## Certified DQBF Solving by Definition Extraction

Franz-Xaver Reichl Friedrich Slivovsky Stefan Szeider International Conference on Theory and Applications of Satisfiability Testing



### Contents

### Introduction

The Two-Phase Algorithm

The Improved CEGIS Algorithm

Experimental Evaluation



### Motivation

- ▶ DQBF allows succincter problem encodings than QBF or propositional logic:
  - ▶ Partial Equivalence Checking
  - ▷ Synthesis



### Motivation

- ▶ DQBF allows succincter problem encodings than QBF or propositional logic:
  - ▶ Partial Equivalence Checking
  - Synthesis
- ► Yes/No answers do not always suffice.
  - ▷ Certificates increase confidence in results.
  - Description Applications may require a witness for the truth of a DQBF.

# Dependency Quantified Boolean Formulae (DQBF)

### Example

$$\forall u_1, u_2 \exists e_1(u_1), e_2(u_2). (u_1 \vee \neg e_1) \wedge (\neg u_1 \vee e_1) \wedge (u_2 \vee e_2)$$

- ► Prenex Conjunctive Normal Form (PCNF)
- ▶ *Prefix*:  $\forall u_1, u_2 \exists e_1(u_1), e_2(u_2)$
- $\blacktriangleright$  *Matrix*:  $(u_1 \lor e_1) \land (u_2 \lor \neg e_2)$
- ▶ Model:  $f_{e_1}(u) := u$ ,  $f_{e_2}(u) := \neg u \rightsquigarrow$  the formula is true.

### Contents

Introduction

The Two-Phase Algorithm

The Improved CEGIS Algorithm

Experimental Evaluation



## Propositional Definability

### Definition (Propositional Definitions)

Let  $\varphi$  and  $\psi$  be propositional formulae and  $v \in var(\varphi)$ .  $\psi$  is a *definition* for v if for each model  $\sigma$  of  $\varphi$  we have:  $\sigma(v) = \psi[\sigma]$ 

## Propositional Definability

### Definition (Propositional Definitions)

Let  $\varphi$  and  $\psi$  be propositional formulae and  $v \in var(\varphi)$ .  $\psi$  is a definition for v if for each model  $\sigma$  of  $\varphi$  we have:  $\sigma(v) = \psi[\sigma]$ 

### Example

Consider the formula  $(u \vee \neg e) \wedge (\neg u \vee e)$ . The variable e is defined by the formula u.



## Propositional Definability

### Definition (Propositional Definitions)

Let  $\varphi$  and  $\psi$  be propositional formulae and  $v \in var(\varphi)$ .  $\psi$  is a definition for v if for each model  $\sigma$  of  $\varphi$  we have:  $\sigma(v) = \psi[\sigma]$ 

### Example

Consider the formula  $(u \vee \neg e) \wedge (\neg u \vee e)$ . The variable e is defined by the formula u.

#### Lemma

Definitions can be computed by means of interpolants.



- $lackbox{\Phi} := \forall U \exists e_1(D_1), \dots, e_m(D_m). \ \varphi \ \text{where each } e_i \ \text{has a definition } \psi_i \ \text{by } D_i.$
- ▶  $\neg \varphi \land \bigwedge_i (e_i \Leftrightarrow \psi_i)$  satisfiable iff Φ is false

## Example

- $ightharpoonup \forall u \,\exists e(u). \, (u \vee \neg e) \wedge (\neg u \vee e)$
- Definition for e: u
- $ightharpoonup \neg ((u \lor \neg e) \land (\neg u \lor e)) \land (e \Leftrightarrow u)$  is unsatisfiable.

lacktriangle An existential variable e may not be uniquely defined by an assignment  $\sigma$  to its dependencies.

- An existential variable e may not be uniquely defined by an assignment  $\sigma$  to its dependencies.
- $\blacktriangleright$  For each such e and  $\sigma$  introduce an arbiter variable a and arbiter clauses:

$$\triangleright a \lor \neg \sigma \lor \neg e$$

$$\triangleright \neg a \lor \neg \sigma \lor e$$

- An existential variable e may not be uniquely defined by an assignment  $\sigma$  to its dependencies.
- ▶ For each such e and  $\sigma$  introduce an arbiter variable e and arbiter clauses:

$$\triangleright a \lor \neg \sigma \lor \neg e$$

$$\triangleright \neg a \lor \neg \sigma \lor e$$

▶ Given an assignment for a, e is uniquely determined by  $\sigma$ .



## The Two-Phase Algorithm

```
1: procedure SolveByDefinitionExtraction(Φ)
          \triangleright \Phi = \forall u_1, \ldots, u_n \exists e_1(D_1), \ldots, e_m(D_m). \varphi
 3:
         A \leftarrow \emptyset, \varphi_{A} \leftarrow \emptyset
 4.
          for i = 1, \ldots, m do
                while e; is undefined do
 5:
                     ADDARBITER (\Phi, \varphi_A, A)
 6:
           Def \leftarrow COMPUTEDEFINITIONS(\varphi, \varphi_A)
 7:
           usedAssignments \leftarrow \emptyset, \tau \leftarrow \bigwedge_{\alpha \in A} a
 8:
 9:
          loop
10:
                if \neg \varphi \land Def \land \tau is unsatisfiable then
11:
                     return TRUE
                \sigma \leftarrow \text{GETMODEL}(\neg \varphi \land Def \land \tau)
12:
                INSERT (usedAssignments, \neg GETCORE(\varphi \land \varphi_{A}, \sigma)|_{A})
13.
                if usedAssignments is satisfiable then
14:
                     \tau \leftarrow \text{GETMODEL}(\textit{usedAssignments})
15:
                else
16:
17:
                     return FALSE
```



### Correctness

#### Lemma

Let  $\Phi$  be a DQBF.  $\Phi$  is true if, and only if, for each  $e \in E$  there is a formula  $\psi_e$  with  $var(\psi_e) \subseteq D(e)$  such that  $\neg \varphi \land \bigwedge_{e \in E} (e \leftrightarrow \psi_e)$  is unsatisfiable.

- ▶ If the algorithm returns true  $\neg \varphi \land \bigwedge_{e \in F} (e \leftrightarrow \psi_e[\tau])$  is unsatisfiable.
- ▶ For an existential variable e we can extract a model function from  $\psi_e[\tau]$ .

## Completeness

#### ∀Exp+Res

- ► Propositional resolution
- Instantiation

$$\{\ell^{\sigma|_{D(\mathsf{var}(\ell))}} \mid \ell \in C, \mathsf{var}(\ell) \in E\}$$

- ullet  $\sigma$  total assignment for U
- $\sigma$  falsifies each universal literal in C

## Completeness

#### **∀Exp+Res**

- ► Propositional resolution
- ► Instantiation

$$\{\ell^{\sigma|_{D(\mathsf{var}(\ell))}} \mid \ell \in C, \mathsf{var}(\ell) \in E\}$$

- $\bullet$   $\sigma$  total assignment for U
- $\sigma$  falsifies each universal literal in C
- $\blacktriangleright$  An arbiter variable a, introduced for  $\sigma$  and e can be associated to  $e^{\sigma}$ .
- ▶ If an arbiter assignment  $\tau$  fails a subset of associated literals to  $\neg \tau$  can be derived.
- ▶ If the algorithm returns false then there is a  $\forall Exp+Res proof$ .



### Contents

Introduction

The Two-Phase Algorithm

The Improved CEGIS Algorithm

Experimental Evaluation



### Motivation

- ► Running time of the Two-Phase Algorithm is mainly determined by the number of assignments where an existential variable is not uniquely determined.
- ► Even for simple formulae the algorithm can get stuck.



### Motivation

- ► Running time of the Two-Phase Algorithm is mainly determined by the number of assignments where an existential variable is not uniquely determined.
- ► Even for simple formulae the algorithm can get stuck.

$$\forall u_1,\ldots,u_n \exists e(u_1,\ldots,u_n).\ u_1 \vee \ldots \vee u_n \vee \neg e$$

 $\triangleright$  2<sup>n</sup> - 1 arbiter variables need to be introduced.



## Idea of the Algorithm

- ▶ Based on Counter-Example Guided Inductive Synthesis (CEGIS)
- lteratively build a model.
- Find conflicts in matrix with respect to the current model.
- ▶ Use conflicts to refine the model.

## The CEGIS-Algorithm

```
1: procedure SolveByDefinitionExtractionCEGIS(Φ)
           \triangleright \Phi = \forall u_1, \ldots, u_n \exists e_1(D_1), \ldots, e_m(D_m). \varphi
           A \leftarrow \emptyset, \varphi_A \leftarrow \emptyset, \tau \leftarrow \emptyset
            usedAssignments \leftarrow \emptyset
 4.
           loop
 5:
                  Def \leftarrow FINDDEFINITIONS(\varphi, \varphi_A)
 6:
 7:
                 valid, \sigma_{\forall}, \sigma_{\exists} \leftarrow \text{CHECKARBITERASSIGNMENT}(\varphi, Def, \varphi_A, \tau)
 8.
                 if valid then
 9:
                       return TRUE
                  ADDARBITERS(A, \varphi_A, \sigma_{\forall}, \sigma_{\exists}, \tau)
10:
                 \hat{\tau} \leftarrow \text{GETCORE}(\varphi \wedge \varphi_A, \sigma_{\forall} \wedge \sigma_{\exists} \wedge \tau)|_{\Delta}
11.
                  INSERT(usedAssignments, \neg \hat{\tau})
12:
                  if usedAssignments is satisfiable then
13.
                       \tau \leftarrow \text{GETMODEL}(usedAssignments)
14:
                 else
15:
16:
                       return FALSE
```



### Contents

Introduction

The Two-Phase Algorithm

The Improved CEGIS Algorithm

Experimental Evaluation



## Experimental Setup

#### ► Pedant

- ▷ Implementation of an improved version of the CEGIS Algorithm
- ▷ Available at: https://github.com/perebor/pedant-solver

## Experimental Setup

#### ▶ Pedant

- ▶ Implementation of an improved version of the CEGIS Algorithm
- ▷ Available at: https://github.com/perebor/pedant-solver

#### ▶ Benchmarks

- ▷ Eval20: http://www.qbflib.org/QBFEVAL\_20\_DATASET.zip



## Experimental Setup

#### ▶ Pedant

- ▶ Implementation of an improved version of the CEGIS Algorithm
- ▷ Available at: https://github.com/perebor/pedant-solver

#### ▶ Benchmarks

- ▷ Eval20: http://www.qbflib.org/QBFEVAL\_20\_DATASET.zip

### ► Test Configuration

- ▶ Memory limit of 8 GB



# Experiments – Overview





# Experiments - Compound





# Experiments – Eval20





### Conclusions

#### Summary

- ▶ We presented two decision procedures for DQBF based on definition extraction.
- ▶ We proved their correctness and completeness.
- ▶ We implemented and evaluated the CEGIS based algorithm.
- ▶ We showed that our solver performs very well compared to state of the art solvers.

#### Conclusions

#### Summary

- ▶ We presented two decision procedures for DQBF based on definition extraction.
- ▶ We proved their correctness and completeness.
- ▶ We implemented and evaluated the CEGIS based algorithm.
- ▶ We showed that our solver performs very well compared to state of the art solvers.

#### Outlook

- ▷ Arbiter variables for partial assignments.
- Certificates for false results.