SAT-Based Rigorous Explanations for Decision Lists

Alexey Ignatiev¹ and Joao Marques-Silva²

July 7, 2021 | SAT

¹Monash University, Melbourne, Australia

²IRIT, CNRS, Toulouse, France

eXplainable AI

This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

Why? Status quo...

Approaches to XAI

interpretable ML models

e.g. decision trees, lists, sets

interpretable ML models

e.g. decision trees, lists, sets

posthoc explanation of ML models "on the fly"

Interpretable rule-based models

rule-based models

Interpretable rule-based models

rule-based models

"transparent" and easy to interpret

Interpretable rule-based models

rule-based models

"transparent" and easy to interpret

come in handy in XAI but...

$$f(x_1,\ldots,x_n)=\bigvee_{i=1}^{n/2}x_{2i-1} \bigwedge x_{2i}$$
 , with $n=4$

$$f(x_1,\ldots,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \bigwedge x_{2i}$$
 , with $n=4$

instance v = (1, 0, 1, 1) - 4 literals in the path

$$f(x_1,\ldots,x_n)=\bigvee_{i=1}^{n/2}x_{2i-1} \bigwedge x_{2i}$$
 , with $n=4$

instance v = (1, 0, 1, 1) - 4 literals in the path

$$f(x_1,...,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$$
, with $n = 4$

instance v = (1, 0, 1, 1) — 4 literals in the path actual explanation $x_3 = 1 \land x_4 = 1$ — 2 literals

DL explainability

AXps and CXps

classifier
$$\tau : \mathbb{F} \to \mathcal{K}$$
, instance \mathbf{v} s.t. $\tau(\mathbf{v}) = \mathbf{c}$

classifier
$$\tau : \mathbb{F} \to \mathcal{K}$$
, instance \mathbf{v} s.t. $\tau(\mathbf{v}) = \mathbf{c}$

abductive explanation ${\mathfrak X}$

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \in \mathcal{X}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \rightarrow (\tau(\mathbf{x}) = c)$$

classifier
$$\tau : \mathbb{F} \to \mathcal{K}$$
, instance \mathbf{v} s.t. $\tau(\mathbf{v}) = \mathbf{c}$

abductive explanation ${\mathfrak X}$

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{j} \in \mathcal{X}} (\mathbf{x}_{\mathbf{j}} = \mathbf{v}_{\mathbf{j}}) \rightarrow (\tau(\mathbf{x}) = \mathbf{c})$$

contrastive explanation y

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{\mathbf{i} \notin \mathcal{Y}} (x_{\mathbf{j}} = v_{\mathbf{j}}) \wedge (\tau(\mathbf{x}) \neq c)$$

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathfrak{K} = \{\bigcirc, \bigoplus\}$$

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

R₀:IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R₁:ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF}:ELSETHEN \ominus

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

 R_0 :IF $x_1 = 1 \land x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF} :ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \bigoplus$$

$$\mathbb{F} = \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^5 \qquad \mathcal{K} = \{\bigcirc, \bigoplus\}$$

 R_0 :IF $x_1 = 1 \wedge x_2 = 1$ THEN \ominus R_1 :ELSE IF $x_3 \neq 1$ THEN \ominus R_{DEF} :ELSETHEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \bigoplus$$

AXps
$$X = \{\{1, 2\}, \{3\}\}$$

$$\mathbb{F} = \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^5 \qquad \mathfrak{K} = \{\bigcirc, \bigoplus\}$$

```
R<sub>0</sub>:IFx_1 = 1 \land x_2 = 1THEN \ominusR<sub>1</sub>:ELSE IFx_3 \neq 1THEN \ominusR<sub>DEF</sub>:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \bigoplus$$

$$AXps X = \{\{1, 2\}, \{3\}\}\$$
 $CXps Y = \{\{1, 3\}, \{2, 3\}\}\$

$$\mathbb{F} = \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^5 \qquad \mathbf{\mathcal{K}} = \{\boldsymbol{\ominus}, \boldsymbol{\oplus}\}$$

```
R_0:IFx_1 = 1 \wedge x_2 = 1THEN \ominusR_1:ELSE IFx_3 \neq 1THEN \ominusR_{DEF}:ELSETHEN \ominus
```

observe
$$\tau(1, 1, 1, 1, 1) = \bigcirc$$

AXps
$$X = \{\{1, 2\}, \{3\}\}$$

CXps $Y = \{\{1, 3\}, \{2, 3\}\}$

minimal hitting set duality!

Interpretability issue – just like with DTs

$$f(x_1,...,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$$
, with $n = 4$

Interpretability issue – just like with DTs

$$f(x_1,...,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$$
, with $n = 4$

instance $\mathbf{v} = (\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})$ — rule \mathbf{R}_5 fires the prediction

Interpretability issue – just like with DTs

$$f(x_1,...,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$$
, with $n = 4$

instance
$$v = (1, 0, 1, 1)$$
 — rule R_5 fires the prediction actual AXp — $x_3 = 1 \land x_4 = 1$ — 2 literals

Are DLs hard to explain?

SAT query:

SAT query:

$$\exists (x \in \mathbb{F}). \ \tau(x) = c$$

SAT query:

$$\exists (x \in \mathbb{F}). \ \tau(x) = c$$

IM query:

SAT query:

$$\exists (\mathbf{x} \in \mathbb{F}). \ \mathbf{\tau}(\mathbf{x}) = \mathbf{c}$$

IM query:

$$\forall (\mathbf{x} \in \mathbb{F}). \ \rho(\mathbf{x}) \to \tau(\mathbf{x}) = \mathbf{c}$$

Are DLs hard to explain? Results.

1. DLSAT is NP-complete

Are DLs hard to explain? Results.

1. DLSAT is NP-complete

2. No polytime algorithm for DLIM unless P = NP

Are DLs hard to explain? Results.

1. DLSAT is NP-complete

2. No polytime algorithm for DLIM unless P = NP

see paper for details!

Computing an AXp is hard for decision lists and sets

decision lists:

finding an AXp is not polytime unless P = NP

Computing an AXp is hard for decision lists and sets

decision lists:

finding an AXp is not polytime unless P = NP

decision sets:

finding an AXp is D^P-complete

Computing an AXp is hard for decision lists and sets

decision lists:

finding an AXp is not polytime unless P = NP

decision sets:

finding an AXp is D^P-complete

in contrast to decision trees!

(see paper for notation and details)

(see paper for notation and details)

rule $j \in \Re$ fires:

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{k \in \mathfrak{R}, \ \mathfrak{o}(k) < \mathfrak{o}(j)} \neg \mathfrak{l}(k) \right) \wedge \mathfrak{l}(j)$$

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{k \in \mathfrak{R}, \ \mathfrak{o}(k) < \mathfrak{o}(j)} \neg \mathfrak{l}(k) \right) \wedge \mathfrak{l}(j)$$

unsatisfiable $S \wedge H$ s.t.

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{k \in \mathfrak{R}, \ \mathfrak{o}(k) < \mathfrak{o}(j)} \neg \mathfrak{l}(k) \right) \wedge \mathfrak{l}(j)$$

unsatisfiable $S \wedge H$ s.t.

$$S \triangleq I_v$$

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{k \in \mathfrak{R}, \ \mathfrak{o}(k) < \mathfrak{o}(j)} \neg \mathfrak{l}(k) \right) \wedge \mathfrak{l}(j)$$

$$\begin{array}{ccc} & \text{unsatisfiable} & \mathcal{S} \wedge \mathcal{H} & \text{s.t.} \\ \mathcal{S} \triangleq I_{\text{v}} & \mathcal{H} \triangleq \bigvee_{j \in \mathfrak{R}, \; \mathfrak{c}(j) = \mathfrak{c}(i)} \phi(j) \end{array}$$

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{k \in \mathfrak{R}, \, \mathfrak{o}(k) < \mathfrak{o}(j)} \neg \mathfrak{l}(k) \right) \wedge \mathfrak{l}(j)$$

$$S \triangleq I_{v} \qquad \qquad \mathfrak{H} \triangleq \bigvee_{j \in \mathfrak{R}, \; \mathfrak{c}(j) = \mathfrak{c}(\mathfrak{i})} \phi(j)$$

instance v, prediction c(i):

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{\mathbf{k} \in \mathfrak{R}, \ \mathfrak{o}(\mathbf{k}) < \mathfrak{o}(j)} \neg \mathfrak{l}(\mathbf{k}) \right) \wedge \mathfrak{l}(j)$$

$$\begin{array}{ccc} & \text{unsatisfiable} & \mathcal{S} \wedge \mathcal{H} & \text{s.t.} \\ \mathcal{S} \triangleq I_{\text{v}} & \mathcal{H} \triangleq \bigvee_{j \in \mathfrak{R}, \; \mathfrak{c}(j) = \mathfrak{c}(\mathfrak{i})} \phi(\mathfrak{j}) \end{array}$$

instance v, prediction c(i):

AXps are MUSes

(see paper for notation and details)

rule $j \in \mathfrak{R}$ fires:

$$\varphi(j) \triangleq \left(\bigwedge_{\mathbf{k} \in \mathfrak{R}, \ \mathfrak{o}(\mathbf{k}) < \mathfrak{o}(j)} \neg \mathfrak{l}(\mathbf{k}) \right) \wedge \mathfrak{l}(j)$$

$$\begin{array}{ccc} & \text{unsatisfiable} & \mathcal{S} \wedge \mathcal{H} & \text{s.t.} \\ \mathcal{S} \triangleq I_{\text{v}} & \mathcal{H} \triangleq \bigvee_{j \in \mathfrak{R}, \; \mathfrak{c}(j) = \mathfrak{c}(\mathfrak{i})} \phi(\mathfrak{j}) \end{array}$$

instance v, prediction c(i):

AXps are MUSes

CXps are MCSes

Experimental results

- machine configuration:
 - Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM

• machine configuration:

- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3

• machine configuration:

- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800s timeout + 4GB memout

- machine configuration:
 - Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
 - running macOS Big Sur 11.2.3
 - 1800s timeout + 4GB memout
- UCI MLR + PMLB + ML explainability and fairness

- machine configuration:
 - Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
 - running macOS Big Sur 11.2.3
 - 1800s timeout + 4GB memout
- UCI MLR + PMLB + ML explainability and fairness
 - 360 benchmarks in total (72 datasets × 5-cross validation)

- machine configuration:
 - Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
 - running macOS Big Sur 11.2.3
 - 1800s timeout + 4GB memout
- UCI MLR + PMLB + ML explainability and fairness
 - 360 benchmarks in total (72 datasets × 5-cross validation)
 - CN2 decision lists:
 - https://orangedatamining.com/
 - 6-2055 rules
 - 6-6754 literals (total)

machine configuration:

- Quad-Core Intel Core i5-8259U 2.30GHz, with 16GByte RAM
- running macOS Big Sur 11.2.3
- 1800s timeout + 4GB memout

UCI MLR + PMLB + ML explainability and fairness

- 360 benchmarks in total (72 datasets × 5-cross validation)
- CN2 decision lists:
 - https://orangedatamining.com/
 - 6-2055 rules
 - 6-6754 literals (total)
- SAT encoding:
 - 7-15340 variables
 - · 9-3932987 clauses

- Python + PySAT:
 - Glucose3 SAT solver
 - · incremental oracle calls

- Python + PySAT:
 - Glucose3 SAT solver
 - · incremental oracle calls
 - https://github.com/alexeyignatiev/xdl-tool

- Python + PySAT:
 - Glucose3 SAT solver
 - · incremental oracle calls
 - https://github.com/alexeyignatiev/xdl-tool
- direct CXp enumeration:
 - LBX-like MCS enumeration
 - "Clause D" heuristic

• Python + PySAT:

- Glucose3 SAT solver
- · incremental oracle calls
- https://github.com/alexeyignatiev/xdl-tool

direct CXp enumeration:

- LBX-like MCS enumeration
- "Clause D" heuristic

• MARCO-like XP enumeration:

- targets either AXps or CXps
- computes both AXps and CXps

• Python + PySAT:

- · Glucose3 SAT solver
- incremental oracle calls
- https://github.com/alexeyignatiev/xdl-tool

direct CXp enumeration:

- LBX-like MCS enumeration
- "Clause D" heuristic

• MARCO-like XP enumeration:

- targets either AXps or CXps
- computes both AXps and CXps
- minimum hitting sets RC2 MaxSAT
- XP reduction deletion-based linear search

Results – raw performance

Results – raw performance

all approaches finish complete XP enumeration within <1000 sec.

Results – raw performance

all approaches finish complete XP enumeration within <1000 sec.

MARCO-like setup — targeting AXps may pay off

Results - raw performance

all approaches finish complete XP enumeration within <1000 sec.

MARCO-like setup — targeting AXps may pay off direct CXp enumeration is slower (too many XPs?)

16–72838 AXps vs. 23–248825 CXps per dataset

16-72838 AXps vs. 23-248825 CXps per dataset
1-22.7 AXps vs. 1-20.8 CXps per instance
1-15.8 lits per AXp vs. ≤2.8 lits per CXp

Summary

• rigorous explanations for decision lists:

- rigorous explanations for decision lists:
 - · DLs may be uninterpretable
 - just like decision trees!

- rigorous explanations for decision lists:
 - DLs may be uninterpretable
 - just like decision trees!
 - finding one explanation is not polytime, unless P = NP
 - · same for decision sets!
 - · and in contrast to decision trees!

- rigorous explanations for decision lists:
 - DLs may be uninterpretable
 - just like decision trees!
 - finding one explanation is not polytime, unless P = NP
 - · same for decision sets!
 - and in contrast to decision trees!
 - · encoding to propositional logic
 - · use of SAT oracles
 - finding one AXp or CXp
 - · efficient MARCO-like enumeration!

rigorous explanations for decision lists:

- DLs may be uninterpretable
 - · just like decision trees!
- finding one explanation is not polytime, unless P = NP
 - · same for decision sets!
 - · and in contrast to decision trees!
- · encoding to propositional logic
 - · use of SAT oracles
 - finding one AXp or CXp
 - · efficient MARCO-like enumeration!

future work

explain other ML models with SAT?

rigorous explanations for decision lists:

- DLs may be uninterpretable
 - · just like decision trees!
- finding one explanation is not polytime, unless P = NP
 - · same for decision sets!
 - · and in contrast to decision trees!
- · encoding to propositional logic
 - · use of SAT oracles
 - finding one AXp or CXp
 - · efficient MARCO-like enumeration!

future work

- explain other ML models with SAT?
- efficiently?

