Chinese Remainder Encoding for Hamiltonian Cycles

Marijn J.H. Heule

Carnegie Mellon University

SAT 2021

July 7, 2021

Encodings Matter

Architectural 3D Layout [VSMM '07]
Henriette Bier

Edge-matching Puzzles [LaSh '08]

Graceful Graphs [AAAI '10] Toby Walsh

Clique-Width
[SAT '13, TOCL '15]
Stefan Szeider

Firewall Verification [SSS '16] Mohamed Gouda

Open Knight Tours Moshe Vardi

Van der Waerden numbers [EJoC '07]

Software Model Synthesis [ICGI '10, ESE '13] Sicco Verwer

Conway's Game of Life [EJoC '13] Willem van der Poel

Connect the Pairs Donald Knuth

Pythagorean Triples
[SAT '16, CACM '17]
Victor Marek & Oliver Kullmann

Collatz conjecture [Open]
Emre Yolcu & Scott Aaronson
[CADE '21]

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP): Does there exists a cycle that visits all vertices exactly once?

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):

Does there exists a cycle that visits all vertices exactly once?

Two constraints:

- ► Exactly two edges per vertex: easy cardinality constraints
- ► Exactly one cycle: hard to be compact and arc-consistent
 - ▶ One option is to ignore the constraint: incremental SAT.
 - ▶ Various encodings use $O(|V|^3)$. Too large for many graphs.
 - ► For large graphs we need encodings that are quasi-linear in |E|.

marijn@cmu.edu 3/1

Hamiltonian Cycles: Encodings Quasi-Linear in |E|

Key elements:

- ▶ Each vertex have an index in the range $\{1, ..., |V|\}$.
- ► Selected edges are directed.
- ► Each vertex has one incoming and one outgoing edge.
- For each directed edge (u, v): the index of v is the successor of the index of u except for the starting vertex.

marijn@cmu.edu 4 / 11

Hamiltonian Cycles: Encodings Quasi-Linear in |E|

Key elements:

- ▶ Each vertex have an index in the range $\{1, ..., |V|\}$.
- ► Selected edges are directed.
- ► Each vertex has one incoming and one outgoing edge.
- For each directed edge (u, v): the index of v is the successor of the index of u except for the starting vertex.

How to implement the successor property?

marijn@cmu.edu 4 / 11

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable $e_{u,v}$ is assigned to true then the index of v is the successor of the index of u.

Example

Let |V| = 7, thus $k = \lceil \log_2 7 \rceil = 3$. For vertex v, variables v_2 , v_4 , and v_8 denote the least, middle, and most significant bit, respectively. For an edge variable $e_{u,v}$, we use the constraints:

$$\begin{split} e_{\mathfrak{u},\nu} &\to (\mathfrak{u}_2 \not\leftrightarrow \nu_2) \\ (e_{\mathfrak{u},\nu} \wedge \overline{\mathfrak{u}}_2) &\to (\mathfrak{u}_4 \leftrightarrow \nu_4) \\ (e_{\mathfrak{u},\nu} \wedge \mathfrak{u}_2) &\to (\mathfrak{u}_4 \not\leftrightarrow \nu_4) \\ (e_{\mathfrak{u},\nu} \wedge \overline{\mathfrak{u}}_2) &\to (\mathfrak{u}_8 \leftrightarrow \nu_8) \\ (e_{\mathfrak{u},\nu} \wedge \overline{\mathfrak{u}}_4) &\to (\mathfrak{u}_8 \leftrightarrow \nu_8) \\ (e_{\mathfrak{u},\nu} \wedge \mathfrak{u}_2 \wedge \mathfrak{u}_4) &\to (\mathfrak{u}_8 \not\leftrightarrow \nu_8) \end{split}$$

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable $e_{u,v}$ is assigned to true then the index of v is the successor of the index of u.

Example

Let |V| = 7, thus $k = \lceil \log_2 7 \rceil = 3$. For vertex v, variables v_2 , v_4 , and v_8 denote the least, middle, and most significant bit, respectively. For an edge variable $e_{u,v}$, we use the constraints:

$$e_{u,v} \rightarrow (u_2 \leftrightarrow v_2)$$

$$(e_{u,v} \wedge \overline{u}_2) \rightarrow (u_4 \leftrightarrow v_4)$$

$$(e_{u,v} \wedge u_2) \rightarrow (u_4 \leftrightarrow v_4)$$

$$(e_{u,v} \wedge \overline{u}_2) \rightarrow (u_8 \leftrightarrow v_8)$$

$$(e_{u,v} \wedge \overline{u}_4) \rightarrow (u_8 \leftrightarrow v_8)$$

$$(e_{u,v} \wedge u_2 \wedge u_4) \rightarrow (u_8 \leftrightarrow v_8)$$

This encoding can quickly refute odd cycles

Hamiltonian Cycles: Linear-Feedback Shift Register

A k-bit Linear-Feedback Shift Register (LFSR) loops through $\{1,\ldots,2^k-1\}$ by shifting all bits one position to the left and placing the parity of some bits in the vacated position.

Example

An example LFSR of 16 bits is $x_{11} \oplus x_{13} \oplus x_{14} \oplus x_{16}$, which has $2^{16}-1=65,535$ states. The figure below shows an illustration of this LFSR with state 10010111001011001. The next state is 00101110010110011.

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and has been used to efficiently find Hamiltonian cycles in Erin and Stedman triples.

Example

Let |V|=7, thus $k=\lceil \log_2(7+1) \rceil=3$. We use 3-bit LFSR $x_2 \oplus x_3$. The bit-vector variables of vertex ν are $\nu_{7,1}$, $\nu_{7,2}$, and $\nu_{7,3}$. For an edge variable $e_{\mathfrak{u},\nu}$, we add the constraints:

$$\begin{array}{ccc} e_{u,v} & \rightarrow & (\nu_{7,1} \leftrightarrow (u_{7,2} \nleftrightarrow u_{7,3}) \\ e_{u,v} & \rightarrow & (\nu_{7,2} \leftrightarrow u_{7,1}) \\ e_{u,v} & \rightarrow & (\nu_{7,3} \leftrightarrow u_{7,2}) \end{array}$$

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and has been used to efficiently find Hamiltonian cycles in Erin and Stedman triples.

Example

Let |V|=7, thus $k=\lceil \log_2(7+1) \rceil=3$. We use 3-bit LFSR $x_2 \oplus x_3$. The bit-vector variables of vertex ν are $\nu_{7,1}$, $\nu_{7,2}$, and $\nu_{7,3}$. For an edge variable $e_{\mathfrak{u},\nu}$, we add the constraints:

$$\begin{array}{ccc} e_{u,\nu} & \rightarrow & (\nu_{7,1} \leftrightarrow (u_{7,2} \nleftrightarrow u_{7,3}) \\ e_{u,\nu} & \rightarrow & (\nu_{7,2} \leftrightarrow u_{7,1}) \\ e_{u,\nu} & \rightarrow & (\nu_{7,3} \leftrightarrow u_{7,2}) \end{array}$$

This encoding is compact and has lots of propagation

Hamiltonian Cycles: Chinese Remainder Encoding

Can we get the best all three worlds?

- ▶ Incremental SAT: Only partially encode the hard constraint
- ▶ Binary adder: refute some cycles quickly
- ► LSFR: few and short clauses, no auxiliary variables

Hamiltonian Cycles: Chinese Remainder Encoding

Can we get the best all three worlds?

- ▶ Incremental SAT: Only partially encode the hard constraint
- ▶ Binary adder: refute some cycles quickly
- LSFR: few and short clauses, no auxiliary variables

Chinese remainder encoding:

- ▶ Block all subcycles except one of length $0 \pmod{m}$
- \blacktriangleright Pick m (can be smaller than |V|) with small prime factors
- ▶ Enforce 0 $\pmod{p_i}$ for each prime factor p_i of m
- ▶ Use LFSR for primes > 2 and binary adder for $p_i = 2$

Hamiltonian Cycles: Flinders HCP Challenge Graphs

Evaluation on reasonably large instances from the Flinders HCP Challenge Graphs suite

- ► Runtime (s) of CaDiCaL on binary adder and LFSR
- ▶ Smallest k such that 2^k (or $2^k 1$) is larger than |V|

graph #	V	E	$adder\ (2^k)$	LSFR $(2^k - 1)$
424	2466	4240	> 3600	> 3600
446	2557	4368	> 3600	> 3600
470	2740	4509	2500.61	> 3600
491	2844	4267	173.46	245.92
506	2964	4447	78.29	244.48
522	3060	4591	84.51	611.46
526	3108	4663	160.73	544.97
529	3132	4699	69.69	275.13

Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)

- : First solution consists of multiple cycles
- ✓ : First solution consists of a single cycle

graph #	2	6	12	60	105	420
424	9.81 🗡	665.18 X	340.11 X	307.71 X	494.11 🗸	488.70 🗸
446	13.24 X	334.62 X	169.52 🗡	380.47 🗶	573.38 🗸	722.23 🗸
470	17.08 X	166.16 🗡	152.31 🗡	933.36 🗶	501.91 🗡	840.89 🗸
491	0.06 🗶	22.04 🗡	7.47 🗸	34.45 🗸	123.36 🗸	135.22 🗸
506	0.11 🗶	31.75 🗡	19.24 🗸	33.48 🗸	28.73 🗸	63.20 🗸
522	0.63 🗶	5.66 🗡	32.95 🗸	133.40 🗸	30.40 🗸	67.03 🗸
526	0.05 🗶	24.16 🗡	71.67 🗸	34.37 🗸	34.69 🗶	158.69 🗸
529	0.40 🗶	17.90 🗶	60.19 🗸	48.09 🗸	42.33 🗸	365.58 🗸

Conclusions and Future Work

Encodings matter

Chinese remainder encoding:

- ▶ Best of three worlds (partial, compact, refute short cycles)
- ▶ Block subcycles of length 0 modulo small primes
- Chinese remainder theorem: all cycles are of length 0 modulo the product of the primes

Future work:

- ▶ Use a similar encoding for other graph problems
- Explore the effectiveness for other solving techniques