Hardness and Optimality in QBF Proof Systems Modulo NP

Leroy Chew

24th International Conference on Theory and Applications of Satisfiability Testing July 7, 2021

• We consider QBFs in prenex form with CNF matrix.

• We consider QBFs in prenex form with CNF matrix.

• Example: $\forall y_1y_2 \exists x_1x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$

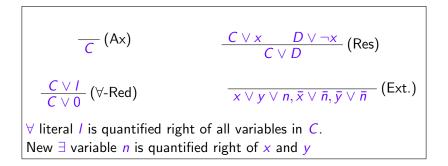
- We consider QBFs in prenex form with CNF matrix.
- Example: $\forall y_1y_2 \exists x_1x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between \exists and \forall .

- We consider QBFs in prenex form with CNF matrix.
- Example: $\forall y_1y_2 \exists x_1x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between \exists and \forall .
- \forall wins a game if the matrix becomes false.

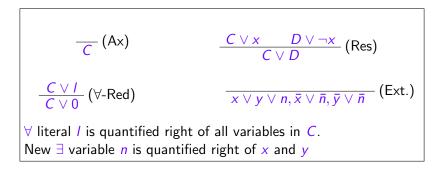
- We consider QBFs in prenex form with CNF matrix.
- Example: $\forall y_1y_2 \exists x_1x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between \exists and \forall .
- \forall wins a game if the matrix becomes false.
- A QBF is false iff there exists a winning strategy for \forall .

- We consider QBFs in prenex form with CNF matrix.
- Example: $\forall y_1y_2 \exists x_1x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between \exists and \forall .
- \forall wins a game if the matrix becomes false.
- A QBF is false iff there exists a winning strategy for \forall .
- Strategy Extraction (from a refutation) allows one to extract, in polynomial-time, circuits {σ₁...σ_n} that represent the winning strategy for ∀ variables {y₁,...,y_n}

Extended QU-Resolution



Extended QU-Resolution



First Result: Equivalent to Extended Frege+∀-Red

 An NP oracle in a QBF proof system allows use to make any propositional inference in a single step [Beyersdorff, Hinde, Pich 17].

- An NP oracle in a QBF proof system allows use to make any propositional inference in a single step [Beyersdorff, Hinde, Pich 17].
- From clauses $C_1, C_2 \dots C_k$ we can immediately infer clause D whenever $C_1, C_2 \dots C_k \models D$.

- An NP oracle in a QBF proof system allows use to make any propositional inference in a single step [Beyersdorff, Hinde, Pich 17].
- From clauses $C_1, C_2 \dots C_k$ we can immediately infer clause D whenever $C_1, C_2 \dots C_k \models D$.
- No more propositional lower bounds like Pigeonhole Principle.

- An NP oracle in a QBF proof system allows use to make any propositional inference in a single step [Beyersdorff, Hinde, Pich 17].
- From clauses $C_1, C_2 \dots C_k$ we can immediately infer clause D whenever $C_1, C_2 \dots C_k \models D$.
- No more propositional lower bounds like Pigeonhole Principle.
- Analogous with the fact that SAT black boxes are used in QBF solvers.

- An NP oracle in a QBF proof system allows use to make any propositional inference in a single step [Beyersdorff, Hinde, Pich 17].
- From clauses $C_1, C_2 \dots C_k$ we can immediately infer clause D whenever $C_1, C_2 \dots C_k \models D$.
- No more propositional lower bounds like Pigeonhole Principle.
- Analogous with the fact that SAT black boxes are used in QBF solvers.
- Technically, we are no longer working in the Cook-Reckhow definition of a proof system (unless P = NP)

Not as advanced as SAT solvers

- Not as advanced as SAT solvers
- QBF proof systems underly the traces of the solvers.

- Not as advanced as SAT solvers
- QBF proof systems underly the traces of the solvers.
- No universal certification in practice

- Not as advanced as SAT solvers
- QBF proof systems underly the traces of the solvers.
- No universal certification in practice
- QRAT [Heule et. al 14] is proposed as a universal checking format.

- Not as advanced as SAT solvers
- QBF proof systems underly the traces of the solvers.
- No universal certification in practice
- QRAT [Heule et. al 14] is proposed as a universal checking format.

Two important things!

- Not as advanced as SAT solvers
- QBF proof systems underly the traces of the solvers.
- No universal certification in practice
- QRAT [Heule et. al 14] is proposed as a universal checking format.
- Two important things!
 - QBF solvers frequently use SAT solvers as black boxes.

- Not as advanced as SAT solvers
- QBF proof systems underly the traces of the solvers.
- No universal certification in practice
- QRAT [Heule et. al 14] is proposed as a universal checking format.
- Two important things!
 - QBF solvers frequently use SAT solvers as black boxes.
 - You might not only want to know the truth value of QBF but the strategy (e.g. chess).

Towards Certification in QBF

How can we get unified certification in QBF solving?

Towards Certification in QBF

How can we get unified certification in QBF solving? **Goal:** More rigorous and reliable QBF practical solving.

Ext QU-Resolution likely simulates

Ext QU-Resolution likely simulates

■ ∀Exp+Res

Ext QU-Resolution likely simulates

- ∀Exp+Res
- IR-calc

Ext QU-Resolution likely simulates

- ∀Exp+Res
- IR-calc
- LD-Q-Res

Ext QU-Resolution likely simulates

- ∀Exp+Res
- IR-calc
- LD-Q-Res
- IRM-calc

Ext QU-Resolution likely simulates

- ∀Exp+Res
- IR-calc
- LD-Q-Res
- IRM-calc
- Q(D^{rrs})-Res

Ext QU-Resolution likely simulates

- ∀Exp+Res
- IR-calc
- LD-Q-Res
- IRM-calc
- Q(D^{rrs})-Res

How would this help?

Ext QU-Resolution likely simulates

- ∀Exp+Res
- IR-calc
- LD-Q-Res
- IRM-calc
- Q(D^{rrs})-Res

How would this help?

Move towards a unified checking format which captures all QBF techniques

Extended QU-Res Normal Form

Split proof into two parts: 1st part: Purely Propositional Part

2nd part: Dual \forall -Red

Split proof into two parts: 1st part: Purely Propositional Part Ext QU-Res refutation π of $\Pi \phi$

2nd part: Dual \forall -Red

Extended QU-Res Normal Form

Split proof into two parts: 1st part: Purely Propositional Part Ext QU-Res refutation π of $\Pi \phi$ strategy extraction σ_{y_i}

2nd part: Dual \forall -Red

Extended QU-Res Normal Form

Split proof into two parts: 1st part: Purely Propositional Part Ext QU-Res refutation π of $\Pi \phi$ sound \downarrow $\phi \models \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red

```
Split proof into two parts:

1st part: Purely Propositional Part

Ext QU-Res refutation \pi of \Pi \phi

informs \downarrow strategy extraction

\phi \vdash_{\text{Ext Res}} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})
```

2nd part: Dual \forall -Red

Split proof into two parts:

```
1st part: Purely Propositional Part

Ext QU-Res refutation \pi of \Pi \phi

informs \downarrow strategy extraction

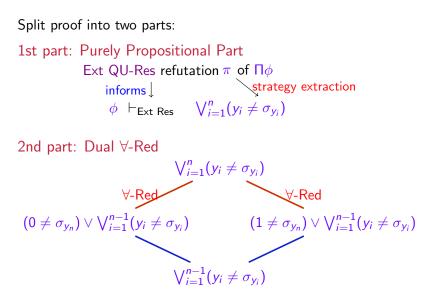
\phi \vdash_{\text{Ext Res}} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})
```

2nd part: Dual \forall -Red

 $\bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

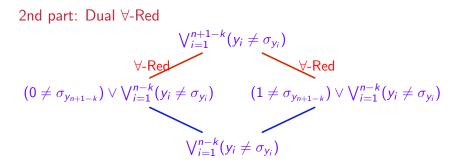
Split proof into two parts: 1st part: Purely Propositional Part Ext QU-Res refutation π of $\Pi \phi$ strategy extraction informs $\phi \vdash_{\mathsf{Fxt, Res}} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ 2nd part: Dual ∀-Red $\bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ ∀-Red ∛-Red

 $(0 \neq \sigma_{y_n}) \vee \bigvee_{i=1}^{n-1} (y_i \neq \sigma_{y_i})$ $(1 \neq \sigma_{y_n}) \vee \bigvee_{i=1}^{n-1} (y_i \neq \sigma_{y_i})$



Split proof into two parts:

1st part: Purely Propositional Part Ext QU-Res refutation π of $\Pi \phi$ informs \downarrow strategy extraction $\phi \vdash_{\text{Ext Res}} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$



Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part

2nd part: Dual \forall -Red

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part S refutation π of $\Pi \phi$

2nd part: Dual \forall -Red

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

```
1st part: Purely Propositional Part
S refutation \pi of \Pi \phi
strategy extraction
\sigma_{y_i}
```

2nd part: Dual ∀-Red

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part S refutation π of $\Pi \phi$ sound \downarrow $\phi \models \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part S refutation π of $\Pi \phi$ rephrase \downarrow strategy extraction $\phi \vdash_{Strat(S)} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits Ext QU-Res simulates S as long as Ext Res simulates Strat(S)1st part: Purely Propositional Part S refutation π of $\Pi \phi$ rephrase \downarrow strategy extraction $\phi \vdash_{Strat}(S) \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ simulation \downarrow $\phi \vdash_{Ext Res} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits Ext QU-Res simulates S as long as Ext Res simulates Strat(S)1st part: Purely Propositional Part S refutation π of $\Pi \phi$ rephrase \downarrow strategy extraction $\phi \vdash_{Strat}(S) \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ simulation \downarrow $\phi \vdash_{Ext Res} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red

Suppose *S* is a QBF refutation system and has polynomial time strategy extraction in circuits Ext QU-Res simulates *S* as long as Ext Res simulates *Strat*(*S*) 1st part: Purely Propositional Part S refutation π of $\Pi \phi$ rephrase \downarrow strategy extraction $\phi \vdash_{Strat}(S) \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ simulation \downarrow $\phi \vdash_{Ext Res} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red The same derivation.

In Merge Resolution each line (L_j) is a pair (C_j, {M_j^{Yi} | 1 ≤ i ≤ n}).

- In Merge Resolution each line (L_j) is a pair (C_j, {M_j^{Y_i} | 1 ≤ i ≤ n}).
- *C_j* is the clause, and *M^u_j* are "merge maps" that represent local strategies.

In Merge Resolution each line (L_j) is a pair $(C_j, \{M_j^{Y_i} \mid 1 \le i \le n\}).$

 C_j is the clause, and M^u_j are "merge maps" that represent local strategies.

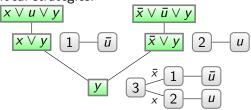
$$x \lor u \lor y$$

$$\bar{x} \lor \bar{u} \lor y$$

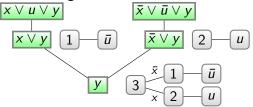
- In Merge Resolution each line (L_j) is a pair (C_j, {M_j^{y_i} | 1 ≤ i ≤ n}).
- C_j is the clause, and M^u_j are "merge maps" that represent local strategies.

$$\begin{array}{c|c} x \lor u \lor y \\ \hline x \lor y \\ \hline x \lor y \\ \hline 1 \\ \hline \overline{u} \\ \hline \overline{x} \lor y \\ \hline \overline{x} \lor y \\ \hline 2 \\ \hline u \\ \hline \end{array}$$

- In Merge Resolution each line (L_j) is a pair $(C_j, \{M_j^{y_i} \mid 1 \le i \le n\}).$
- *C_j* is the clause, and *M^u_j* are "merge maps" that represent local strategies.

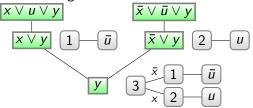


- In Merge Resolution each line (L_j) is a pair $(C_j, \{M_j^{y_i} \mid 1 \le i \le n\}).$
- C_j is the clause, and M^u_j are "merge maps" that represent local strategies.



• Rephrase this as propositional logic $\bigwedge_{i=1}^{n} (y_i = M_j^{y_i}) \to C_j$.

- In Merge Resolution each line (L_j) is a pair (C_j, {M_j^{y_i} | 1 ≤ i ≤ n}).
- C_j is the clause, and M^u_j are "merge maps" that represent local strategies.



• Rephrase this as propositional logic $\bigwedge_{i=1}^{n} (y_i = M_j^{y_i}) \to C_j$.

- Easy to simulate Strat(M-Res) with Ext. Res,
 - Ext. variables represent nodes in the merge maps
 - Merge cases argued propositionally

Simulating Merge Resolution

1st part: Purely Propositional Part M-Res refutation π of $\Pi \phi$ rephrase \downarrow strategy extraction $\phi \vdash_{Strat(M-Res)} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ simulation \downarrow $\phi \vdash_{Ext Res} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red The same derivation.

Simulating Merge Resolution

1st part: Purely Propositional Part M-Res refutation π of $\Pi \phi$ rephrase \downarrow strategy extraction $\phi \vdash_{Strat(M-Res)} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$ simulation \downarrow $\phi \vdash_{Ext Res} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

2nd part: Dual \forall -Red

The same derivation.

What if Ext Res doesn't simulate Strat(S)? Then Ext Res+ $\|refl(Strat(S))\|$ simulates Strat(S).

Main Theorems

Theorem

For QBF Proof System S that has strategy extraction, Ext QU-Res $+ \|refl(Strat(S))\|$ simulates S.

Definition (Messner, Toran 98)

A proof system in language \mathcal{L} is optimal if and only if it can simulate all other proof systems for \mathcal{L} .

Theorem

Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Theorem *Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.*

Theorem

Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Proof.

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

Theorem

Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Proof.

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part

Theorem

Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Proof.

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part

S refutation π of $\Pi \phi$

Theorem

Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Proof.

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

```
1st part: Purely Propositional Part
S refutation \pi of \Pi \phi
strategy extraction
\sigma_{y_i}
```

Theorem

Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Proof.

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

1st part: Purely Propositional Part

S refutation π of $\Pi \phi$ truth \downarrow strategy extraction $\phi \vdash_{\text{NP oracle}} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})$

Theorem Ext QU-Res, when augmented with an NP oracle is optimal among all QBF proof systems with strategy extraction.

Proof.

Suppose S is a QBF refutation system and has polynomial time strategy extraction in circuits

```
1st part: Purely Propositional Part

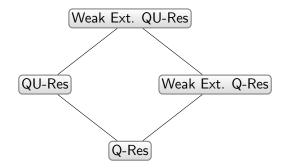
S refutation \pi of \Pi \phi

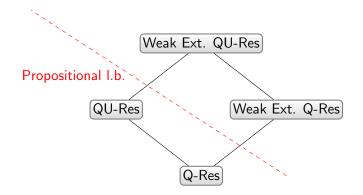
truth \downarrow strategy extraction

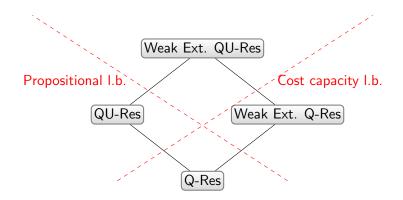
\phi \vdash_{\text{NP oracle}} \bigvee_{i=1}^{n} (y_i \neq \sigma_{y_i})
```

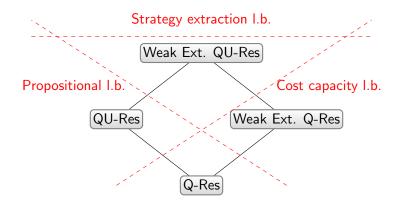
2nd part: Dual \forall -Red

Remove each disjunct inductively, as before



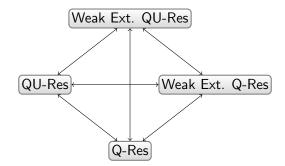






Collapse under NP Oracles

It can be shown that Q-Res can simulate a weak extended QU-Res proof



Simulation

We leave in the reduction steps but mimic all in-between inferences with NP oracles since the inference is just propositional.

• Ext. QU-Resolution is equivalent to Ext. Frege+ \forall -Red,

- **•** Ext. QU-Resolution is equivalent to Ext. Frege+ \forall -Red,
- Ext. QU-Res likely simulates your favourite strategy extraction QBF proof systems

Summary

- Ext. QU-Resolution is equivalent to Ext. Frege+ \forall -Red,
- Ext. QU-Res likely simulates your favourite strategy extraction QBF proof systems
- Ext. QU-Res + a schema of propositional tautologies can simulate any strategy extraction proof system

Summary

- Ext. QU-Resolution is equivalent to Ext. Frege+ \forall -Red,
- Ext. QU-Res likely simulates your favourite strategy extraction QBF proof systems
- Ext. QU-Res + a schema of propositional tautologies can simulate any strategy extraction proof system
- Ext. QU-Res + NP oracle is optimal among all strategy extraction proof system.

Summary

- Ext. QU-Resolution is equivalent to Ext. Frege+ \forall -Red,
- Ext. QU-Res likely simulates your favourite strategy extraction QBF proof systems
- Ext. QU-Res + a schema of propositional tautologies can simulate any strategy extraction proof system
- Ext. QU-Res + NP oracle is optimal among all strategy extraction proof system.
- W Ext QU-Res, W Ext Q-Res, QU-Res, Q-Res all are separated, but collapse with an NP oracle.