MCP: Capturing Big Data by Satisfiability

Miki Hermann, École Polytechnique, France Gernot Salzer, TU Wien, Austria

7 July 2021

1984 United States Congressional Voting Records Database

Goal: Describe large sets of data by propositional formulas

- Extract knowledge: Characterize voting behavior of democrats vs. republicans.
- Classify new data: Given a new voting record, is it by a democrat or a republican?

Task: find formula satisfying positive and falsifying negative samples

Given two sets of Boolean vectors (tuples) of arity k over the domain $D=\{0,1\}^k$, representing positive examples $T\subseteq D$ and negative examples $F\subseteq D$, compute a

[Horn | dual Horn | bijunctive | affine | general CNF]

formula φ , such that

- $T \models \varphi$,
- for each $f \in F$, $f \not\models \varphi$.

Caveats

What to do if

- $T \cap F \neq \emptyset$,
- $\langle T \rangle_C \cap F \neq \emptyset$ for C = Horn, dual Horn, bijunctive, affine
- $T \cup F \subseteq \{0,1\}^k$, i.e. $\{0,1\}^k \setminus (T \cup F) \neq \emptyset$

 $\langle T \rangle_C$... closure of vectors in T w.r.t. class C

Justification

- Horn, dual Horn, bijunctive, and affine formulas are the four families of Boolean formulas, whose satisfiability problem can be decided in polynomial time.
- Horn formulas represent a theoretical background of Prolog programs.
- Horn clauses (implications of the form antecedent → consequent) represent a natural explanation pattern — easy to explain also to a non-expert in computer science or logic.
- The posed problem is an instance of PAC-learning.

Sketch of the algorithm

Input: Positive and negative samples, T and F, with attributes over finite domains

Convert data to binary, with provisions for enumerations, ordered domains, and intervals.

For the subsets A of the attributes (enumerated by some strategy^(*)):

If the samples projected to \boldsymbol{A} can still be discriminated, then

Compute a Horn/dual Horn/...formula for $T|_A$.

Remove redundant literals and clauses.

Return the formula.

Otherwise return "Unsolvable"

Output: Small Horn/dual Horn/... formula that satisfies the positive samples and falsifies the negative ones (in binary form)

(*) Enumeration strategies: 'begin', 'end', 'lowcard', 'highcard', 'random', 'nosect'

Choices for Computing the Closure

large: The satisfying assignments of the formula are the *largest* closure of the positive samples not intersecting the negative samples.

exact: The satisfying assignments of the formula are the *smallest* closure of the positive samples not intersecting the negative samples.

Learning Horn Formulas

- For each $f \in F$, determine if $f \in \langle T \rangle_{\text{Horn}}$ efficiently, without computing the Horn closure.
- Compute the minimal section of $\langle T \rangle_{\rm Horn}$ and F.
- Compute the Horn formula according to the chosen direction and strategy on the (approximate) minimal section of $\langle T \rangle_{\rm Horn}$ and F.
- Different algorithms for strategies:
 - large: D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. *Machine Learning*, 9(2-3):147–164, 1992.
 - exact: J.-J. Hébrard and B. Zanuttini.

 An efficient algorithm for Horn description.

 Information Processing Letters, 88(4):177–182, 2003.

Learning Dual Horn Formulas

Easy procedure:

- lacktriangle Swap the polarity of the bit vectors in T and F, producing T' and F', respectively.
- ② Compute the Horn formula φ' for T' and F'.
- **3** Swap the polarity of literals in φ' , producing the dual Horn formula φ .

Learning Bijunctive Formulas

Problems:

- There is no known possibility to determine if $f \in \langle T \rangle_{\text{bijunctive}}$ for each $f \in F$ without computing the bijunctive closure $\langle T \rangle_{\text{bijunctive}}$ of T.
- The bijunctive closure $\langle T \rangle_{\rm bijunctive}$ of T can be (and usually is) time and space consuming.

Solution:

- Computes the section using an intersection test,
- Followed by application of the Baker-Pixley Theorem (projection on two coordinates), which implicitly guarantees the bijunctive closure.

Learning General CNF Formulas

advantage: We get a propositional formula in any case, provided that $T \cap F = \emptyset$.

drawback: The produced formula is usually very big.

Different approaches for strategies:

large: For each false element $f \in F$ produce the unique clause c_f which falsifies f. The resulting formula φ is the conjunction of all falsification clauses c_f .

exact: Algorithm producing a CNF formula in time $O(|T| \, k^2)$, where k is the arity/length of tuples in T, using a Boolean restriction of a larger algorithm presented in

A. Gil, M. Hermann, G. Salzer, and B. Zanuttini.

Efficient algorithms for constraint description problems over finite totally ordered domains.

SIAM Journal on Computing, 38(3):922-945, 2008.

Implementation

- 7000 lines of C++ code
- use of standard library for vectors, deques, ...
- Critical part of the software: computation of the minimal section optimization.
- Three types of parallelization
 - MPI Message Passing Interface
 - POSIX threads
 - hybrid combination of MPI and POSIX threads

Future extensions

- Browser-compatible front-end
- Generalization to finitely-valued logic to avoid binarization:
 - A. Gil, M. Hermann, G. Salzer, and B. Zanuttini. Efficient algorithms for constraint description problems over finite totally ordered domains. *SIAM Journal on Computing*, 38(3):922–945, 2008.

Availability and Applications

- http://github.com/miki-hermann/mcp
- Tested on examples from the UCI Machine Learning Repository http://archive.ics.uci.edu/ml/

Try your own eamples in MCP

Thanks for watching