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Introduction



Introduction

• SAT solvers analyze conflicts to derive the deduced clause C ...

• ... that can be shortened by the standard minimization algorithm C ′ ⊆ C

• ... or even more |C ′′| ≤ |C | (all-UIP technique)
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SAT Competition 2020

[F&B’20] and [Hickey et al. SAT Comp’20] won the planning track.
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Cactus plot of CaDiCaL on the planning track

Don’t worsen the LBD score!
2/18



SAT Competition 2020

[F&B’20] and [Hickey et al. SAT Comp’20] won the planning track.

0 1000 2000 3000 4000 5000

0
20

40
60

80

●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
● ●●●

●●
●●
●●●

●●
●●●

●●
●●●

●●
● ●●

●●
● ●● ●● ●● ●●

●● ● ● ● ● ● ●

● cadical−1.2.1−minalluip
cadical−1.2.1

Cactus plot of CaDiCaL on the planning track

Don’t worsen the LBD score!
2/18



Introduction

• SAT solvers analyze conflicts to derive the deduced clause C ...

• ... that can be shortened by the standard minimization algorithm C ′ ⊆ C

Contribution: completeness of the algorithm, earlier breaking conditions

• ... or even more |C ′′| ≤ |C | (all-UIP technique)

Contribution: simpler unconditional implementation, use 1-UIP
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Minimization



Implication graph

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Deduced clause: ¬A5 ∨ ¬A6∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7 ∨ ¬A8
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Standard Minimization Algorithm

Algorithm [Sörensson&Biere, SAT’09]: for any literal

1. replace the literals by all the incoming arrows, recursively

2. if final clause is shorter: literal is redundant

Shorten as much as possible.
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Minimization Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Deduced clause:

¬A5 ∨¬A6 ∨¬B6 ∨¬C6 ∨¬B7 ∨¬C7 ∨¬A8
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Definition

M = trail = nodes in graph

N = reasons = edges in graph

C = conflict = brown literals

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Definition (Trail redundancy)

Given ¬L ∈ M, M � ¬C , N the set of all reasons in the trail

L is trail redundant iff N ∪ ¬C \ {L} � ¬L.

Theorem (Completeness)

All trail redundant literals of C can be removed
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 * N is consistent 
 * other SAT solvers consider minimization with binary clauses 
 * subsumption resolution to conclude 
 * independant of removal order * does not cover binary minimization by glucose
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Completeness

Theorem

The minimization algorithm computes exactly the trail redundant literals.
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 * standard procedure is complete 
 * linked to Horn clauses (folklore knowledge) 
 * complete * gives a proof of completeness 



Poison Criteria

Theorem (When can I stop?)

1. Literals with a decision level not in the deduced clause are irredundant. classical argument

2. Literal appearing on a level before any other literal of the deduced clause are

irredundant. CaDiCaL novelty

3. Literals that are alone on a level are irredundant. Don Knuth
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Shrinking



Implication graph

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

No minimization is possible
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Shrinking Example

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Implication graph

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache

Deduced clause: ¬A5∨
¬B6 ∨ ¬C6 ∨ ¬B7 ∨ ¬C7∨
¬A8
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Behavior Difference

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for algorithm from [F&B’20]

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8

Example for our algorithm
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Trail Redundancy

Theorem

Redundant literal remain redundant after shrinking.

Theorem

Minimization cache for lower levels remains correct in our algorithm.
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Algorithm Comparison

F&B [F&B’20] Shrinking (this)

Conditional 7 too expensive X cheap enough

Always smaller 7 resulting clause

discarded

X

Minimization 7 separate � combined

Implementations 7 one strategy only

(min-alluip,

SAT Comp 2020)

X CaDiCaL,

Kissat, Satch

¥/arminbiere
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https://github.com/arminbiere/


Implementation



Kissat on the SAT Competition 2020 benchmarks

Average

Track Config. Solved PAR-2 clause size

Main

(400 CNFs)

shrink 270 1 561 735 46

mini 267 1 566 688 110

no-mini 235 1 891 872 183

Planning

(200 CNFs)

shrink 85 1 197 799 5 398

mini 83 1 222 535 13 076

no-mini 74 1 325 957 16 637
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Kissat solving time on the planning track.
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Shrinking vs minalluip

Average

Solver Track Config. Solved PAR-2 clause size

shrinking
(this paper)

Main shrink 235 1 897 387 92

Planning shrink 73 1 351 542 5 373

min-alluip
[F&B’20]

Main shrink 237 1 904 745 104

Planning shrink 81 1 271 930 3 261
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Conclusion



Summary

This work:

• Definition of trail redundancy and completeness of minimization

• More conditions to stop minimization

• Combination all-UIP and minimization, fast enough

Open questions:

• Generalization of trail redundancy to express optimality of shrinking?

• Derivation of the smallest clause without new level in NP?
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Algorithm



Function IsLiteralRedundant(L, d , C)

Input: Literal L assigned to true, recursion depth d , deduced clause C

Output : Whether L can be removed

if L is a decision then
return false

D ∨ L ←− reason(L);

foreach literal K ∈ D do

if ¬IsLiteralRedundant(¬K , d + 1, C) then
return false

return true

Algorithm 0: Basic recursive minimization algorithm [Sörensson&Biere, SAT’09].



Appendix

Shrinking



Algorithm

Function ShrinkingSlice(B, C)

Input: Slice B of literals of the deduced clause C

Output : B unchanged or shrunken to UIP if successful

while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)

if ∃K ∈ D\C at lower level and ¬IsLiteralRedundant(¬K , 1, C) then

return with failure (keep original B in C )

else

B ←− B ∪ {K ∈ D | K on slice level}
Replace in deduced clause C original B with the remaining UIP in B

Algorithm 0: Our new method for integrated shrinking with minimization.

Theorem

The criteria are compatible with trail redundancy.



Algorithm

Function Shrinking(C)

Input: The deduced clause C (passed by reference)

Output : The shrunken and minimized clause using our new strategy

foreach Level i of literals in the deduced clause – lowest to highest do

B ←− {L ∈ C | L assigned at level i}
ShrinkingSlice(B, C)

if shrinking the slice failed then MinimizeSlice(B, C);

Algorithm 0: Our new method for integrated shrinking with minimization.



[F&B’20]:

1. Minimize

2. From top level to down:

• Go up the arrows...

• ... unless a literal from new level is

added

• ... unless heuristics trigger

3. (Minimize) strategy dependant

Our algorithm:

1. From smallest level to top:

• Go up the arrows ...

• ... unless a irredundant literal of

lower level is added, then minimize

• ... if successful, update minimization

cache



Appendix

Implementation



Complexity

For a given level, go over all literals from the highest:

Radix Heap: O(nlog(n)) in the size of the implication graph

Trail: size of one level (w/o chronological backtracking), size of the trail (w/ it)

NB: sorting all literals is required anyway afterwards.



Kissat time spent in minimization and shrinking
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CaDiCaL number of removed literals
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Average

Solver Track Config. Solved PAR-2 clause size

shrinking
(this paper)

Main

(400 CNFs)

shrink 235 1 897 387 92

mini 230 1 972 949 135

Planning

(200 CNFs)

shrink 73 1 351 542 5 373

mini 63 1 454 871 6 433

min-alluip
[F&B’20]

Main shrink 237 1 904 745 104

Planning shrink 81 1 271 930 3 261

Results for solvers based on CaDiCaL 1.2.1 on the SAT Competition 2020 benchmarks

(128 GB RAM)
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