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The Computational Problem of Probabilistic Inference
ProbLog Bayesian Network

0.001 :: burglary.
0.002 :: earthquake.

0.95 :: alarm :— burglary , earthquake.

0.94 alarm :— burglary , \+ earthquake.

0.29 :: alarm :— \+ burglary , earthquake.

0.001 :: alarm :— \+ burglary , \+ earthquake.

0.9 johnCalls :— alarm.

0.05 johnCalls :— \+ alarm.

0.7 maryCalls :— alarm.

0.01 maryCalls :— \+ alarm.

BLOG

random Boolean Burglary ~ BooleanDistrib(0.001);
random Boolean Earthquake ~ BooleanDistrib(0.002);
random Boolean Alarm ~
if Burglary then
if Earthquake then BooleanDistrib(0.95)
else BooleanDistrib(0.94)
else
if Earthquake then BooleanDistrib(0.29)
else BooleanDistrib (0.001);
random Boolean JohnCalls ~
if Alarm then BooleanDistrib(0.9)
else BooleanDistrib (0.05);
random Boolean MaryCalls ~
if Alarm then BooleanDistrib (0.7)
else BooleanDistrib(0.01);
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Weighted Model Counting (WMCQ)

» Generalises propositional
model counting (#SAT)
» Applications:

>

» probabilistic programming

>

graphical models

neural-symbolic artificial
intelligence

» Main types of algorithms:

>

4
>

using knowledge
compilation

using a SAT solver
manipulating
pseudo-Boolean functions

Example

w(x) = 0.3, w(—x) =0.7,
w(y) =0.2, w(-y) =0.8

WMC(x V y) = w(x)w(y) +
w(x)w(y)+w(-x)w(y) = 0.44



The Problem with Assigning Weights to Literals

A Simple Bayesian Network

» from 2 binary variables
» to 8 variables and 17 clauses

» with lots of redundancy

Its WMC Encoding
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WMC, Formally

Definition
A WMC instance is a tuple (¢, X;, Xp, w), where
» X, is the set of indicator variables,
» Xp is the set of parameter variables (with X; N Xp = 0),
» ¢ is a propositional formula in CNF over X; U Xp,
> w: X; UXpU{—-x|xe€X UXp} — R is a weight function
» such that w(x) = w(—x) =1 for all x € X;.

Definition
Let ¢ be a formula over a set of variables X. Then Y C X is a
minimum-cardinality model of ¢ if

> Yo
» and |Y| < |Z] for all Z |= ¢.



WMC and Minimum-Cardinality WMC

The goal of WMC is to compute
>[I0
Y=o Y
whereas the goal of minimum-cardinality WMC is to compute
> 1w
Y=g, |Y|=k YE=I
where

k = min |Y].
Yo



A More Expressive Alternative

Definition (Pseudo-Boolean Projection (PBP))

A PBP instance is a tuple (F, X,w), where X is the set of
variables, F is a set of two-valued pseudo-Boolean functions
2X 5 R, and w € R is the scaling factor.

For any propositional formula ¢ over a set of variables X and
p,q € R, let [¢]5: 2% — R be the pseudo-Boolean function
defined as

BIE(Y) = {” TYEe

g otherwise

for any Y C X.



From WMC to PBP

Example

» Indicator variable: x
» Parameter variables: p, g
» Weights: w(p) =0.2, w(g) = 0.8, and w(—p) = w(—q) =1

WMC Clause

X =p
p = —x
X=4q
q=Xx
X




From WMC to PBP

Example

» Indicator variable: x
» Parameter variables: p, g
» Weights: w(p) =0.2, w(g) = 0.8, and w(—p) = w(—q) =1

WMC Clause In CNF

X =p xVp

p = X =XV —p
X=q —xVq
q=X xV g

X X




From WMC to PBP

Example

» Indicator variable: x
» Parameter variables: p, g
» Weights: w(p) =0.2, w(g) = 0.8, and w(—p) = w(—q) =1

WMC Clause In CNF Pseudo-Boolean Function

X = p xVp  [x]P?
p = X =XV —p

x=gq -xVaqg [x]9®
q=X xV g

“x b




From WMC to PBP

Example

» Indicator variable: x
» Parameter variables: p, g
» Weights: w(p) =0.2, w(g) = 0.8, and w(—p) = w(—q) =1

WMC Clause In CNF Pseudo-Boolean Function

X = p xVp  [x]P?

p = —x XV op > X185
x=gq -xVaqg [x]9®

q=Xx xV —q

-x [ [~}
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Correctness Conditions (1/2)

For each parameter variable p € Xp,
> w(-p) =1,

» and the set of clauses that mention p or —p is
n
{pv\/ﬁ/,}u{/,-vﬁm i=1,...,n}
i=1

for some non-empty family of indicator literals (/;)7_;.

In other words, p is defined to be equivalent to A, /;.



Correctness Conditions (2/2)

For each parameter variable p € Xp,

| 2

>
>
>
>

w(p) +w(=p) =1,

each clause has at most one parameter variable,

there are no negative parameter literals,

if {p} € ¢, then this is the only clause that mentions p,

and for any two clauses of the form x = p and ¢ = p,
XNy = 1.



Additional Conditions for Minimum-Cardinality WMC

» All models of {c € ¢ | c N Xp = ()} have the same number of
positive indicator literals,

» and

in |Z| st. YUZ
Juin |Z] s =o

is the same for all Y ={c € ¢ | cnXp =0}.
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How Good Is It?



WMC/PBP Encodings for Bayesian Networks
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WMC/PBP Encodings for Bayesian Networks

Algorithm
— DPMC - - other

1000

100 Encoding

bklml6

10 — bklml6++

Time (s)

cd05
cd05++
cd06
cd06++
do2
do2++

—_
!

0.14

0 500 1000 1500
Instances solved



Compared to the Previous State of the Art
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The Best Encoding for DPMC: Before and After
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Summary and Future Work

» PBP is a more expressive alternative to WMC that works with
state-of-the-art WMC algorithms based on pseudo-Boolean
function manipulation.

» Many WMC encodings can be efficiently transformed into
PBP while removing unnecessary variables and clauses.

» The identified conditions for this transformation to work help
explain how WMC encodings for Bayesian networks operate.
» Performance improvements depend on the encoding.

» The very first encoding was virtually unaffected,
» whereas the state-of-the-art encoding was significantly
improved.

» Can the identified conditions be generalised further?

» Can the transformation be applied to WMC encodings for
other application domains?
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