Lower Bounds for QCDCL via Formula Gauge SAT'21

Benjamin Böhm joined work with Olaf Beyersdorff

Friedrich Schiller University Jena

June 25, 2021

- QCDCL is the most used method for QBF solving.
 - Extension of CDCL.
- We want to determine if a given QBF in conjunctive normal form (short: QCNF) is true or false.
 - If the QCNF is false, we want to return a (long-distance)
 Q-resolution refutation.
- In the context of lower bounds, we will concentrate on false formulas only.

A QCDCL run can be represented via implication graphs or trails.

$$\mathcal{T} = (\mathbf{x}, y, \perp)$$

■ From each conflict we can learn a clause:

It was already shown that (nondeterministic) CDCL and Resolution are equivalent:

Pipatsrisawat, Darwiche 2010

For each Resolution refutation of a CNF ϕ there exists a CDCL refutation ι of ϕ with $|\iota| \in \mathcal{O}(n^3|\pi|)$, where n is the number of variables.

■ However, this does not hold in the case of QBF:

Beyersdorff, B. 2021

QCDCL and Q-resolution are incomparable.

- A resulting question: What is hard for QCDCL? How can we achieve hard formulas for QCDCL, whose hardness does not depend on
 - propositional hardness or
 - hardness in long-distance Q-resolution?
- In a nutshell: Is there a lower bound technique especially for QCDCL?

Our inspiration

■ There exists a formula for which hardness in QCDCL was already shown:

Definition (Janota 2015)

The QCNF CR_n (Completion Principle) consists of the prefix

$$\exists x_{(1,1)}, \ldots, x_{(n,n)} \forall u \exists a_1, \ldots, a_n, b_1 \ldots, b_n$$

and the matrix

$$x_{(i,j)} \lor u \lor a_i \quad \neg a_1 \lor \ldots \lor \neg a_n$$

 $\neg x_{(i,j)} \lor \neg u \lor b_j \quad \neg b_1 \lor \ldots \lor \neg b_n$

for i, j = 1, ..., n.

Our inspiration

$$\exists x_{(1,1)}, \dots, x_{(n,n)} \forall u \exists a_1, \dots, a_n, b_1 \dots, b_n$$
$$x_{(i,j)} \lor u \lor a_i \quad \neg a_1 \lor \dots \lor \neg a_n$$
$$\neg x_{(i,j)} \lor \neg u \lor b_i \quad \neg b_1 \lor \dots \lor \neg b_n$$

- A winning strategy for the universal player:
 - Case 1: For all i there exists a j such that $x_{(i,j)}$ is set to false. Then set u to false.
 - Case 2: There exists an i such that for all j the variable $x_{(i,j)}$ is set to true. Then set u to true.

Our inspiration

Theorem (Janota 2016)

 CR_n is hard for QCDCL.

■ Problem: This result depends on the learning scheme and the formula CR_n itself.

Question

Can we generalize the method of this result, such that it holds for a bigger class of formulas and for any learning scheme?

A generalized lower bound for QCDCL

Our result

For each QCNF Φ that fulfils a certain property, there exists a number gauge(Φ) such that each QCDCL refutation of Φ has size $2^{\Omega(\text{gauge}(\Phi))}$.

What is this certain property?

■ From now on, let us restrict ourselves to Σ_3^b QCNFs with the prefix $\exists X \forall U \exists T$.

Definition

Let Φ be a QCNF of the form $\exists X \forall U \exists T \cdot \phi$. We call a clause C in the variables of Φ

- X-clause, if $var(C) \cap X \neq \emptyset$, $var(C) \cap U = \emptyset$ and $var(C) \cap T = \emptyset$,
- T-clause, if $var(C) \cap X = \emptyset$, $var(C) \cap U = \emptyset$ and $var(C) \cap T \neq \emptyset$,
- XT-clause, if $var(C) \cap X \neq \emptyset$, $var(C) \cap U = \emptyset$ and $var(C) \cap T \neq \emptyset$.

We say that Φ fulfils the XT-property if ϕ contains no XT-clauses as well as no unit T-clauses and there do not exist two T-clauses that are resolvable.

What is this certain property?

Definition

We say that Φ fulfils the XT-property if ϕ contains no XT-clauses as well as no unit T-clauses and there do not exist two T-clauses that are resolvable.

- Intuitively, this says that there is no direct connection between the X- and T-variables, i.e., Φ does not contain clauses with X- and T-variables, but no U-variables.
- Important: This property is "hereditary", that means every learned clause will fulfil this property, as well.
 - \rightarrow This property will hold during the whole QCDCL run.

gauge(Φ)

Our result

For each Σ_3^b QCNF Φ that fulfils the XT-property, there exists a number gauge(Φ) such that each QCDCL refutation of Φ has size $2^{\Omega(\text{gauge}(\Phi))}$.

■ What is gauge(Φ)?

Definition

For a Σ_3^b QCNF Φ with prefix $\exists X \forall U \exists T$ let W_{Φ} be the set of all Q-resolution derivations π from Φ of some X-clause such that π only contains T-resolution and reduction steps. We define the gauge of Φ as

gauge(Φ) := min{|C| : C is the root of some $\pi \in W_{\Phi}$ }.

gauge(Φ)

Definition

For a Σ_3^b QCNF Φ with prefix $\exists X \forall U \exists T$ let W_{Φ} be the set of all Q-resolution derivations π from Φ of some X-clause such that π only contains T-resolution and reduction steps. We define the gauge of Φ as

 $gauge(\Phi) := min\{|C| : C \text{ is the root of some } \pi \in W_{\Phi}\}.$

■ Intuitively, gauge(Φ) is the minimal number of X-literals that are necessarily piled up in a Q-resolution derivation in which we want to get rid of all T-literals.

gauge(Φ)

Definition (Janota 2015)

The QCNF CR_n (Completion Principle) consists of the prefix

$$\exists x_{(1,1)}, \ldots, x_{(n,n)} \forall u \exists a_1, \ldots, a_n, b_1 \ldots, b_n$$

and the matrix

$$x_{(i,j)} \lor u \lor a_i \quad \neg a_1 \lor \ldots \lor \neg a_n$$

 $\neg x_{(i,j)} \lor \neg u \lor b_j \quad \neg b_1 \lor \ldots \lor \neg b_n$

for i, j = 1, ..., n.

■ CR_n fulfils the XT-property and it holds $gauge(CR_n) = n$. $\rightarrow CR_n$ is hard for QCDCL.

Another example

Definition

The formula Equality $_n$ is defined as the QCNF with the prefix

$$\exists x_1 \dots x_n \forall u_1 \dots u_n \exists t_1 \dots t_n$$

and the matrix

$$x_i \vee u_i \vee t_i \quad \neg t_1 \vee \ldots \vee \neg t_n$$
$$\neg x_i \vee \neg u_i \vee t_i$$

for i = 1, ..., n.

- Equality_n fulfils the XT-property and it holds gauge(Equality_n) = n.
 - \rightarrow Equality, is hard for QCDCL.

Our result

Theorem

For each Σ_3^b QCNF Φ that fulfils the XT-property, every QCDCL refutation of Φ has size $2^{\Omega(\text{gauge}(\Phi))}$.

- With this technique, one can show that formulas like
 - \blacksquare CR_n
 - Equality_n
 - ENarrow_n

are hard for QCDCL under arbitrary learning schemes.

Fin

Thanks for listening.