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When SLS outperforms CDCL

▶ Random k-SAT and satisfiable, hard-combinatorial problems.

(a) DDFW on Boolean Pythagorean Triples
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When SLS outperforms CDCL

• While CDCL is the dominating SAT solving paradigm, there are
problems on which Stochastic Local Search performs significantly
better.

– The largest satisfiable instance of the Boolean Pythagorean
Triples problem can be solved using DDFW [Divide and
Distribute Fixed Weights] local search in ~one CPU minute.
Other algorithms time out.

– SLS solvers perform well in the search for new matrix
multiplication schemes expressed as a SAT problem via the
Boolean Brent equations.

• Can we further improve the performance of LS on a class of
problems where it already performs best? We look at problems
involving XOR constraints, of which matrix multiplication is one
instance.
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Solving XOR in CNF form

(𝑥1 ⊕…⊕ 𝑥𝑘) ↦ ?

XOR_d(𝑥1,…, 𝑥𝑘) = ⋀
even #−

(±𝑥1 ∨… ∨±𝑥𝑘)

XOR_T_n(𝑥1,…, 𝑥𝑘) = XOR_d(𝑥1,…, 𝑥𝑛−1, −𝑦) ∧ XOR_T_n(𝑦, 𝑥𝑛,…, 𝑥𝑘)
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Solving XOR in CNF form

• To solve problems involving XOR constraints, we have to pick an
encoding into CNF.

• Most straightforwardly, we can use a direct encoding – XOR_d. But
this produces exponentially many clauses.

• The usual linear approach is Tseitin encoding. It recursively breaks
off fixed-size chunks and encodes them directly.

• But we pay for linearity. Tseitin encoding introduces auxiliary
variables (𝑦, underlined). These interact poorly with the SLS
algorithm.
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Flipping Tseitin

↓

XOR_T_2(𝑥1, 𝑥2,𝑥3, 𝑥4, 𝑥5) =

XOR_d(𝑥1, 𝑥2, 𝑦1) ∧ XOR_d(−𝑦1, 𝑥3, 𝑦2) ∧ XOR_d(−𝑦2, 𝑥4, 𝑥5) =
(𝑥1, 𝑥2, 𝑦1) ∧ (−𝑥1, −𝑥2, 𝑦1) ∧ (−𝑥1, 𝑥2, −𝑦1) ∧ (𝑥1, −𝑥2, −𝑦1)∧
(−𝑦1, 𝑥3, 𝑦2) ∧ (𝑦1, −𝑥3, 𝑦2) ∧ (𝑦1, 𝑥3, −𝑦2) ∧ (−𝑦1, −𝑥3, −𝑦2)∧
(−𝑦2, 𝑥4, 𝑥5) ∧ (𝑦2, −𝑥4, 𝑥5) ∧ (𝑦2, 𝑥4, −𝑥5) ∧ (−𝑦2, −𝑥4, −𝑥5)
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Flipping Tseitin

• At its core, SLS proceeds by flipping variables in falsified clauses
according to a probabilistic heuristic.

• Consider solving the following XOR with 5 original and 2 auxiliary
variables.

– Suppose we start with the all-true assignment. The high-level
constraint is already satisified but the solver does not “see”
this because it operates on a low-level CNF representation.

– The solver takes steps flipping variables, even going backwards
in a sense by falsifying the high-level constraint in order to
solve its CNF encoding.

– Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.
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Flipping Tseitin

• At its core, SLS proceeds by flipping variables in falsified clauses
according to a probabilistic heuristic.

• Consider solving the following XOR with 5 original and 2 auxiliary
variables.

– Suppose we start with the all-true assignment. The high-level
constraint is already satisified but the solver does not “see”
this because it operates on a low-level CNF representation.

– The solver takes steps flipping variables, even going backwards
in a sense by falsifying the high-level constraint in order to
solve its CNF encoding.

– Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.
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in a sense by falsifying the high-level constraint in order to
solve its CNF encoding.

– Generally, for a given assignment to original variables there is
precisely one assignment satisfying the auxiliary variables.
Searching for it is unnecessary work.
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XNF

• We propose to experiment with native XOR representations more
widely. In the spirit of DIMACS CNF, an XNF format could be used.

• Worth noting that we later found out XNF is already implemented
in CryptoMiniSAT.



xnfSAT: Stochastic Local Search with native XOR
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xnfSAT: Stochastic Local Search with native
XOR

• To solve XNF, we present xnfSAT, an SLS solver supporting native
XOR.

• Its performance on matrix multiplication benchmarks significantly
improves upon the best CNF-based solver, YalSAT.

• To go with xnfSAT, we implemented a tool to extract XOR gates
from CNF files.



We build on YalSAT

Algorithm YalSAT, a WalkSAT-based solver
1: for clause in input file do
2: parse and store clause to data structure
3: end for
4: preprocess formula
5: 𝛼 ← complete initial assignment of truth values
6: while there exists a clause falsified by 𝛼 do
7: 𝐶 ← pickUnsatClause()
8: 𝑥 ← pickVarIn(𝐶)
9: 𝛼 ← 𝛼 with 𝑥 flipped

10: update solver state
11: end while
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We build on YalSAT

• xnfSAT is based on YalSAT. Instructive to understand its outline.

• Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

• We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).
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We build on YalSAT

• xnfSAT is based on YalSAT. Instructive to understand its outline.

• Unsurprisingly, supporting XOR needs no modifications to the
high-level structure.

• We adapt parsing (XNF), preprocessing and variable selection
(pickVarIn).



Parsing and clause storage

▶ XOR constraints are stored as buffers of variable indices,
forgetting negations.

▶ Track the parity of each so that ⨁𝑖 𝑥𝑖 is satisfied iff
Σ𝑥𝑖 + parity ≡ 1 mod 2.

▶ For example, (𝑥1 ⊕−𝑥2) is (𝑥1 ⊕ 𝑥2, parity = 1).
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Preprocessing

▶ During preprocessing, to remove a propagating unit from an
XOR constraint we simply flip the parity.

▶ Have (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3, parity = 0)
▶ Then 𝑥1 = 1 propagates
▶ Then have (𝑥2 ⊕ 𝑥3, parity = 1)
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probSAT-like variable selection

▶ 𝑥𝑖 ← PickVarIn(𝑥1 ∨… ∨ 𝑥𝑘) with probability ∼ 1
𝑏𝑟𝑒𝑎𝑘𝑤(𝑥𝑖)

▶ Let 𝐵(𝑥𝑖) be the clauses falsified on flipping 𝑥𝑖
▶ and 𝑤 be a clause weighing function;
▶ Then 𝑏𝑟𝑒𝑎𝑘𝑤(𝑥𝑖) = Σ𝐶∈𝐵(𝑥𝑖)𝑤(𝐶)

▶ While 𝑤(𝑥1 ∨…∨ 𝑥𝑛) ∼ 𝑛, we set 𝑤(𝑥1 ⊕…⊕ 𝑥𝑚) constant.
Why?

1. Simplicity.
2. A literal 𝑥 is critical in 𝐶 if flipping 𝑥 breaks 𝐶.

▶ In (𝑥1 ∨ 𝑥2 ∨ 𝑥3), 𝑥1 critical.
▶ In (𝑥1 ∨ 𝑥2 ∨ 𝑥3), nothing critical.
▶ In a satisfied XOR, all literals are critical.

▶ For efficiency, 𝑏𝑟𝑒𝑎𝑘𝑤 tables are cached. Tracking critical
literals allows for fast updates.
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probSAT-like variable selection

• Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

• While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.
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• Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.
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▶ Then 𝑏𝑟𝑒𝑎𝑘𝑤(𝑥𝑖) = Σ𝐶∈𝐵(𝑥𝑖)𝑤(𝐶)

▶ While 𝑤(𝑥1 ∨…∨ 𝑥𝑛) ∼ 𝑛, we set 𝑤(𝑥1 ⊕…⊕ 𝑥𝑚) constant.
Why?

1. Simplicity.
2. A literal 𝑥 is critical in 𝐶 if flipping 𝑥 breaks 𝐶.

▶ In (𝑥1 ∨ 𝑥2 ∨ 𝑥3), 𝑥1 critical.
▶ In (𝑥1 ∨ 𝑥2 ∨ 𝑥3), nothing critical.
▶ In a satisfied XOR, all literals are critical.

▶ For efficiency, 𝑏𝑟𝑒𝑎𝑘𝑤 tables are cached. Tracking critical
literals allows for fast updates.20
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probSAT-like variable selection

• Clause and variable selection heuristics are the most important parts
of LS solvers. YalSAT and consequently xnfSAT use probSAT-like
selection extended with weights.

• While long OR clauses with many satisfied literals are hard to break,
XOR constraints can always be broken. Length is not a good
measure of the importance of an XOR constraint.
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How fast can CNF get? Pooled encoding

• To make sure solving XNF strongly outperforms CNF, we performed
heavy tuning on the CNF formula. We tried two variants of the
Tseitin encoding.

– First, the linear encoding seen earlier, produced with a stack.
– Then, a pooled encoding produced with a queue. To our

knowledge, this encoding is novel.

• We also tried various cutting numbers – sizes of the
directly-encoded chunks.
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How fast can CNF get?
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Figure: Runtime CDF of YalSAT performance on CNF-encoded matrix
multiplication benchmarks.
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How fast can CNF get?

• On these instances, pooled encodings are better across the board.

• Interestingly, performance initially increases with cutting number
and plateaus at 6.



Not as fast as XNF!
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benchmarks with varying encodings and solver versions.
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Not as fast as XNF!

• Here, XNF solving improves over even highly tuned CNF, without
having to spend any computational power on optimising the XOR
encoding.

• Within a 1000s timeout, our solver operating on XNF can find
between 200 and 700 more solutions compared to CNF-based runs
in various configurations.



Conclusion

▶ Implemented SLS with native XOR constraints in xnfSAT.
▶ Observed strong performance improvements on matrix

multiplication benchmarks where SLS already outperformed
CDCL.

▶ Propose to experiment with native XOR more widely and to
standardise the XNF format.

▶ https://github.com/Vtec234/xnfSAT
▶ https://github.com/arminbiere/cnf2xnf
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