Certified DQBF Solving by Definition Extraction

Franz-Xaver Reichl Friedrich Slivovsky ~ Stefan Szeider

International Conference on Theory and Applications of Satisfiability Testing

ac I I I 1 ALGORITHMS AND
COMPLEXITY GROUP

Contents

Introduction

mn aclll'

Motivation

» DQBF allows succincter problem encodings than QBF or propositional logic:

> Partial Equivalence Checking
> Synthesis

mn aclll'

Motivation

» DQBF allows succincter problem encodings than QBF or propositional logic:

> Partial Equivalence Checking
> Synthesis

» Yes/No answers do not always suffice.

> Certificates increase confidence in results.
> Applications may require a witness for the truth of a DQBF.

mn aclll'

Dependency Quantified Boolean Formulae (DQBF)

Yuy, up Elel(ul), e2(u2). (U]_ V —|e1) A (—|u1 V e1) A (U2 \ 6‘2)

» Prenex Conjunctive Normal Form (PCNF)
» Prefix: Yuy, up Jer(ur), ea(u2)
» Matrix: (u1Ver)A(u2V —e)

» Model: f,(u) := u, fe,(u) := —u ~> the formula is true.

mn aclll'

Contents

The Two-Phase Algorithm

mn aclll'

Propositional Definability

Definition (Propositional Definitions)

Let ¢ and ¢ be propositional formulae and v € var(y). v is a definition for v if for
each model o of ¢ we have: o(v) = ¢[o]

mn aclll'

Propositional Definability

Definition (Propositional Definitions)

Let ¢ and ¢ be propositional formulae and v € var(y). v is a definition for v if for
each model o of ¢ we have: o(v) = ¢[o]

Consider the formula (uV —e) A (—u V e). The variable e is defined by the formula u.

mn aclll'

Propositional Definability

Definition (Propositional Definitions)

Let ¢ and ¢ be propositional formulae and v € var(y). v is a definition for v if for
each model o of ¢ we have: o(v) = ¢[o]

Example

Consider the formula (uV —e) A (—u V e). The variable e is defined by the formula u.

Lemma

Definitions can be computed by means of interpolants.

mn aclll'

Using Definitions to Decide DQBF

» & :=VYU3e(D1),...,em(Dm). ¢ where each e; has a definition v; by D;.
> —p A N\;(ei & ;) satisfiable iff ® is false

» YuJe(u). (uV —e)A(-uVe)
» Definition for e: u
» —((uV—e)A(-uVe))A (e < u)is unsatisfiable.

mn aclll'

Using Definitions to Decide DQBF

> An existential variable e may not be uniquely defined by an assignment o to its
dependencies.

I ac

Using Definitions to Decide DQBF

> An existential variable e may not be uniquely defined by an assignment o to its
dependencies.
» For each such e and o introduce an arbiter variable a and arbiter clauses:

> aV-oV e
> —aV-oVe

I ac

Using Definitions to Decide DQBF

> An existential variable e may not be uniquely defined by an assignment o to its
dependencies.

» For each such e and o introduce an arbiter variable a and arbiter clauses:
> aV oV e
> —aV-oVe

» Given an assignment for a, e is uniquely determined by o.

mn aclll'

The Two-Phase Algorithm

1: procedure SOLVEBYDEFINITIONEXTRACTION(®)
2 >d>:Vul,...,u,,EIel(Dl),,..,em(Dm).gp

3 A—D,oa+ 0

4 fori=1,...,mdo

5: while ¢; is undefined do

6: ADDARBITER(®, 04, A)

7 Def < COMPUTEDEFINITIONS(¢, ©4)

8 usedAssignments < 0,7 < \,ca 2

9: loop
10: if = A Def A T is unsatisfiable then
11: return TRUE
12: 0 <+ GETMODEL(—¢ A Def A T)
13: INSERT (usedAssignments, =~GETCORE(p A @4, 0)|4)
14: if usedAssignments is satisfiable then
15: T < GETMODEL(usedAssignments)
16: else
17: return FALSE

mn aclll'

Correctness

Lemma

Let ® be a DQBF. ® is true if, and only if, for each e € E there is a formula v with
var(ve) € D(e) such that —p A N\ cp(e < ve) is unsatisfiable.

> If the algorithm returns true —p A A cg(e <> e[7]) is unsatisfiable.
» For an existential variable e we can extract a model function from)¢[7].

I ac

Completeness

VExp+Res

» Propositional resolution

» Instantiation

{EU‘D(var(t’)) | ¢ € C,var(¢) € E}

e ¢ total assignment for U

e o falsifies each universal literal in C

mn aclll'

Completeness

VExp+Res

» Propositional resolution

» Instantiation

{EU‘D(var(t’)) | ¢ € C,var(¢) € E}

e ¢ total assignment for U

e o falsifies each universal literal in C

» An arbiter variable a, introduced for o and e can be associated to e°.

» If an arbiter assignment 7 fails a subset of associated literals to =7 can be derived.

» If the algorithm returns false then there is a VExp+Res proof.

mn aclll'

Contents

The Improved CEGIS Algorithm

i ac

Motivation

» Running time of the Two-Phase Algorithm is mainly determined by the number of
assignments where an existential variable is not uniquely determined.

» Even for simple formulae the algorithm can get stuck.

I ac

Motivation

» Running time of the Two-Phase Algorithm is mainly determined by the number of

assignments where an existential variable is not uniquely determined.

» Even for simple formulae the algorithm can get stuck.
Yui,...,up3e(ur, ..., up). 1 V...V u, Ve

» 27 — 1 arbiter variables need to be introduced.

mn aclll'

|dea of the Algorithm

» Based on Counter-Example Guided Inductive Synthesis (CEGIS)
P |teratively build a model.
» Find conflicts in matrix with respect to the current model.

» Use conflicts to refine the model.

I ac

The CEGIS-Algorithm

1: procedure SOLVEBYDEFINITIONEXTRACTIONCEGIS(®)

2: > =Vu,...,up3e1(D1),...,em(Dm). ¢

3 Ac—Qoa< 0,7+ 0

4: usedAssignments <+ ()

5: loop

6 Def < FINDDEFINITIONS(¢, pA)

7 valid, oy, 03 + CHECKARBITERASSIGNMENT(p, Def , 0a, T)
8
9

if valid then

: return TRUE
10: ADDARBITERS(A, pa, 0y, 03,T)
11: 7 <= GETCORE(p A pa, 09y A o3 AT)|,
12: INSERT(usedAssignments, —7)
13 if usedAssignments is satisfiable then
14: T < GETMODEL(usedAssignments)
15: else
16: return FALSE

mn aclll'

Contents

Experimental Evaluation

i ac

Experimental Setup

» Pedant

> Implementation of an improved version of the CEGIS Algorithm
> Implemented in C++
> Available at: https://github.com/perebor/pedant-solver

mn aclll'

https://github.com/perebor/pedant-solver
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/DQBFBenchmarks.zip
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/DQBFBenchmarks.zip
http://www.qbflib.org/QBFEVAL_20_DATASET.zip

Experimental Setup

» Pedant
> Implementation of an improved version of the CEGIS Algorithm
> Implemented in C++
> Available at: https://github.com/perebor/pedant-solver
» Benchmarks
> Compound: http://abs.informatik.uni-freiburg.de/src/projectfiles/
21/DQBFBenchmarks.zip
> Eval20: http://www.qbflib.org/QBFEVAL_20_DATASET.zip

mn aclll'

https://github.com/perebor/pedant-solver
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/DQBFBenchmarks.zip
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/DQBFBenchmarks.zip
http://www.qbflib.org/QBFEVAL_20_DATASET.zip

Experimental Setup

» Pedant
> Implementation of an improved version of the CEGIS Algorithm
> Implemented in C++
> Available at: https://github.com/perebor/pedant-solver
» Benchmarks

> Compound: http://abs.informatik.uni-freiburg.de/src/projectfiles/
21/DQBFBenchmarks.zip
> Eval20: http://www.qbflib.org/QBFEVAL_20_DATASET.zip

» Test Configuration

> Timeout of 30 minutes
> Memory limit of 8 GB

mn aclll'

https://github.com/perebor/pedant-solver
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/DQBFBenchmarks.zip
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/DQBFBenchmarks.zip
http://www.qbflib.org/QBFEVAL_20_DATASET.zip

Experiments — Overview

Compound Eval20
4000 -
200~
3000 -
B
=
S 2000-
** 100 -
- I
0 ..

dCAQE DQéDD Pedant dCAQE DQéDD H(I)S iDIQ Petiant

Solver

u aclll'

Experiments — Compound

Balabanov Bloem Scholl
20~ k-
750 -
15-
B 500~
2
S 10-
3+
250~
5-
0-
| '
dCAQE DQBDD HO: Pedant dCAQE DQBDD HOS D Pedant GCAQE DQBDD HO: Pedant
Solver

u aclll'

Experiments — Eval20

Kullmann Tentrup

dCAQE DQBDD Pedant dCAQE DQBDD Pedant
Solver

u acllll

Conclusions

» Summary
> We presented two decision procedures for DQBF based on definition extraction.
> We proved their correctness and completeness.
> We implemented and evaluated the CEGIS based algorithm.
> We showed that our solver performs very well compared to state of the art solvers.

mn aclll'

Conclusions

» Summary

> We presented two decision procedures for DQBF based on definition extraction.

> We proved their correctness and completeness.

> We implemented and evaluated the CEGIS based algorithm.

> We showed that our solver performs very well compared to state of the art solvers.
» Outlook

> Arbiter variables for partial assignments.
> Certificates for false results.

mn aclll'

	Introduction
	The Two-Phase Algorithm
	The Improved CEGIS Algorithm
	Experimental Evaluation

