
Efficient All-UIP Learned Clause Minimization

http://fmv.jku.at/sat_shrinking

Mathias Fleury and Armin Biere

SAT 2021

http://fmv.jku.at/sat_shrinking

Introduction

Introduction

• SAT solvers analyze conflicts to derive the deduced clause C ...

• ... that can be shortened by the standard minimization algorithm C ′ ⊆ C

• ... or even more |C ′′| ≤ |C | (all-UIP technique)

1/18

SAT Competition 2020

[F&B’20] and [Hickey et al. SAT Comp’20] won the planning track.

0 1000 2000 3000 4000 5000

0
20

40
60

80

●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
● ●●●

●●
●●
●●●

●●
●●●

●●
●●●

●●
● ●●

●●
● ●● ●● ●● ●●

●● ● ● ● ● ● ●

● cadical−1.2.1−minalluip
cadical−1.2.1

Cactus plot of CaDiCaL on the planning track

Don’t worsen the LBD score!
2/18

SAT Competition 2020

[F&B’20] and [Hickey et al. SAT Comp’20] won the planning track.

0 1000 2000 3000 4000 5000

0
20

40
60

80

●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
● ●●●

●●
●●
●●●

●●
●●●

●●
●●●

●●
● ●●

●●
● ●● ●● ●● ●●

●● ● ● ● ● ● ●

● cadical−1.2.1−minalluip
cadical−1.2.1

Cactus plot of CaDiCaL on the planning track

Don’t worsen the LBD score!
2/18

Introduction

• SAT solvers analyze conflicts to derive the deduced clause C ...

• ... that can be shortened by the standard minimization algorithm C ′ ⊆ C

Contribution: completeness of the algorithm, earlier breaking conditions

• ... or even more |C ′′| ≤ |C | (all-UIP technique)

Contribution: simpler unconditional implementation, use 1-UIP

3/18

Minimization

Implication graph

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Deduced clause: ¬A5 ∨ ¬A6∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7 ∨ ¬A8

4/18

Standard Minimization Algorithm

Algorithm [Sörensson&Biere, SAT’09]: for any literal

1. replace the literals by all the incoming arrows, recursively

2. if final clause is shorter: literal is redundant

Shorten as much as possible.

5/18

Minimization Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Deduced clause:

¬A5 ∨¬A6 ∨¬B6 ∨¬C6 ∨¬B7 ∨¬C7 ∨¬A8

6/18

Minimization Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Deduced clause:

¬A5∨¬A6∨¬��B6 ∨¬C6∨¬B7∨¬C7∨¬A8

6/18

Minimization Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Deduced clause:

¬A5∨¬A6∨¬��B6 ∨¬��C6 ∨¬B7∨¬C7∨¬A8

6/18

Definition

M = trail = nodes in graph

N = reasons = edges in graph

C = conflict = brown literals

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Definition (Trail redundancy)

Given ¬L ∈ M, M � ¬C , N the set of all reasons in the trail

L is trail redundant iff N ∪ ¬C \ {L} � ¬L.

Theorem (Completeness)

All trail redundant literals of C can be removed

7/18

 * N is consistent
 * other SAT solvers consider minimization with binary clauses
 * subsumption resolution to conclude
 * independant of removal order * does not cover binary minimization by glucose

Definition

M = trail = nodes in graph

N = reasons = edges in graph

C = conflict = brown literals

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Definition (Trail redundancy)

Given ¬L ∈ M, M � ¬C , N the set of all reasons in the trail

L is trail redundant iff N ∪ ¬C \ {L} � ¬L.

Theorem (Completeness)

All trail redundant literals of C can be removed

7/18

 * N is consistent
 * other SAT solvers consider minimization with binary clauses
 * subsumption resolution to conclude
 * independant of removal order * does not cover binary minimization by glucose

Completeness

Theorem

The minimization algorithm computes exactly the trail redundant literals.

8/18

 * standard procedure is complete
 * linked to Horn clauses (folklore knowledge)
 * complete * gives a proof of completeness

Poison Criteria

Theorem (When can I stop?)

1. Literals with a decision level not in the deduced clause are irredundant. classical argument

2. Literal appearing on a level before any other literal of the deduced clause are

irredundant. CaDiCaL novelty

3. Literals that are alone on a level are irredundant. Don Knuth

9/18

Poison Criteria

Theorem (When can I stop?)

1. Literals with a decision level not in the deduced clause are irredundant. classical argument

2. Literal appearing on a level before any other literal of the deduced clause are

irredundant. CaDiCaL novelty

3. Literals that are alone on a level are irredundant. Don Knuth

9/18

Poison Criteria

Theorem (When can I stop?)

1. Literals with a decision level not in the deduced clause are irredundant. classical argument

2. Literal appearing on a level before any other literal of the deduced clause are

irredundant. CaDiCaL novelty

3. Literals that are alone on a level are irredundant. Don Knuth

9/18

Shrinking

Implication graph

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

No minimization is possible

10/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7∨
¬A8

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7∨
¬A8

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7∨
¬A8

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7∨
¬A8

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7∨
¬A8

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬��B6 ∨ ¬��C6 ∨ ¬B7 ∨ ¬C7∨
¬A8 ∨ ¬A6

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬��B6 ∨ ¬��C6 ∨ ¬B7 ∨ ¬C7∨
¬A8 ∨ ¬A6

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬��B6 ∨ ¬��C6 ∨ ¬B7 ∨ ¬C7∨
¬A8 ∨ ¬A6

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬��B6 ∨ ¬��C6 ∨ ¬B7 ∨ ¬C7∨
¬A8 ∨ ¬A6

11/18

Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬��B6 ∨ ¬��C6 ∨ ¬��B7 ∨ ¬��C7∨
¬A8 ∨ ¬A6 ∨ ¬A7

11/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm

12/18

Trail Redundancy

Theorem

Redundant literal remain redundant after shrinking.

Theorem

Minimization cache for lower levels remains correct in our algorithm.

13/18

Algorithm Comparison

F&B [F&B’20] Shrinking (this)

Conditional 7 too expensive X cheap enough

Always smaller 7 resulting clause

discarded

X

Minimization 7 separate � combined

Implementations 7 one strategy only

(min-alluip,

SAT Comp 2020)

X CaDiCaL,

Kissat, Satch

¥/arminbiere

14/18

https://github.com/arminbiere/

Implementation

Kissat on the SAT Competition 2020 benchmarks

Average

Track Config. Solved PAR-2 clause size

Main

(400 CNFs)

shrink 270 1 561 735 46

mini 267 1 566 688 110

no-mini 235 1 891 872 183

Planning

(200 CNFs)

shrink 85 1 197 799 5 398

mini 83 1 222 535 13 076

no-mini 74 1 325 957 16 637

15/18

Kissat solving time on the planning track.

0 1000 2000 3000 4000 5000

0
20

40
60

80

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●● ●●
● ● ● ●●

●● ● ● ● ● ● ●

● kissat−shrink
kissat−minimize
kissat−no−minimize

16/18

Shrinking vs minalluip

Average

Solver Track Config. Solved PAR-2 clause size

shrinking
(this paper)

Main shrink 235 1 897 387 92

Planning shrink 73 1 351 542 5 373

min-alluip
[F&B’20]

Main shrink 237 1 904 745 104

Planning shrink 81 1 271 930 3 261

17/18

Conclusion

Summary

This work:

• Definition of trail redundancy and completeness of minimization

• More conditions to stop minimization

• Combination all-UIP and minimization, fast enough

Open questions:

• Generalization of trail redundancy to express optimality of shrinking?

• Derivation of the smallest clause without new level in NP?

18/18

Appendix Outline

Appendix

Minimization

Algorithm

Shrinking

Implementation

Appendix

Appendix

Minimization

Appendix

Algorithm

Function IsLiteralRedundant(L, d , C)

Input: Literal L assigned to true, recursion depth d , deduced clause C

Output : Whether L can be removed

if L is a decision then
return false

D ∨ L ←− reason(L);

foreach literal K ∈ D do

if ¬IsLiteralRedundant(¬K , d + 1, C) then
return false

return true

Algorithm 0: Basic recursive minimization algorithm [Sörensson&Biere, SAT’09].

Appendix

Shrinking

Algorithm

Function ShrinkingSlice(B, C)

Input: Slice B of literals of the deduced clause C

Output : B unchanged or shrunken to UIP if successful

while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)

if ∃K ∈ D\C at lower level and ¬IsLiteralRedundant(¬K , 1, C) then

return with failure (keep original B in C)

else

B ←− B ∪ {K ∈ D | K on slice level}
Replace in deduced clause C original B with the remaining UIP in B

Algorithm 0: Our new method for integrated shrinking with minimization.

Theorem

The criteria are compatible with trail redundancy.

Algorithm

Function Shrinking(C)

Input: The deduced clause C (passed by reference)

Output : The shrunken and minimized clause using our new strategy

foreach Level i of literals in the deduced clause – lowest to highest do

B ←− {L ∈ C | L assigned at level i}
ShrinkingSlice(B, C)

if shrinking the slice failed then MinimizeSlice(B, C);

Algorithm 0: Our new method for integrated shrinking with minimization.

[F&B’20]:

1. Minimize

2. From top level to down:

• Go up the arrows...

• ... unless a literal from new level is

added

• ... unless heuristics trigger

3. (Minimize) strategy dependant

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Appendix

Implementation

Complexity

For a given level, go over all literals from the highest:

Radix Heap: O(nlog(n)) in the size of the implication graph

Trail: size of one level (w/o chronological backtracking), size of the trail (w/ it)

NB: sorting all literals is required anyway afterwards.

Kissat time spent in minimization and shrinking

	0

	10

	20

	30

	40

	50

	60

	70

	80

	0 	50 	100 	150 	200 	250 	300 	350 	400

shrink	(planning)
minimize	(planning)

shrink	(main)
minimize	(main)

Amount of time in percent spent during shrinking and minimization of Kissat.

CaDiCaL number of removed literals

	0

	10

	20

	30

	40

	50

	60

	70

	0 	10 	20 	30 	40 	50 	60 	70

Shrink	and	Minimization
Only	minimized	when	shrinking	failed

Minimized	(no	shrinking)

Percentage of removed literals in learned clauses for CaDiCaL in planning track.

Average

Solver Track Config. Solved PAR-2 clause size

shrinking
(this paper)

Main

(400 CNFs)

shrink 235 1 897 387 92

mini 230 1 972 949 135

Planning

(200 CNFs)

shrink 73 1 351 542 5 373

mini 63 1 454 871 6 433

min-alluip
[F&B’20]

Main shrink 237 1 904 745 104

Planning shrink 81 1 271 930 3 261

Results for solvers based on CaDiCaL 1.2.1 on the SAT Competition 2020 benchmarks

(128 GB RAM)

	Introduction
	Minimization
	Completeness

	Shrinking
	Implementation
	Conclusion
	Appendix
	Appendix
	Minimization
	Algorithm
	Shrinking
	Implementation

