have (2, ® 24 ® 23, parity = 0)
P Then x, = 1 propagates
P Then have (x, ® x4, parity = 1)

9/14

2021-06-26

XOR Local Search for Boolean Brent Equations

I—Preprocessing

probSAT-like variable selection

XOR Local Search for Boolean Brent Equations

P 2, ¢ PackVarIals, V.V a,) with probsbility ~ L

probSAT-like variable selection

I—probSAT—Iike variable selection

2021-06-26

1
break,,(x;)

P 1z, < PickVarIn(z; V...V x;) with probability ~

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

= While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.

10/14

XOR Local Search for Boolean Brent Equations

probSAT-like variable selection

I—probSAT—Iike variable selection

2021-06-26

1
break,,(x;)

P 1z, < PickVarIn(z; V...V x;) with probability ~

P Let B(xz,) be the clauses falsified on flipping 2, . . _ .
(;) PPINE T; = Clause and variable selection heuristics are the most important parts

of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

= While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.

10/14

XOR Local Search for Boolean Brent Equations

probSAT-like variable selection

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping x;

> and w be a clause weighing function: = Clause and variable selection heuristics are the most important parts

of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

= While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.

10/14

XOR Local Search for Boolean Brent Equations

probSAT-like variable selection

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;

P Then break,,(z;) = Yeen(s,w(C)

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

= While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.

10/14

probSAT e varialle sdlaefian XOR Local Search for Boolean Brent Equations

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;

P Then break,,(z;) = Yeen(s,w(C)

» While w(z, V...V x,)~n, we set w(z,; ®... D z,,) constant.
Why?

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

= While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.

10/14

XOR Local Search for Boolean Brent Equations

probSAT-like variable selection S
g
§ I—probSAT—Iike variable selection
N
. . g 1
P 1z, < PickVarIn(z; V...V x;) with probability ~ reak 7))
: I;sz i(ﬁ’g abz:l;;c\l;:isehsi:als%ljlneiicc)):.fllpplng i = Clause and variable selection heuristics are the most important parts
> Then break, () — Eg & w(C) ' of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
> w\T) T SOeB(z;) selection extended with weights.
While w(z, V...V z,)~ n, we set w(x ...@® x,) constant.
Why? (1 n) (19 @ m) = While long OR clauses with many satisfied literals are hard to break,
1 S licit XOR constraints can always be broken. Length is not a good
- !mphcity. measure of the importance of an XOR constraint.

10/14

probSAT e varialle sdlaefian XOR Local Search for Boolean Brent Equations

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;

P Then break,,(z;) = Yeen(s,w(C)

» While w(xz, V...V,)~ n, we set w(z ...z,) constant.
(1 n) (19 @ m) = While long OR clauses with many satisfied literals are hard to break,

Why? : ;
XOR constraints can always be broken. Length is not a good

1. Simplicity. . .
2. A literal x is critical in C'if flipping = breaks C. IEESe 7 2 (RErEmes 6 £7 HCIR Eoms el

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

10/14

probSAT e varialle sdlaefian XOR Local Search for Boolean Brent Equations

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;
P Then break,,(z;) = Yeen(s,w(C)
> w::lyls w(xl VeV xn) ~ 1, we set w(:cl ©...® xm) constant. = While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good

measure of the importance of an XOR constraint.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

1. Simplicity.
2. A literal x is critical in C'if flipping = breaks C.
» In(z,Vz,Va,), x, critical.

10/14

probSAT-like variable selection

probSAT e varialle sdlaefian XOR Local Search for Boolean Brent Equations

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;

P Then break,,(z;) = Yeen(s,w(C)

» While w(xz, V...V,)~ n, we set w(z ...z,) constant.
(1 n) (19 @ m) = While long OR clauses with many satisfied literals are hard to break,

Why? : ;
XOR constraints can always be broken. Length is not a good

1. Simplicity. . .
2. A literal x is critical in C'if flipping = breaks C. IEESe 7 2 (RErEmes 6 £7 HCIR Eoms el

» In(z,Vz,Va,), x, critical.
» In (z, Vx,Vx,), nothing critical.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

10/14

probSAT-like variable selection XOR Local Search for Boolean Brent Equations re——

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;
P Then break,,(z;) = Yeen(s,w(C)
> w::lyls w(xl VeV xn) ~ 1, we set w(:cl ©...® xm) constant. = While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good

measure of the importance of an XOR constraint.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

1. Simplicity.

2. A literal x is critical in C'if flipping = breaks C.
» In(z,Vz,Va,), x, critical.
» In (z, Vx,Vx,), nothing critical.
P In a satisfied XOR, all literals are critical.

10/14

probSAT e varialle sdlaefian XOR Local Search for Boolean Brent Equations

I—probSAT—Iike variable selection

2021-06-26

P 1z, < PickVarIn(z; V...V x;) with probability ~ m
P Let B(z;) be the clauses falsified on flipping z;
P and w be a clause weighing function;
P Then break,,(z;) = Yeen(s,w(C)
> w::lyls w(xl VeV xn) ~ 1, we set w(:cl ©...® xm) constant. = While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good

measure of the importance of an XOR constraint.

= Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

1. Simplicity.
2. A literal x is critical in C'if flipping x breaks C.
» In(z,Vz,Va,), x, critical.
» In (z, Vx,Vx,), nothing critical.
P In a satisfied XOR, all literals are critical.
P For efficiency, break,, tables are cached. Tracking critical
literals allows for fast updates.

10/14

) XOR Local Search for Boolean Brent Equations e —"
How fast can CNF get? Pooled encoding d

L How fast can CNF get? Pooled encoding

2021-06-26

= To make sure solving XNF strongly outperforms CNF, we performed
heavy tuning on the CNF formula. We tried two variants of the

XOR_1_n(xq,...,x;) = XOR_d(zq,...,x,,_1,—Yy) AXOR_1_n(y, z,,, ..., },) Teeitin encoding.

— First, the linear encoding seen earlier, produced with a stack.
— Then, a pooled encoding produced with a queue. To our
knowledge, this encoding is novel.

= We also tried various cutting numbers — sizes of the
directly-encoded chunks.

11/14

) XOR Local Search for Boolean Brent Equations e —"
How fast can CNF get? Pooled encoding d

L How fast can CNF get? Pooled encoding

2021-06-26

= To make sure solving XNF strongly outperforms CNF, we performed
heavy tuning on the CNF formula. We tried two variants of the

XOR_1_n(xq,...,x;) = XOR_d(zq,...,x,,_1,—Yy) AXOR_1_n(y, z,,, ..., },) Teeitin encoding.

— First, the linear encoding seen earlier, produced with a stack.
— Then, a pooled encoding produced with a queue. To our

XOR_p_n(zq,...,z;) = XOR_d(xq,...,2,,_1,—y) A XOR_p_n(z,, ..., Ty, Y) knowledge, this encoding is novel.

= We also tried various cutting numbers — sizes of the
directly-encoded chunks.

11/14

How fast can CNF get? Pooled encoding

XOR Local Search for Boolean Brent Equations

How fast can CNF get? Pooled encoding S
S
g L How fast can CNF get? Pooled encoding
= To make sure solving XNF strongly outperforms CNF, we performed
heavy tuning on the CNF formula. We tried two variants of the
XOR_1_n(xq,...,x;) = XOR_d(zq,...,x,,_1,—Yy) AXOR_1_n(y, z,,, ..., },) Tseitin encoding.
— First, the linear encoding seen earlier, produced with a stack.
— Then, a pooled encoding produced with a queue. To our
XOR_p_n(zq,...,z;) = XOR_d(xq,...,2,,_1,—y) A XOR_p_n(z,, ..., Ty, Y) knowledge, this encoding is novel.
0 = We also tried various cutting numbers — sizes of the

cutting number directly-encoded chunks.

11/14

How fast can CNF get?

XOR Local Search for Boolean Brent Equations

How fast can CNF get? 9
)
S
— |_ %
1,200 [7] N How fast can CNF get?
N
1,000
) L e e = On these instances, pooled encodings are better across the board.
8 800 —o— Pooled, 7-cut CNF
—@— Pooled, 5-cut CNF)
3 Linear, &-cut CNF = Interestingly, performance initially increases with cutting number
1] —=&— Linear, 8-cut CNF
S 600 8 Pooled, 4t CNF and plateaus at 6.
e Linear, 6-cut CNF
“>-’ ——+— Pooled, 4-cut CNF w/ strategies
S 400 T Paed sew N
(] Linear, 4-cut CNF
200
0

| | | | |
0 200 400 600 800 1,000

runtime

Figure: Runtime CDF of YalSAT performance on CNF-encoded matrix
multiplication benchmarks.

12/14

Not as fast as XNF!

XOR Local Search for Boolean Brent Equations

Not as fast as XNF! ©
&
<
= L
I
1,200 a Not as fast as XNF!
N
1,000
4] T Vanual XNF . re, ving improv ver even hi un , withou
8 o Here, XNF sol oves over even highly tuned CNF, without
1~ —#— Manual XNF w/ strategies o o o o o
< 800 T E/ﬁf " having to spend any computational power on optimising the XOR
8 —4A— Pooled, 8-cut .
2 —e— Pooled, 7-cut CNF encodi ng.
e —— -
= 600 L, Seut CNE
- —e— Linear, 8-cu s : - :
o T e e = Within a 1000s timeout, our solver operating on XNF can find
_ ——4— Linear, 7-cut CNF .
S 400 Liea,6cut CNF between 200 and 700 more solutions compared to CNF-based runs
——+— Pooled, 4-cut CNF w/ strategies]) . .
—o—Lnew, 3cut ONF in various configurations.
200 Uinear, 4-cut CNF

| | | | |
0 200 400 600 800 1,000

runtime

Figure: Runtime CDF of xnfSAT performance on matrix multiplication
benchmarks with varying encodings and solver versions.

13/14

. XOR Local Search for Boolean Brent Equations
Conclusion

L Conclusion

2021-06-26

P Implemented SLS with native XOR constraints in xnfSAT.

P Observed strong performance improvements on matrix
multiplication benchmarks where SLS already outperformed
CDCL.

P Propose to experiment with native XOR more widely and to
standardise the XNF format.

P https://github.com/Vtec234/xnfSAT
P https://github.com/arminbiere/cnf2xnf

14 /14

https://github.com/Vtec234/xnfSAT
https://github.com/arminbiere/cnf2xnf
https://github.com/Vtec234/xnfSAT
https://github.com/arminbiere/cnf2xnf

