
On Dedicated CDCL Strategies for PB Solvers

Daniel Le Berre1, Romain Wallon2

SAT 2021 – July 8th, 2021
1 CRIL, Univ Artois & CNRS
2 LIX (Laboratoire d’Informatique de l’X), Ecole Polytechnique, X-Uber Chair



SAT Solving and Limitations

Modern SAT solvers, based on the CDCL architecture (GRASP) and
efficient heuristics and data structures (Chaff, MiniSat), are very efficient
in practice

However, some instances remain completely out of reach for these solvers,
due to the weakness of the resolution proof system they use internally

This is particularly true for instances requiring the ability to count, such
as pigeonhole-principle formulae, stating that “n pigeons do not fit in
n − 1 holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

1/17



SAT Solving and Limitations

Modern SAT solvers, based on the CDCL architecture (GRASP) and
efficient heuristics and data structures (Chaff, MiniSat), are very efficient
in practice

However, some instances remain completely out of reach for these solvers,
due to the weakness of the resolution proof system they use internally

This is particularly true for instances requiring the ability to count, such
as pigeonhole-principle formulae, stating that “n pigeons do not fit in
n − 1 holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

1/17



SAT Solving and Limitations

Modern SAT solvers, based on the CDCL architecture (GRASP) and
efficient heuristics and data structures (Chaff, MiniSat), are very efficient
in practice

However, some instances remain completely out of reach for these solvers,
due to the weakness of the resolution proof system they use internally

This is particularly true for instances requiring the ability to count, such
as pigeonhole-principle formulae, stating that “n pigeons do not fit in
n − 1 holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

1/17



SAT Solving and Limitations

Modern SAT solvers, based on the CDCL architecture (GRASP) and
efficient heuristics and data structures (Chaff, MiniSat), are very efficient
in practice

However, some instances remain completely out of reach for these solvers,
due to the weakness of the resolution proof system they use internally

This is particularly true for instances requiring the ability to count, such
as pigeonhole-principle formulae, stating that “n pigeons do not fit in
n − 1 holes”

While modern SAT solvers perform poorly on such instances for n > 20,
PB solvers based on cutting-planes may solve them in linear time

1/17



Pseudo-Boolean (PB) Constraints

PB solvers generalize SAT solvers to take into account

• normalized PB constraints
∑n

i=1 αiℓi ≥ δ

• cardinality constraints
∑n

i=1 ℓi ≥ δ

• clauses
∑n

i=1 ℓi ≥ 1 ≡
∨n

i=1 ℓi

in which

• the coefficients αi are non-negative integers
• ℓi are literals, i.e., a variable v or its negation v̄ = 1 − v
• the degree δ is a non-negative integer

2/17



CDCL in PB Solvers

Modern SAT solvers are very efficient in practice, especially because of
the conflict-driven clause learning architecture

Current PB solvers also implement conflict analysis, based on the
cutting-planes proof system

It is well known that, in addition to conflict analysis, several features are
crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as they are by current PB solvers,
without taking into account the particular properties of PB constraints

3/17



CDCL in PB Solvers

Modern SAT solvers are very efficient in practice, especially because of
the conflict-driven clause learning architecture

Current PB solvers also implement conflict analysis, based on the
cutting-planes proof system

It is well known that, in addition to conflict analysis, several features are
crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as they are by current PB solvers,
without taking into account the particular properties of PB constraints

3/17



CDCL in PB Solvers

Modern SAT solvers are very efficient in practice, especially because of
the conflict-driven clause learning architecture

Current PB solvers also implement conflict analysis, based on the
cutting-planes proof system

It is well known that, in addition to conflict analysis, several features are
crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as they are by current PB solvers,
without taking into account the particular properties of PB constraints

3/17



CDCL in PB Solvers

Modern SAT solvers are very efficient in practice, especially because of
the conflict-driven clause learning architecture

Current PB solvers also implement conflict analysis, based on the
cutting-planes proof system

It is well known that, in addition to conflict analysis, several features are
crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as they are by current PB solvers,
without taking into account the particular properties of PB constraints

3/17



Analyzing Conflicts: Generalized Resolution

The generalized resolution proof system [Hooker, 1988] is used in PB
solvers as the counterpart of the resolution proof system:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

These two rules are used during conflict analysis
to learn new constraints

4/17



Analyzing Conflicts: Generalized Resolution

The generalized resolution proof system [Hooker, 1988] is used in PB
solvers as the counterpart of the resolution proof system:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

These two rules are used during conflict analysis
to learn new constraints

4/17



Analyzing Conflicts: Generalized Resolution

The generalized resolution proof system [Hooker, 1988] is used in PB
solvers as the counterpart of the resolution proof system:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

These two rules are used during conflict analysis
to learn new constraints

4/17



Analyzing Conflicts: Generalized Resolution

The generalized resolution proof system [Hooker, 1988] is used in PB
solvers as the counterpart of the resolution proof system:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

These two rules are used during conflict analysis
to learn new constraints

4/17



Analyzing Conflicts: Generalized Resolution

The generalized resolution proof system [Hooker, 1988] is used in PB
solvers as the counterpart of the resolution proof system:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

These two rules are used during conflict analysis
to learn new constraints

4/17



Analyzing Conflicts: Generalized Resolution

The generalized resolution proof system [Hooker, 1988] is used in PB
solvers as the counterpart of the resolution proof system:

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

These two rules are used during conflict analysis
to learn new constraints

4/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) + g(?@?) ≥ 5

6a(?@?) + 3b(?@?) + 3c(?@?) + 3d̄(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) + g(?@?) ≥ 5

6a(?@?) + 3b(1@1) + 3c(?@?) + 3d̄(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) + g(?@?) ≥ 5

6a(?@?) + 3b(1@1) + 3c(0@2) + 3d̄(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(?@?) + 3̄f(?@?) + d(?@?) + e(?@?) + g(0@3) ≥ 5

6a(?@?) + 3b(1@1) + 3c(0@2) + 3d̄(?@?) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(?@?) + 3̄f(?@?) + d(0@4) + e(?@?) + g(0@3) ≥ 5

6a(?@?) + 3b(1@1) + 3c(0@2) + 3d̄(1@4) + 3f(?@?) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(1@4) + 3̄f(1@4) + d(0@4) + e(?@?) + g(0@3) ≥ 5

6a(0@4) + 3b(1@1) + 3c(0@2) + 3d̄(1@4) + 3f(0@4) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(1@4) + 3̄f(1@4) + d(0@4) + e(?@?) + g(0@3) ≥ 5

6a(0@4) + 3b(1@1) + 3c(0@2) + 3d̄(1@4) + 3f(0@4) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(0@4) + 3b(1@1) + 3c(0@2) + 2d̄(1@4) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(1@4) + 3̄f(1@4) + d(0@4) + e(?@?) + g(0@3) ≥ 5

6a(0@4) + 3b(1@1) + 3c(0@2) + 3d̄(1@4) + 3f(0@4) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Analyzing Conflicts: Example

Suppose that we have the following constraints:

3ā(1@4) + 3̄f(1@4) + d(0@4) + e(?@?) + g(0@3) ≥ 5

6a(0@4) + 3b(1@1) + 3c(0@2) + 3d̄(1@4) + 3f(0@4) ≥ 9

We now apply the cancellation rule between these two constraints:

3ā + 3̄f + d + e + g ≥ 5 6a + 3b + 3c + 3d̄ + 3f ≥ 9
3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

The PB constraints involved in this conflict analysis have very different
properties compared to clauses!

5/17



Branching Heuristics: Classical Implementation

SAT and PB solvers use the EVSIDS heuristic for choosing the next
variable to branch on

In this heuristic, all variables encountered during conflict analysis are
bumped

This is the case for all the variables appearing in the previous reason:

3ā + 3̄f + d + e + g ≥ 5

This means that the scores of the variables a, f, d, e and g are
incremented

6/17



Branching Heuristics: Classical Implementation

SAT and PB solvers use the EVSIDS heuristic for choosing the next
variable to branch on

In this heuristic, all variables encountered during conflict analysis are
bumped

This is the case for all the variables appearing in the previous reason:

3ā + 3̄f + d + e + g ≥ 5

This means that the scores of the variables a, f, d, e and g are
incremented

6/17



Branching Heuristics: Classical Implementation

SAT and PB solvers use the EVSIDS heuristic for choosing the next
variable to branch on

In this heuristic, all variables encountered during conflict analysis are
bumped

This is the case for all the variables appearing in the previous reason:

3ā + 3̄f + d + e + g ≥ 5

This means that the scores of the variables a, f, d, e and g are
incremented

6/17



Branching Heuristics: Classical Implementation

SAT and PB solvers use the EVSIDS heuristic for choosing the next
variable to branch on

In this heuristic, all variables encountered during conflict analysis are
bumped

This is the case for all the variables appearing in the previous reason:

3ā + 3̄f + d + e + g ≥ 5

This means that the scores of the variables a, f, d, e and g are
incremented

6/17



Branching Heuristics: Coefficients

An obvious difference between clauses and PB constraints is the presence
of coefficients in the constraint

3ā + 3̄f + d + e + g ≥ 5

Because of these coefficients, literals are not symmetrical in the constraint

A possible way to adapt VSIDS is to increment the score of the variables
proportionately w.r.t. these coefficients

7/17



Branching Heuristics: Coefficients

An obvious difference between clauses and PB constraints is the presence
of coefficients in the constraint

3ā + 3̄f + d + e + g ≥ 5

Because of these coefficients, literals are not symmetrical in the constraint

A possible way to adapt VSIDS is to increment the score of the variables
proportionately w.r.t. these coefficients

7/17



Branching Heuristics: Coefficients

An obvious difference between clauses and PB constraints is the presence
of coefficients in the constraint

3ā + 3̄f + d + e + g ≥ 5

Because of these coefficients, literals are not symmetrical in the constraint

A possible way to adapt VSIDS is to increment the score of the variables
proportionately w.r.t. these coefficients

7/17



Branching Heuristics: Assignment

Observe that some literals are unassigned in the reason for f̄

3ā + 3̄f + d + e + g ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

If we weaken away (i.e., assign to 1 and simplify) the literal e, the
constraint still propagates f̄ ⇝ 3ā + 3̄f + d + g ≥ 4

This is also true if we also weaken away the literal a ⇝ 3̄f+d+g ≥ 1

Actually, the literals that should be bumped are those of this constraint!

8/17



Branching Heuristics: Assignment

Observe that some literals are unassigned in the reason for f̄

3ā + 3̄f + d + e + g ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

If we weaken away (i.e., assign to 1 and simplify) the literal e, the
constraint still propagates f̄ ⇝ 3ā + 3̄f + d + g ≥ 4

This is also true if we also weaken away the literal a ⇝ 3̄f+d+g ≥ 1

Actually, the literals that should be bumped are those of this constraint!

8/17



Branching Heuristics: Assignment

Observe that some literals are unassigned in the reason for f̄

3ā + 3̄f + d + e + g ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

If we weaken away (i.e., assign to 1 and simplify) the literal e, the
constraint still propagates f̄ ⇝ 3ā + 3̄f + d + g ≥ 4

This is also true if we also weaken away the literal a ⇝ 3̄f+d+g ≥ 1

Actually, the literals that should be bumped are those of this constraint!

8/17



Branching Heuristics: Assignment

Observe that some literals are unassigned in the reason for f̄

3ā + 3̄f + d + e + g ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

If we weaken away (i.e., assign to 1 and simplify) the literal e, the
constraint still propagates f̄ ⇝ 3ā + 3̄f + d + g ≥ 4

This is also true if we also weaken away the literal a ⇝ 3̄f+d+g ≥ 1

Actually, the literals that should be bumped are those of this constraint!

8/17



Branching Heuristics: Assignment

Observe that some literals are unassigned in the reason for f̄

3ā + 3̄f + d + e + g ≥ 5

In an assertive clause, all literals are assigned, and all but one are
falsified: these latter literals are those involved in the propagation

If we weaken away (i.e., assign to 1 and simplify) the literal e, the
constraint still propagates f̄ ⇝ 3ā + 3̄f + d + g ≥ 4

This is also true if we also weaken away the literal a ⇝ 3̄f+d+g ≥ 1

Actually, the literals that should be bumped are those of this constraint!

8/17



Branching Heuristics: Experiments in Sat4j1

3300 3400 3500 3600 3700 3800 3900
Number of solved inputs

0

200

400

600

800

1000

1200

Ru
nt

im
e 

(in
 se

co
nd

s)
Cactus Plot of the Runtime

VBS
bump-effective
bump-falsified
bump-assigned
bump-ratio-degree-coefficient
default
bump-coefficient
bump-degree
bump-ratio-coefficient-degree

Figure 1: Performance of different bumping strategies on decision problems

1More at https://gitlab.com/pb-cdcl-strategies/experiments

9/17



Quality of Learned Constraints: Classical Implementations

In SAT solvers, evaluating the quality of learned constraints is used to
choose which constraints should be deleted and to decide when a restart
should be triggered

The quality measures used by SAT solvers do not take into account the
properties of PB constraints

Adapting quality measures to PB constraints may be used to design
learned constraint deletion strategies and restart policies

dedicated to PB problems

10/17



Quality of Learned Constraints: Classical Implementations

In SAT solvers, evaluating the quality of learned constraints is used to
choose which constraints should be deleted and to decide when a restart
should be triggered

The quality measures used by SAT solvers do not take into account the
properties of PB constraints

Adapting quality measures to PB constraints may be used to design
learned constraint deletion strategies and restart policies

dedicated to PB problems

10/17



Quality of Learned Constraints: Classical Implementations

In SAT solvers, evaluating the quality of learned constraints is used to
choose which constraints should be deleted and to decide when a restart
should be triggered

The quality measures used by SAT solvers do not take into account the
properties of PB constraints

Adapting quality measures to PB constraints may be used to design
learned constraint deletion strategies and restart policies

dedicated to PB problems

10/17



Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause may be used as a measure of its
quality: the longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

The size of a PB constraint also takes into account its coefficients

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations

We consider a quality measure based on the degree of the constraints:
the lower the degree, the better the constraint

11/17



Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause may be used as a measure of its
quality: the longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

The size of a PB constraint also takes into account its coefficients

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations

We consider a quality measure based on the degree of the constraints:
the lower the degree, the better the constraint

11/17



Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause may be used as a measure of its
quality: the longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

The size of a PB constraint also takes into account its coefficients

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations

We consider a quality measure based on the degree of the constraints:
the lower the degree, the better the constraint

11/17



Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause may be used as a measure of its
quality: the longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

The size of a PB constraint also takes into account its coefficients

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations

We consider a quality measure based on the degree of the constraints:
the lower the degree, the better the constraint

11/17



Quality of Learned Constraints: Size and Coefficients

In SAT solvers, the size of a clause may be used as a measure of its
quality: the longer the clause, the lower its strength

In the PB case, the length of a constraint does not reflect its strength

The size of a PB constraint also takes into account its coefficients

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

In practice, the coefficients may become very big, which requires the use
of arbitrary precision encodings and slows down arithmetic operations

We consider a quality measure based on the degree of the constraints:
the lower the degree, the better the constraint

11/17



Quality of Learned Constraint: Assignment (LBD)

In SAT solvers, the Literal Block Distance (LBD) measures the quality of
clauses by the number of decision levels appearing in this clause

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

There are satisfied and unassigned literals in this constraint!

As for bumping strategies, the computation of the LBD should take into
account these literals to be more accurate

12/17



Quality of Learned Constraint: Assignment (LBD)

In SAT solvers, the Literal Block Distance (LBD) measures the quality of
clauses by the number of decision levels appearing in this clause

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

There are satisfied and unassigned literals in this constraint!

As for bumping strategies, the computation of the LBD should take into
account these literals to be more accurate

12/17



Quality of Learned Constraint: Assignment (LBD)

In SAT solvers, the Literal Block Distance (LBD) measures the quality of
clauses by the number of decision levels appearing in this clause

3a(?@?) + 3b(1@1) + 3c(0@2) + 2d̄(?@?) + e(?@?) + g(0@3) ≥ 7

There are satisfied and unassigned literals in this constraint!

As for bumping strategies, the computation of the LBD should take into
account these literals to be more accurate

12/17



Quality of Learned Constraint: Experiments in Sat4j2

3500 3600 3700 3800 3900
Number of solved inputs

0

200

400

600

800

1000

1200
Ru

nt
im

e 
(in

 se
co

nd
s)

Cactus Plot of the Runtime

VBS
degree-bits
degree
lbd-d
lbd-f
lbd-s
lbd-e
picosat - no-delete
lbd-a
luby - no-delete
default
luby - activity

Figure 2: Performance of different learned constraint deletion and restart
strategies on decision problems

2More at https://gitlab.com/pb-cdcl-strategies/experiments

13/17



Experiments: Description

Experimental Setup

• Intel XEON X5550 (2.66 GHz, 8 MB cache)
• Time limited to 1200 seconds
• Memory limited to 32 GB

Instances

• Decision problems of all PB competitions (small integers)
• Optimization problems of all PB competitions (small integers)

Solvers
• Different configurations of Sat4j

• Sat4j-GeneralizedResolution
• Sat4j-RoundingSat
• Sat4j-PartialRoundingSat

• RoundingSat

14/17



Experiments: Decision Problems3

3500 3600 3700 3800 3900 4000 4100 4200 4300
Number of solved inputs

0

200

400

600

800

1000

1200

Ru
nt

im
e 

(in
 se

co
nd

s)

Cactus Plot of the Runtime

VBS (Sat4j + RoundingSat)
VBS (RoundingSat)
RoundingSat (best)
RoundingSat (master)
RoundingSat (default)
VBS (Sat4j)
Sat4j-PartialRoundingSat (best)
Sat4j-RoundingSat (best)
Sat4j-GeneralizedResolution (best)
Sat4j-PartialRoundingSat (default)
Sat4j-RoundingSat (default)
Sat4j-GeneralizedResolution (default)

Figure 3: Performance of different PB Solvers on decision problems

3More at https://gitlab.com/pb-cdcl-strategies/experiments

15/17



Experiments: Optimization Problems4

2000 2100 2200 2300 2400 2500
Number of solved inputs

0

200

400

600

800

1000

1200

Ru
nt

im
e 

(in
 se

co
nd

s)

Cactus Plot of the Runtime

VBS (Sat4j + RoundingSat)
VBS (RoundingSat)
RoundingSat (best)
RoundingSat (default)
RoundingSat (master)
VBS (Sat4j)
Sat4j-RoundingSat (best)
Sat4j-PartialRoundingSat (best)
Sat4j-RoundingSat (default)
Sat4j-PartialRoundingSat (default)
Sat4j-GeneralizedResolution (best)
Sat4j-GeneralizedResolution (default)

Figure 4: Performance of different PB solvers on optimization problems

4More at https://gitlab.com/pb-cdcl-strategies/experiments

16/17



Conclusion and Perspectives

Conclusion
• PB solvers implement CDCL strategies mostly “as they are” from

their original definition in SAT solvers
• However, PB solvers should also take into account the particular

form of PB constraints
• Considering coefficients and assignments improves the performance

of PB solvers (in our case, Sat4j and RoundingSat)

Perspectives
• Find new ways to adapt CDCL strategies
• Find better combinations of the proposed extensions
• Dynamically configure the best strategies for a given instance

17/17



Conclusion and Perspectives

Conclusion
• PB solvers implement CDCL strategies mostly “as they are” from

their original definition in SAT solvers
• However, PB solvers should also take into account the particular

form of PB constraints
• Considering coefficients and assignments improves the performance

of PB solvers (in our case, Sat4j and RoundingSat)

Perspectives
• Find new ways to adapt CDCL strategies
• Find better combinations of the proposed extensions
• Dynamically configure the best strategies for a given instance

17/17



On Dedicated CDCL Strategies for PB Solvers

Daniel Le Berre1, Romain Wallon2

SAT 2021 – July 8th, 2021
1 CRIL, Univ Artois & CNRS
2 LIX (Laboratoire d’Informatique de l’X), Ecole Polytechnique, X-Uber Chair


