Investigating the Existence of Costas Latin Square via Satisfiability Testing

Jiwei Jin^{1,4}, Yiqi Lv^{1,3}, Cunjing Ge⁵, Feifei Ma^{1,2,3} Jian Zhang^{1,3}

1.State Key Laboratory of Computer Science, ISCAS, Beijing, China

- 2.Laboratory of Parallel Software and Computational Science, ISCAS, Beijing, China
- 3.University of Chinese Academy of Sciences, Beijing, China 4.Shandong Jiaotong University, Jinan, China 5.Johannes Kepler University, Linz, Austria

2021-07

- 1 Problem Description
 - Costas Latin Squares
 - Some Properties of Costas Latin Squares
- 2 Modeling
 - Latin Squares Property and Costas Property
 - Some Properties of Costas Latin Squares
- 3 Improvements in Modeling
 - Symmetry Breaking
 - Transversal Matrix
- 4 New Results and Experimental Evaluation
 - New Results
 - Experimental Evaluation

Latin Square

Latin Squares

A Latin square is a $n \times n$ array filled with n different symbols, each occurring exactly once in each row and exactly once in each column.

Costas Arrays

Costas Arrays

A Costas array of order n is a $n \times n$ array of dots and empty cells such that: (a). There are n dots and $n \times (n-1)$ empty cells, with exactly one dot in each row and column. (b). All the segments between pairs of dots differ in length or in slope.

Example

1	0	0	0
0	1	0	0
0	0	0	1
0	0	1	0

Costas Latin Squares

Costas Latin Squares

A Costas Latin square of order n is a Latin square of order n such that for each symbol $i \in \{1, 2, \dots, n\}$, a Costas array results if a dot is placed in the cells containing symbol i.

Example

1	2	4	3
2	3	1	4
3	4	2	1
4	1	3	2

Idempotency

•000

Idempotency

For a CLS(n) A, we use A(i,j) to denote the symbol in the *i*-th row and the j-th column. If A has the property that A(i, i) = i for all $i \in \{1, 2, \dots, n\}$, then it is called an idempotent Costas Latin square.

Orthogonality

0000

Orthogonality

The orthogonality is an important property of Latin squares. For two CLS(n) A and B, if for all $n \times n$ positions, the pair $(A(i,j),B(i,j)), i,j \in \{1,2,\cdots,n\}$ are different, then A and B are called orthogonal.

Example

2	3	4	1
4	1	2	3
3	2	1	4
1	4	3	2

4	3	2	1
3	4	1	2
1	2	3	4
2	1	4	3

24	33	42	11
43	14	21	32
31	22	13	44
12	41	34	23

Quasigroup

Quasigroup

A quasigroup is an algebraic structure such that the multiplication table of a finite quasigroup is a Latin square. Conversely, every Latin square can be taken as the multiplication table of a quasigroup.

Quasigroup Identities

Quasigroup Identities

The existence of quasigroups satisfying the seven short identities has been studied systematically. These identities are:

- 1. $xy \otimes yx = x$: Schröder quasigroup
- 2. $yx \otimes xy = x$: Stein's third law
- 3. $(xy \otimes y)y = x : C_3$ -quasigroup
- 4. $x \otimes xy = yx$: Stein's first law; Stein quasigroup
- 5. $(yx \otimes y)y = x$
- 6. $yx \otimes y = x \otimes yx$: Stein's second law
- 7. $xy \otimes y = x \otimes xy$: Schröder's first law

Latin Squares Property and Costas Property

Latin Squares Property

Latin Squares Property

Since in a Latin square A, each number occurs exactly once in each row and exactly once in each column, it is easy to know that:

$$\forall x, y, x_1, x_2, y_1, y_2 \in N$$
:

$$x_1 \neq x_2 \mapsto A(x_1, y) \neq A(x_2, y)$$

$$y_1 \neq y_2 \mapsto A(x, y_1) \neq A(x, y_2)$$

Costas Property

Costas Property

For a CLS(n) A, the Costas property requires that for each $i \in N$, all the segments between pairs of i differ in length or in slope. This can be encoded as:

$$\forall x, y, x', y', u, v, u', v' \in N : (A(x, y) = A(x', y') = A(u, v) = A(u', v') \land (x - x' = u - u') \land (y - y' = v - v')) \mapsto x = u \lor x = x'$$

Orthogonality Property

Orthogonality Property

The orthogonality property involves two CLS(n) A, B. This property requires that in all $n \times n$ positions, the pair $(A(i,j),B(i,j)), i,j \in N$ are different. It can be encoded as: $\forall x_1,x_2,y_1,y_2 \in N$:

$$x_1 \neq x_2 \mapsto A(x_1, y_1) \neq A(x_2, y_2) \vee B(x_1, y_1) \neq B(x_2, y_2)$$

$$y_1 \neq y_2 \mapsto A(x_1, y_1) \neq A(x_2, y_2) \vee B(x_1, y_1) \neq B(x_2, y_2)$$

Idempotency Property

Idempotency Property

The idempotency property of a CLS(n) A can be encoded simply as:

$$\forall x \in N : A(x,x) = x$$

Quasigroup Property

Quasigroup Property

The quasigroup properties are easy to be encoded, for example, the formula for the first one is: $\forall x, y \in N$:

$$\mathbf{A}(A(x,y),A(y,x))=x$$

$$\mathbf{A}(A(y,x),A(x,y))=x$$

$$\mathbf{A}(A(x,y),y),y)=x$$

$$A(x, A(x, y)) = A(y, x)$$

$$\mathbf{A}(A(A(y,x),y)) = A(y,x)$$
$$\mathbf{A}(A(A(y,x),y),y) = x$$

$$\mathbf{A}(A(y,x),y) = \mathbf{A}(x,A(y,x))$$

$$\mathbf{A}(A(y,x),y) = \mathbf{A}(x,A(y,x))$$

$$\mathbf{A}(A(x,y),y)=\mathbf{A}(x,A(x,y))$$

Symmetry Breaking

Symmetry Breaking

For a CLS(n) A, all numbers in it are just symbols, after replacing $1, 2, \cdots, n$ by any its permutation, it is still a Costas Latin square. So the method to break symmetries for Costas Latin squares is just to fix its first column:

$$\forall x \in N : A(x,1) = x$$

Transversal Matrix

Transversal

A transversal in a Latin square is a collection of positions, one from each row and one from each column, so that the elements in these positions are all different. It can be written as a vector, where the *i*-th element records the row index of the cell that appears in the *i*-th column.

Transversal Matrix

A matrix is called a transversal matrix of Latin square, if it is consisted of *n* mutually disjoint transversal vectors.

Construction of Transversal Matrix

Construction of Transversal

For a Latin square A of order n, we construct a matrix TA for it by this way:

If A(i,j)=k, then TA(k,j)=i, where $i,j,k \in N$.

Example

1	2	4	3
2	3	1	4
3	4	2	1
4	1	3	2

1	4	2	3
2	1	3	4
3	2	4	1
4	3	1	2

Improving for Costas Property

Using transversal matrix to simplify the formula for Costas property:

$$\forall x, y, z, u, v \in N$$
:

$$TA(x, u) - TA(x, y) = TA(x, v) - TA(x, z) \lor u - y = v - z$$

$$\mapsto y = z \lor u = y$$

Improving for Orthogonality Property

Improving for Orthogonality Property

Using transversal matrix to reformulate the formula for orthogonality property:

$$\forall x, y, u, v \in N$$
:

$$x \neq y \mapsto TA(u, x) \neq TB(v, x) \vee TA(u, y) \neq TB(v, y)$$

The Existence of Specified Properties Costas Latin Squares

Order n	lde	Quasigroup de					Ort		
0.46		.1	.2	.3	.4	.5	.6	.7	0.0
CLS(4)	s	S	S	S	S	u	u	S	S
<i>CLS</i> (6)	u	u	u	u	u	u	u	u	u
<i>CLS</i> (8)	S	u	u	u	u	u	u	u	u
<i>CLS</i> (10)	u	u	u	u	u	u	u	u	*

New Results

An Idempotent Costas Latin Squares

1	3	5	7	4	2	8	6
4	2	6	8	3	1	5	7
5	7	3	1	6	8	4	2
8	6	2	4	7	5	1	3
6	8	4	2	5	7	3	1
7	5	1	3	8	6	2	4
2	4	8	6	1	3	7	5
3	1	7	5	2	4	6	8

The Run Times in Solving CLS-Ord and CLS-Ort

	SB+Tr	SB	Tr	non
CLS(6)-Ord	0.07	0.08	0.07	0.10
CLS(6)-Ort	0.28	2.23	то	то
CLS(8)-Ord	1.39	100.04	26.46	2207.91
CLS(8)-Ort	67.04	1230.96	то	то

The Run Times in Solving CLS-Ide and CLS-Qi

	Tr	non		Tr	non		Tr	non
CLS(6)-Ide	0.07	0.10	CLS(8)-Ide	0.97	17.79	CLS(10)-Ide	406.59	то
CLS(6)-Q1	0.07	0.13	CLS(8)-Q1	1.84	36.58	CLS(10)-Q1	351.70	то
CLS(6)-Q2	0.08	0.19	CLS(8)-Q2	2.88	97.45	CLS(10)-Q2	889.16	то
CLS(6)-Q3	0.07	0.10	CLS(8)-Q3	1.00	2.16	CLS(10)-Q3	12.05	38.61
CLS(6)-Q4	0.07	0.09	CLS(8)-Q4	0.98	1.86	CLS(10)-Q4	10.93	36.37
CLS(6)-Q5	0.09	0.12	CLS(8)-Q5	3.73	5.83	CLS(10)-Q5	880.58	84.13
CLS(6)-Q6	0.07	0.10	CLS(8)-Q6	0.94	6.68	CLS(10)-Q6	11.06	то
CLS(6)-Q7	0.07	0.10	CLS(8)-Q7	1.01	2.21	CLS(10)-Q7	12.09	то

The Number of Clauses

	Vars	Clauses		Vars	Clauses		Vars	Clauses
CLS(6)-Odr	432	73830	CLS(8)-Odr	1024	628360	CLS(10)-Odr	2000	3245210
CLS(6)-Ide	432	73830	CLS(8)-Ide	1024	628360	CLS(10)-Ide	2000	3245210
CLS(6)-Q1-7	432	75120	CLS(8)-Q1-7	1024	622448	CLS(10)-Q1-7	2000	3255200
CLS(6)-Ort	864	186540	CLS(8)-Ort	2048	1486096	CLS(10)-Ort	4000	7390420

0000 Experimental Evaluation

Thanks

New Results and Experimental Evaluation