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3X . B of width 2" can be computed in time 2| B|V.
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Corollary

Let € be a class of false QBFs of bounded pathwidth and quantifier alternation.
Then € has polynomial OBDD( A,3,V) proofs.
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Corollary

AC'-Frege+V-Reduction does not p-simulate OBDD( A,3,V).
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OBDD proofs capturing symbolic quantifier elimination for QBF

short OBDD proofs for bounded pathwidth and quantifier alternation

Potential for symbolic quantifier

; ; elimination in a portfolio?

separations from many clausal proof systems

genuine exponential lower bounds via synchronized communication complexity

Can we use this connection for lower

bounds against other proof systems?



